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Abstract

The study of the singularity set is of utmost utility in unstanding the local and global behavior of a manipulator. Af-
ter reviewing the mathematical conditions that charazntethis set, and their kinematic and geometric interpiatatihis
paper shows how these conditions can be formulated in anatsteemanner in planar manipulators, allowing to define a
conceptually-simple method for isolating the set exh&aktj even in higher-dimensional cases. As a result, théoaktle-
livers a collection of boxes bounding the location of allmieiof the set, whose accuracy can be adjusted through ddihdes
parameter. Such boxes can then be projected to the inputtputocpordinate spaces, obtaining informative diagrams, o
portraits, on the global motion capabilities of the mangpot. Examples are included that show the application offrtehod

to simple manipulators, and to a complex mechanism thatdvoeldificult to analyze using common-practice procedures.

Keywords: Singularity set, planar manipulator, forward singularitwerse singularity, box approximation,
branch-and-prune method.

1. Introduction

Singularity Analysis is a central topic of Robot Kinematick has as a goal to study certain configurations, termed
singular or critical, where important changes take place in the kinetostatiopeance of a manipulator. Motion control
or dexterity losses can arise, and there may appear unatdeler uncontrollable endfector forces, among otheffects.

The study of singularities is therefore motivated by a deiravoid these configurations, but it may be helpful to oeera
close to them sometimes, such as when handling heavy objeitlieg, or fine-positioning, where extreme force or nowti
transformation ratios are often required. Independerftth@context of application, however, it is clear that rel&tools to
compute and visualize the whole singularity set are neealpdoperly assist the robot design and programming prosesse

Numerous mathematical conditions aimed at charactersimgularity have been given in the literature [1, 2, 3, 4grev
for manipulators of general architecture [5, 6, 7, 8, 9]. Eaeliest attempt to provide a general framework to detezmin
and classify all singular configurations can be attribute@obsselin and Angeles [5], who proposed the use of joptput
velocity equations to define the well-known “Type I” and “Bypl” singularities, where the velocity of the enétector
does not determine the velocities of the actuators,\acel versa The approach was sound, but neglected the role played
by passive joint velocities, and it was later found thatHartsingularity types existed that could not be framed ihtirt
formalism [6, 7, 8]. This observation led Zlatanov to defiimgslar configurations in a more general way, as those where
the forward or the inverse instantaneous kinematic prosidsacome undetermined [8], and to identify three fundamental
types of singularities-put, output andC-spacesingularities, also characterized by Park independedii~| which can
be further classified into six lower-level types accordiadhe kinematic degeneracy occurring in them. Zlatanovaatr
terization of singularity is probably the most systematid general one proposed so far in the literature, and accolates,
as special cases, the earlier Tyfédingularities, and subtle singularities, such as camst{10, 11] or architecture singu-
larities [12, 13].

1Understood as the computation of ineerall configuration velocity, given the input or output velocitie
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These advances in mathematical characterization, howesee not been paralleled by corresponding advances in the
development of general algorithms for computing the erslingularity set. Previous methods for studying the set fisxe
tive, but restrict their attention to narrowly-defined sles of manipulators [14, 15, 16, 17, 18, 19, 20, 21], or toi@ader
singularity types [22], and a general approach able to ie@# possible singularities on a large class of maniputai®
still lacking. To help covering such gap, this paper propas@umerical method for computing the singularity set ohata
manipulators ofjeneralarchitecture, i.e., encompassing open or closed kinerolaéims interconnected in any possible way,
by means of revolute or prismatic pairs.

The method builds upon earlier work on position analysis 4. It is based on describing the singularity set as the
solution of a system of quadratic equations, and on expbpithe particular form of these equations to define a branch-a
prune strategy that can approximate the set in a multi-néigelfashion. As a result, a collection of boxes forming aiteo
envelope of the set is delivered, which can be computed atlés&ed precision. The method can also be used to derive
useful representations, portraits, of the singularity set, defined as projections of the C-emd¢he manipulator to the input
and output spaces, with all singularity points indicateldede diagrams provide valuable information on the reaetetelas,
possible motion impediments, and safe navigation regibttseomanipulator in each of such spaces.

A main assumption of the paper is that the studied maniptdate non-redundant, to allow a more simple and symmetric
presentation of results. However, the analysis of mechanisith redundant actuation should also be tackleable wiah m
chinery similar to the one presented. Also, the emphasis iustrating the method on closed-chain mechanisms,usxa
they are those exhibiting the whole range of singular phem@nbut the results remain applicable to arbitrary muttjbo
systems.

The rest of the paper is structured as follows. Section Zvevithe mathematical conditions that characterize the sin-
gularity set of any non-redundant manipulator, the maigdiarity types, and the kinematic consequences of travgitbie
configurations of each type. The presentation is terse irpanison to systematic treatments like [8], but it providesmetric
arguments that arefdiicult to find elsewhere, and summarizes necessary backgfouttie rest of the paper. Section 3 fo-
cuses on the planar case, and uses the previous conditideggdimp systems of quadratic equations describing theiksirity
set. Sections 4 and 5 describe the method proposed to selse siystems numerically, and how the computed solutions can
be processed to obtain the aforementioned portraits. @eétillustrates the application of the method to maniputataith
a well-known singularity set, and to a highly-complex metdhe that would be dficult to analyze using common-practice
approaches. Section 7, finally, provides the main conahssid the paper and outlines points deserving further aient

2. Singular configurations

2.1. Mathematical conditions

The allowable positions and orientations of all links in anipalator can be encoded in a vecwpof ny generalized
coordinates, subject to a systenmgfequations of the form

®(q) =0, 1)

which expresses the assembly constraints imposed by thts @5, 23, 24]. Here®(q) : Q — & is a diferentiable map,
whereQ and& areng- andne-dimensional manifolds respectively, and Eq. (1) is meammc¢lude all possible assembly con-
straints, including those due to mechanical limits on thet§o which can also be modelled as equality constraintpéfplix
A).

Let C denote the C-space of the manipulator. That is,

C={qeQ:®(q) =0} 2)

In the usual setting, the flierential®q = [Bcl)i/aqj] is full rank at all pointsg € C, except on a subsét ¢ C whereC may
lose the manifold structure. ThuS,\ G is a smooth manifold of dimensiah= nq — ne, whose tangent space at a paiyis
thed-dimensional set

TqC=1{q: qeKer(®q)}

The vectorg will be assumed to contain a vecterof n, input coordinates, corresponding to the actuated degrees o
freedom of the manipulator, and a vectoof n, output coordinates, corresponding to the efféator variables defining its
functionality. This allows to consider the partitiogs= [y',v']" andq = [z',u"]" wherey and zencompass the, andn,
coordinates remaining ig after the removal o¥ andu, respectively, and to write Eq. (1) in either of the follogiforms:

®(y,v) =0, 3)
®(zu) =0. (4)
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Hereafter, the/—, andu— spaces will be denoted ls)y and/ respectively, and it will be further assumed that the maaijoun
is non-redundant, i.e., thay = n, = d, which means that the number of inputs, and also the outigute lowest necessary to
determine the overall configuratian This implies thahy = n, = ne in particular, so that Egs. (3) and (4) are well-determined
systems of equations in general, for fixed valueg afidu.

To see the role played by singular configurations, consluetitne derivatives of Egs. (3) and (4):

Py y+ Py V=0, (5)
®zz+Pyu=0. (6)

Note that for configurationg on which®y and®z are non-singular, we can write Egs. (5) and (6) in the eqentsfiorm

y=-®y @y, (7
z=-07 @y (, (8)

which provide the solution to the forward and inverse intaaous kinematic problems of the manipulator. Howeves, Ef)
and (8) only hold whenevaby and®z are full rank, and only in this case the input and output ratasdu will determine
unique values for the remaining ratgendz. This must be so because, why is rank-deficient ag, Eq. (5) yields, for

a given value ofv, either no solution or infinitely-many solutions f§r in which case it is not possible to determine the
velocity q of the manipulator by specifying the velocitie®f the actuators. Whed 7 is rank-deficient at}, Eq. (6) reveals
an analogous relation betwearand g. Following these observations, a configuratmpr C is said to besingularif either
@y or @z is rank deficient ag, and the ses of all of such configurations is called tisengularity setof the manipulator [8].

Note now thatS can be obtained as the union of the solution sets of the follpwystems of equations

®(g) =0 ®(q) =0
®y&=0 ) ®z&=0 (10)
€117 = 1 €117 = 1

where the first equation in each system constrgittsbe a feasible configuration of the manipulator, and thersgand third
equations enforce the existence of a non-zero vetioithe kernel of the corresponding matrix. The poigtsatisfying the
left (resp. right) system will be callefdrward (resp.inversg singularities.

2.2. Kinematic and geometric interpretation

A rapid inspection of Egs. (5) and (6) reveals that forward ewerse singularities correspond to configurations inciwhi
the locking of the input or output coordinates yields an itdsimally flexible, or shaky, mechanism [26]. Such a degaiee
behaviour has further physical consequences, which caetber lappreciated by classifying the pointsSmccording to the
geometric cause of rank deficiencydry or ®@z. Three types of singular configurations can be distinguisieording to
this criterion:

1. C-space singularitiesdefined as the pointg € G ¢ C where the whole dierential®q is rank deficient, so that both
the forward and inverse kinematic problems become unsl@vatihe form of Egs. (7) and (8), independently of the
choice of input and output coordinates.

2. Input singularities or the pointsg € C \ G where®y is rank deficient, so that the forward kinematic problem bees
unsolvable.

3. Output singularitiesor the pointsg € C \ G where®z is rank deficient, so that the inverse instantaneous kiriemat
problem is unsolvable.

<>

Figure 1: Examples of C-space singularities.



Input space Output space

Figure 2: Interpretation of input and output singulariti@senQ = R3, C is a sphere, ant and€/ are two coordinate planes &°. In the figure,q; and
0, correspond to an input and an output singularity, respelgtiandas is both an input and an output singularity. In this examplenaath trajectory iy
(resp.U) throughv; (resp.uy) does not locally determine a unique smooth trajectoi§.in

C-space singularities correspond to poigtg which C may lose the manifold structure, such as bifurcations,esdg
or dimension changes (Fig. 1). Sindey is rank deficient at such points, the tangent spac€ teecomes ill-defined in
them, and there is an increase in the instantaneous madiilihe manipulator. The increased mobility cannot be cdietio
even if we change the location of the actuators, becausenitriasic to the design of the mechanism. On input and output
singularities, contrarilypq is full rank andC has ad-dimensional tangent space, but this space has a speciabpg27].
This is easy to see whe@ = R™, in which caseC can be regarded as a subseR8{. In such a situation, input singularities
correspond to pointg where the tangent space@rojects down tsV = R™ as a linear space of dimension lower thgn
and output singularities are the points where the tangeatesfoC projects tol/ = R™ as a subspace of dimension lower
thann, (Fig. 2). Whereas input singularities yield controllalyiissues (a feasible vectddoes not determine a unique vector
g € TqC), output singularities correspond to mobility losses &f émd-&ector (independently of the value gfe Tq C, u is
always restricted to a linear subspace of smaller dimepsion

The implicit function theorem [28] provides further insigis to the advantages of avoiding each singularity type. As a
consequence of the theorem@i, is full rank at a pointg, = [yg,vg]T, a smooth trajectory(t) c <V throughvg will locally
correspond to a unigue smooth trajectq(t) on C throughqy, or, in other words, the overall movement of the manipulator
will be controllable through the inputs. In a similar way, evtever® is full rank atq, = [z}, ul]", a smooth trajectoru(t)
throughug will locally determine a unique smooth trajectaggt) on C, so that a tracking of the output will be fiigient to
predict the overall motion of the manipulator. This onestee correspondence between the input or output trajestanethe
one hand, and the manipulator trajectory, on the other hiamtht guaranteed at a singular configuration. This can eeen b
inferred from the simple situation of Fig. 2, which providas we see, a powerful image to intuitively understand thiear
phenomena that occur at a singularity.

Note finally that, since the rank deficiency @fq implies the rank deficiency aby and®z, forward singularities are
the union of C-space and input singularities, whereas $®veingularities are the union of C-space and output siriiata
As it turns out, a poing € C \ G can be both an input and an output singularity, so that battfdhward and the inverse
instantaneous kinematic problems may become unsolvahie\ai. C-space singularities can be singled-out if desired, by
defining a system similar to those in Egs. (9) and (10), bubsipg the rank deficiency @b instead of that ofby or ®z.
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3. Formulating the equations of the singularity set

We next show that a particular choice of configuration camathis allows formulating Egs. (9) and (10) in an amenable
manner on planar manipulators, suitable to adopt a simpledbrand-prune strategy to solve these systems numgrichb
formulation closely follows that of reference point coaraties in Multibody Dynamics, which leads to polynomial eépres
of a simple quadratic form with little manipulation, in coargson to other formulations departing from loop constsaom
relative joint displacements [29], or to distance-basethfdations [30].

3.1. Configuration coordinates and assembly constraints

Let us assume that our manipulator Ingdinks andn; joints, labelled.s, ..., Ly, andJy, ..., Jn,, respectively, wheré;
is supposed to be the ground link. We furnish every linkvith a local reference frame, letting #;1 act as the absolute
frame. We will writev”' to indicate that the components of a vectoe R? are provided in the basis of;, and we will
assume that vectors with no superscript are expressed raslie off7. Then, the pose of each link in the manipulator can
be specified by the pair|( R)), wherer, = (x, ;) is the position of the origin of; in frame¥;, and

' = |sing  cosh

cosy, - sin@.]

is the rotation matrix expressing the orientatiorypfrelative tof;. Note that the link poses cannot be arbitrary though, as
they must fulfill the assembly constraints imposed by thet§oi

If J is a revolute joint connecting linkks; and Ly, the assembly constraint of this joint is equivalent to isipg the
coincidence of two points on the joir; andQ;, respectively fixed ta; andLy [Fig. 3 (a)]. This condition can be formulated
as follows

I'j + Rj p|7'-l =TIyx+ Rk qlﬁ<, (11)

wherepf" andqfk are the constant position vectorsfandQ; in 7; and¥y respectively. The joint angle dfis not explicit
in Eq. (11), but it can easily be obtained as
aj = 9j - Hk. (12)

If J is a prismatic joint, we consider two poin and Q; on the axis of the joint as before, but also a unit vector
aligned with the joint [Fig. 3 (b)]. The assembly constramthen equivalent to forcing; to lie on the axis of the joint on
L, defined byQ; andd;, while keeping the relative angle betwelenandLy fixed to a constantftsets;. These conditions
are equivalent to

r,—+R,— p:fr’:rk+ quiﬁ+di deiﬁ, (13)

and
6i = 0j — bk, (14)

Wheredir’rk is the direction vectod; expressed itf, andd, is the linear displacement of the joint.

In our case, thus, Eq. (1) is the system formed by Egs. (14)€4tablished for all joints of the manipulator, anpi the
vector encompassing the variablgsy;, andg, of all links, anda, andd, for all joints. Note only that, sinck; is the ground
link, r1 = 0, 61 = 0, andRy is the identity matrix. Thus, for a system uf links andn; joints, the number of variables in
g will be ng = 3(ny — 1) + nj, and the system in (1) will have; = 3n; equations. Accordingly, the dimension ©fwill be
d = ng — ne = 3(Np — 1) — 2n; in general, meaning thatof the variablesy andd, will be actuated, forming the vector, and
d of the variablesq, y;, and6; will describe the output of the manipulator, forming theector.

It is worth noting that, in fact, Eq. (12) is only necessarydachactuatedrevolute joint, and that many of the variables
r = (x,y) can be eliminated if closed kinematic chains are presetttamanipulator, through a process explained in detail
in [24]. The elimination of the, variables is based on the observation that Egs. (11) and(E3)g along a closed chain can
be substituted by an equivalent “loop-closure” equatiat ttoes not contain any of tlgvariables. This process simplifies
the system, and can always be invoked if desired, but theaeatibns that follow are equally applicable to both theiogg
and the simplified systems.



@

Link Lj . Link Ly aj
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Figure 3: Geometric elements intervening in the assembly oiuey and prismatic pairs.

3.2. Reduction to a simple quadratic form

From the previous formulation, we note that all terms ineaiag ind®(q) are either linear in thg variables, or multilinear
in the sines and cosines of thevariables, which implies that all terms of Eqgs. (9) and (1@) also have the same form.
The following three steps can be applied now, in order to edrany of these systems into the polynomial form required in
Section 4. First, replace each occurrence of Eq. (12) bydbh&valent equations

Sy = Sing;cost — cos; sin,
Cy = COSHjCcosh + sing;sinb,

where the coordinates, andc,, refer to the sine and cosine af, respectively. If prismatic pairs are present, perform a
similar replacement on Egs. (14). Second, to obtain a pohjalosystem of equations, introduce the changes of vagable
Cy = COsH andsy, = sing, for each angl@, together with the equatioctjI + sﬁl = 1. Third, use the changes of variables

py = r2, (15)
bk = I’il’j, (16)
on terms of the forrmi2 andr;r; of this system, in order to convert it into the expanded form
AX)=0
Q(x) = 0 } 7

wherex is anny-dimensional vector encompassing all of the variabds) = 0 is a subsystem of linear equations<irand
Q(x) = 0 is a subsystem gathering all equations of the form of (18)(&6) introduced.
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Eqg. (17) involves more equations and variables than thdnaligystem, but the simpler structure of its equations is
beneficial to the branch-and-prune strategy defined nexathem advantage is that it is straightforward to define cofdive
bounds for all solutions of Eq. (17), since: (1) the variabie x that refer to sines and cosines can only take values in
the [-1, 1] interval; (2) simple feasibility intervals for the andy, variables can be derived from the link dimensions; and
(3) intervals for thep, andby variables can be obtained by simple interval operationsguBigs. (15) and (16). From the
Cartesian product of such intervals, thus, it is possibléetine an initial rectangular ba® c R™ bounding all solutions of
Eq. (17).

4. Computing the singularity set

The algorithm for solving Eq. (17) recursively applies twazeecations or83 : box shrinkingand boxsplitting. Using box
shrinking, portions of8 containing no solution are eliminated by narrowing someflefining intervals. This process is
repeated until either the box is reduced to an empty set, ishatase it contains no solution, or the box is ffatiently”
small, in which case it is consideredgalutionbox, or the box cannot be “significantly” reduced, in whicke# is bisected
into two sub-boxes via box splitting (which simply bisedtslargest interval). To converge to all solutions, the wehmiocess
is recursively applied to the new sub-boxes, until one oistai collection of solution boxes whose side lengths areabalo
given thresholdr.

The crucial operation in this scheme is box shrinking, whgimplemented as follows. Note first that the solutions
falling in some sub-bo$; ¢ 8 must lie in the linear variety defined by(x) = 0. Thus, we may shrini8; to the smallest

possible box bounding this variety insid®. The limits of the shrunk box along, say, dimensigrran be found by solving
the following two linear programs:

LP1: Minimize x;, subject to:A(x) = 0,X € B,
LP2: Maximizex;, subjectto:A(x) =0,x € Bc.
However, observe thaB. can be further reduced, because the solutions must alsfysali equationsx, = xi2 and

X = X Xj in (x) = 0. These equations can be taken into account by noting ffjaf, X/| denotes the interval @B along
dimensionx;, then:

1. The portion of the parabola = xl? lying inside B; is bound by the trianglé&; A,A3, whereA; andA; are the points
where the parabola intercepts the lings: X andx; = X, andAg is the point where the tangent linesAatandA; meet

(Fig. 4a).

2. The portion of the hyperbolic paraboloil = xx; lying inside B; is bound by the tetrahedroB, B,BsB4, where
the pointsBy, . .., B4 are obtained by lifting the corners of the rectangte¥i] x [x;, Xj] vertically to the paraboloid
(Fig. 4b). B

Thus, linear inequalities corresponding to these boundsbeaadded to the linear programs LP1 and LP2, which usually
produces a much larger reduction®y, or even its complete elimination if one of the programs igi unfeasible.

As it turns out, the previous algorithm explores a binarg tnhose internal nodes correspond to boxes that have been
split at some time, and whose leaves are either solution ptyehoxes. The collection of all solution boxes is returned a

@) (b) X Bs

Figure 4: Polytope bounds within bd.
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Figure 5: Progression of the algorithm on computing the leoatéscurve of Gerono, defined by the equatifn= (x? — y2). The figure shows the initial
box, together with intermediate and final box approximaticgisagated by the algorithm.

output upon termination, and it is said to fornbax approximatiorof the solution set of Eq. (17), because it forms a discrete
envelope of such set, whose accuracy can be adjusted thttoeigtparameter.

Fig. 5 illustrates such approximations on a simple exampletice that the algorithm is complete, in the sense that it
will succeed in isolating all solution points of the solved®m accurately, provided that a small-enough value-fisrused.
Detailed properties of the algorithm, including an anaydfiits completeness, correctness, and convergence ardagiven
in [24].

It is worth noting that the previous algorithm can be natynaarallelized to be run on multi-processor computers.hie t
end, we can justimplement the book-keeping of the searelotiea selected “master” processor which keeps track ofdlee tr
leaves at all times. Every leaf that is neither an empty narlation box needs to be further reduced. Since box reduction
is the most time-consuming task, and several boxes awaiit $tmultaneously, it makes sense to perform the reduciions
parallel, by assigning each of them to any of the remainihav&s’ processors. A slave processor’s task is thus to reaeiv
box from the master processor, to reduce it as much as pessitslolving the aforementioned linear programs, and tametu
the reduced box back to the master, which will queue it fathierr splitting and reduction, if needed, or mark it as a sotut
or an empty box.

5. Visualizing the singularity set

Even though we have a means to compsit@ non-trivial issue is how to represent this set in a meduirgay, suitable
to the needs of a robot designer. Because of the high numtendiguration variables typically involved ig, S is often
defined in a highly-dimensional space, so that the use of 2-@projections becomes inevitable to understand its &trac
An enlightening choice, as done e.g. in [22, 16, 18, 19], isrtiiectS to the output spac@/, since this space encodes the
end-dfector motion and is easier to interpret. On such a projecpomts corresponding to inverse singularities indicate a
loss of instantaneous degrees of freedom relative ta tlgiables, and thus include the boundaries and interiordsarof the
workspace relative to such variables [22, 31]. Similafly;an be projected to the input spag as done e.g. in [20, 32, 21],
where the forward singularities delimit the motion ranget tthould be reachable by the actuators. Bothiithend/ spaces
get partitioned into several regions after such projesti@nd it is possible to decide which regions correspondasilfite
configurations of the manipulator by selecting a point inhegagion, and solving Egs. (3) or (4) withor u fixed to the
selected point, using the same numerical method describ®ddtion 4.
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Figure 6: A portrait of a synthetic C-space with two conndatemponents. Th&’ and{ spaces are assumed to be ffyeandxzplanes in this case, so
that the forward and inverse singularity loci are the redlsine curves, respectively. Only the portrait on ffespace is shown for simplicity. The portrait,
as in this case, may reveal the existence of several connemteponents irC. Also, it can be used as a safe navigation map, because pattesportrait
not crossing a projected singularity correspond to sirmiytree paths orC (left path). However, the converse is not necessarily trigét path).

The resulting diagrams, which we refer to as singulgpitytraits, convey much global information on the motion capa-
bilities of the manipulator because (Fig. 6):

e The existence of several connected componer@siray be revealed by the portrait, and such knowledge may beluse
to determine the most appropriate component into which theipulator should be “assembled” by design, depending
on the task to be performed with it.

¢ A feasible path irfV or U not crossing a projected singularity corresponds to a sanigy+free path inC

e Only when approaching a projected singularity some kind atiom degeneracy is to be expected, so that a portrait can
be used as a safe navigation magof

It must be added that the connectivity of the singularigefregions o€ is only partially reflected in the portraits. It is
easy to see on the right component of Fig. 6, for example distihct points ofC may seem to be separated by singularities
when looking at the portrait, while they are actually conaddy singularity-free paths ap. However, robust numerical
tools have been given to determine the existence of sucls pathl to provide the whole singularity-free regiorGothat is
reachable from a given configuration [33, 34].

6. lllustrative examples

We next demonstrate the performance of the method on congpatid visualizing the singularities of 3-RRR manipu-
lators, and on a mechanism of a complex structure. Whered®itimer serve to verify the correctness of the method on
well-studied cases, the latter shows the method capabilith mechanisms that would béhdult to analyze using common-
practice techniques. All computations have been carriédsiog the parallelized version of the method outlined iotioa 4,
implemented in C using the libraries of the CUIK Suite [24jdaxecuted on a grid computer with 20 dual quad-core Xeon
processors. A table is given at the end of the section, suinmgthe size of the solved systems and the main performance
data on the reported problems. In all plots that follow, thme color code adopted in Fig. 6 has been used to distinduésh t
forward and inverse singularity loci, and to identify thgims ofZ/ andV attainable by the manipulator.



6.1. Parallel 3-RRR manipulators

The 3-RRR manipulator consists of a moving platform linked to theugrd by means of three legs (Fig. 7), where each
leg is a three-revolute chain. The three intermediate §aattpointsC; are actuated, allowing to control the three degrees
of freedom of the platform, and the remaining joints are passThe inputs of the manipulator are thus given by the joint
anglesy; at theC; joints, so thaw = [a1, @, @3] in this case. Since the moving platform acts as the dfeb#®r, the output
of interest is given by the pose vector= [x,y,6]", where &, y) and6 provide the position and orientation of the platform
respectively (Fig. 7).

Several tools have been proposed to study the singulatit§ s this manipulator [35, 36, 37], which is known to be
two-dimensional in general. A good reference summariziegrt is [16], where it is shown that the forward singularitas
be derived from those of the 3-RAmanipulator [35], whereas the inverse singularities eagdnerated geometrically, from
the so-called vertex-spaces of the legs. These methodsefid,.but concentrate on deriving the constant-orienadlices
of S only, so that a reconstruction of the whole singularity acefinvolves a discretization on the anglevhich necessarily
leaves points o out of the representation. Moreover, only projections efslices on thex, y)-plane are derived, so that
the visualization of the singularity surface on the inpuic for example, is not straightforward. The method wegoreis
this paper, in contrast, allows to compute the whole sirifylaurface directly orC, and to project it easily to any required
space, includingV or U, without incurring in any loss of information.

To computeS, the proposed method requires formulating Eq. (1) as exptain Section 3, by gathering Egs. (11) and (12)
for all joints of the manipulator. This system can be simetifslightly in this case to obtain two loop-closure equatjdar
instance those relative to the loops startindaand returning back through, andAg, plus additional relations providing all
input and output coordinates of the manipulator. The reguiystem implicitly defines the three-dimensional C-ggaof
the manipulator, and can be used to formulate Egs. (9) andtii@ugh diferentiation, using the definitions for tkeandu
vectors assumed above. Both of these systems can be exparttiedorm of Eq. (17), giving rise to a polynomial system
with 29 equations and 31 variables in the two cases. The saoragjric parameters adopted in [16] have been used in such
systems, to ease the comparison of results. They are iedigafTable 1, where; andb; provide the positions ofy andB;
in the absolute and relative frames, respectively,landndl; , indicate the length of the proximal and distal links of tkté
leg.

The singularity surfaces obtained by the method are showkign8, projected to the output space. The blue surface
corresponds to the inverse singularity locus, which presithe boundaries of the workspace. The red surface coméspo

Figure 7: A planar 3-RR manipulator. Point#\;, Az, andAg are fixed to the ground. Absolut®XY) and relative PX'Y’) reference frames are defined,
fixed to the ground and to the moving platform respectivelye platform pose is given by the absolute coordinaxeg) (of a pointP, and by the anglé of
PX'Y’ relative toOXY.
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manipulator i a; o] lii iz
1 (0,0) (0,0) 4 3
3-RRR 2 (-2.386 0) (-0.2760.276) 4 3
3 (-1193-2.067) (09190.184) 4 3
1 (0,0 (0,0) 1 135
3-RRR 2 (235,0) (12,0) 1 135
3 (1175 2.035) (06,0.6 V3) 1 135

Table 1: Parameters of the considered 3-RRR manipulators.

Figure 8: Output portrait obtained for the 3-RRnanipulator. Top: Forward (red) and inverse (blue) singfylaurfaces in the space defined kyy, and6.
The boxes computed are drawn with translucent faces to lagipeeciate the shape of the surfaces. Bottom: Slices of tipeipportrait at a constant value

of 6. From top to bottom, and from left to right, the values assunmed & -, —37”, -%,-%,0,andZ.
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to the forward singularity locus, i.e., to configurationsesd the motion control is compromised, due to the specificceho
of actuated degrees-of-freedom. Even though these siityudarfaces appear to be quite complex, it can be showrthleat
constant-orientation slices of the forward singularitgus can be described by conic sections in thg)¢plane [16, 35]. Any
of these slices can be readily obtained by the proposed mhé&thsimply fixing the value of in the equations, obtaining the
red curves shown in Fig. 8, bottom, where only parabolaipsel$ or pairs of lines appear as expected. The inverselaittgu
curves in such plots do also coincide with those obtainealidin the intersection of vertex spaces [36, 16].

By simply changing the projection coordinates we can easjlyesentsS in the input space as well, obtaining the results
shown in Fig. 9. Here, the forward singularities delimit thetion range of the actuators, and it can be seen how thesmver
singularities only appear in planes where one ofd¢hangles is either 0 ar, in agreement with the fact that the platform
only loses instantaneous mobility when at least one of theikefully extended or folded back [16]. To better underdttne

O

VJ9 L
*A% ' M a

Figure 9: Input portrait of the 3-RR manipulator. Top: Forward (red) and inverse (blue) singtylaurfaces in the space defined &y, a2, andasz. Only
two octants of the space are shown for simplicity, the othéairds being obtained by symmetry. Bottom: Slices of the inputrait at diferent values of
a3. From left to right, and from top to bottom, the values assumeda= -%,0,%, 3, 37", andr.

O
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Figure 10: Slices of the output portrait of the RR manipulator computed by the method at fixed orientationseptatform, assuming the geometric
parameters in Table 1, bottom. From left to right, the valies —%, 0 and% are assumed. The plot of tite= O slice agrees with the one published
in [37, 16].

structure of the singularity surface on the input space esslines are also shown for constant valuegpfObserve how the
whole region attainable by the inputs is singulardgr= 0 or a3 = n. On these slices, the inverse singularities are no longer
one-dimensional, as one would expect. Whereas this cireumostposes no problem to the proposed method, it may indeed
hinder the application of other methods relying on diseegdion of theas angle.

It must be noted that the structure of the singularity setlmaecome quite complex even on simple manipulators. For
example, if on the 3-RRR mechanism we mount the actuatoreif joints instead of in th€; ones, the constant-orientation
slices of the forward singularity locus are then describgg@diynomials inx andy of minimal degree 42 [16]. Polynomials
of such kind constitute valuable tools for the analysis efsmgularity set, but their derivation often requires guiivolved
manipulations guided by intuition [14, 18, 19, 21], whichkaa it dificult to apply such a strategy to every new manipulator
that has to be analyzed. The proposed method can computeethtéormed slices just as easily as in the case of the B-RR
manipulator (Fig. 10), but its full potential is more app#ren mechanisms of much higher complexity, where the aicalyt
approach based on descriptive polynomials would be ratifiécidt to apply.

6.2. A complex mechanism

To illustrate the method on a highly complex situation, weatrepply it to compute the singularity set of the 15-link
mechanism in Fig. 11 (a). The mechanism consists of five dasehal links interconnected through bar links and retelu
joints, forming a decagonal ring. If we fix one of the quadslals to the ground, the mechanism has mobility two, so
thatC will have dimensiord = 2 in general, and the singularity set will be formed by oneemesal curves in such space.
Assuming that the mechanism is controlled by actuatinggthend6, angles indicated, and that the output is given by the
(x,y) coordinates of a poirfe on link L, given in the absolute fram@XY, we havev = [0y, 6,]" andu = [x,y]" in this case.

R A
B0 WL

O&Qmefgl %

Figure 11: (a) A 15-link mechanism. (b) Its inverse kinematiesbpem is equivalent to solving the position analysis of\aeseloop truss.
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Figure 12: Output portraits of the manipulator in Fig. 11 asislg the geometric parameters mentioned in the text. The adglasdé, are limited by
keeping their cosines to the range$[0.7] (left plot) and [06, 0.8] (right plot), with positive sines in both cases. Red angeldurves correspond to forward
and inverse singularities, respectively.

The complexity of this mechanism comes from the fact thatvibives many links, and all of them move in a highly-
coupled manner. This behaviour is apparent from the togotdghe mechanism already, but it can be proved through
the application of recent Assur Graph Theory tools [38, 39h the basis of these observations, we conjecture that the
derivation of minimal-degree polynomials describing tihegslarity set of this manipulator is an extremelffdiult task.
The computation of such set is even too hard through digetéin techniques [40, 41], which define a grid of points & th
U space, solve the inverse kinematics problem for each paird finally analyze the resulting configurations one-by;one
identifying those that are close to the singularity set.eNbat this process boils down to discretizing tkgyf plane on this
mechanism, and that solving the inverse kinematics profidemach positionX, y) is equivalent to finding all configurations
of a seven-loop truss [Fig. 11, (b)], which is beyond the téljtees of even the most advanced techniques for positiatyesis
based on characteristic polynomials [42, 43, 44].

Assuming thaP is located in position (0-1) of the frameO’X"Y’ of Fig. 11 (a), that all quadrilateral links are squares
of side 1, and that all bars are of length 2, exdepwhich is of lengthv2, the method determines the singularity sets shown
in Fig. 12. The two plots correspond to two variants of the Ina@ésm that dier on the limits imposed oéy, andé, only,
which can be modelled by adding a few equations to the sységpegnhdix A). Note that, in doing so, the configurations
where some actuator reaches its limit are considered tanelsir, because a loss of mobility occurs in the output lislaa
consequence.

6.3. Performance data

Table 2 summarizes the main performance data of the methodroputing the singularity sets depicted in Figs. 8, 9, 10,
and 12. For each figure we provide data relative to each saniyusubset considered (using “F” and “I” as a shortcut Far t
forward and inverse singularity loci), the dimension of subset Dim), the number of equationiNgq) and variablesNyar)
involved in Eqg. (17), ther threshold considered, the computation time in secondstrendumber of solution boxes returned
by the method Nlyoxed. The two variants of the 15-link mechanism correspondmthe left and right plots of Fig. 12 are
indicated as “15-link-a” and “15-link-b”, respectively.
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Fig. Manipulator Locuslice Subset DiIm  NegNyar o Time (S)  Npoxes

rloous  F 7 2931 O 7168 150538
| 2 2931 o0l 1182 242185

b F 1 28290 01 18 2692

| 1 2829 001 65 9652

o F 1 2829 01 14 1372

=3 | 1 2829 Qo1 61 8828

i F 1 2829 01 12 894

8 SRR f=-3 | 1 2829 001 63 8725
b s F 1 2829 01 13 1113

=3 | 1 2829 Qol 51 7748

- F 1 2829 01 17 2612

| 1 2829 Qo1 49 7419

s F 1 2820 01 14 1658

=3 | 1 2829 Qo1 46 7579

cloons | F 7 2931 Ol 5168 150538

| 2 2931 o0l 1182 242185

o, F 1 2829 01 186 22195

43="2 | 1 28-29 Q01 15 6655

o F 1 2829 01 216 10158

a3 = | 2 2829 o0l 489 106792

i F 1 2829 01 198 22151

9 SRR az=3 | 1 2829 001 15 6653
., F 1 2820 01 118 23654

@3 =3 | 1 2829 Qo1 18 9851

. F 1 2829 01 55 13578

a3 =7 | 1 2829 Qo1 12 5885

F 1 2829 01 53 11950

a =7 | 2 28-29 01 447 170170

o = 1 2223 001 g 9276

; | 1 2223 0ol 59 19906

F 1 2223 o0l 15 14548

10 R 0=0 | 1 2223 001 66 18917
oo F 1 2223 o0l 10 9335

=3 | 1 2223 0ol 51 19998

15-link-a  Full locus F 1 47-48 Q01 202 5734

> | 1 4748 Q01 2126 117007
15lnkb  Fulllocus 1 4748 Ol 413 3918

| 1 4748 Q01 6520 117196

Table 2: Performance data on the reported examples.

7. Conclusions

Despite the maturity of Singularity Analysis, scarce ditanhas been devoted to the development of numerical algo-
rithms for computing the singularity set of an arbitrary ripafator. Such a gap, which was highlighted in [8] and reradin
open since then, is partially covered in this paper by piiagich method to compute the singularity set of any planar non-
redundant manipulator. The method relies on a branch-amtestrategy whereby an initial box bounding the singtylaeét
is recursively reduced and bisected, producing finer and dipproximations of the set successively, until the acguodithe
result is below a given threshold. The method can isolatevtide singularity set independently of its dimension, vtk
sole limitations imposed by the curse of dimensionalitg.gérformance has been illustrated on several examplekvimgo
2- or 3-dimensional C-spaces, both on well-studied maatpus, and on a complex one that would bfficlilt to analyze
through common-practice techniques. The latter is in fatiebed to lie among the mostfiicult mechanisms analyzed so
far in the Computational Kinematics literature.
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An effort has also been made to provide guidelines on how to raprése singularity set once computed, in order to
produce suitable diagrams for the robot designer. On tlg@rek it has been shown that the set can be easily projectbd to
input and output spaces to provide global information omtiagion capabilities of the manipulator, including the teslole
inputoutput areas, the locations where control or dexteritydessan arise, and a delimitation of regions where manipulato
motions can safely be planned. Such diagrams, calbettaitsin the paper, can be further enriched by studying their conne
tivity if desired, either through the use of well-estabéiditools of local barrier analysis [22], or through recenttoaation
methods able to trace the singularity-free component o€tispace that is reachable from a given configuration [33, 34]

The natural extension of this research is to deal with theenaomplex spatial case. Work in this direction is underway
already [45, 46], relying on the systematic tools of Screvedry, and on the singularity classification framework psgzb
in [8]. Such an extension is under consolidation at the manaad will be the subject of forthcoming publications [47].2
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Appendix A. Modelling joint limits

Mechanical limits on the joints can easily be modelled asaétyuconstraints. Two types of limits need to be treated:
those imposed on the linear displacement of a slider joimt those on the angle rotated by a revolute joint. On the ond,ha
if g is a linear displacement that must satisfy A

oM < g < g™ (A1)

note that we can enforce this constraint by setting
(G -m)*+d2 =", (A.2)

wherem = 3(q™+ ™", hy = (g™ - g™"), andd is a newly-defined auxiliary variable. The valugsandh; are the
mid-point and half-range of the interva[", g"®, and Eq. (A.2) simply constrains the paicg, ;) to take values on a circle
of radiush; centered atry, 0) in the @, d)) plane. As a consequenag satisfies Eq. (A.1) if, and only if, it satisfies Eq. (A.2)
for some value ofl;. On the other hand, @ is a joint angle that must satisfy

-ai < ¢ < aj, (A.3)

then this angle will be represented by its cosipend its sines; under the proposed formulation. The constraint in Eq. (A.3)
is equivalent ta, > cosa;, which can be written as

Cq = 7 + cosai, (A.4)

wheret; is a new variable that can take any value. Agaieatisfies Eq. (A.3) if, and only if, it satisfies Eq. (A.4) farset;.
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