
  page 1 / 17 

Ethanol catalytic membrane reformer for direct PEM FC feeding 

Reinhold Koch 
a,b,c,*

, Eduardo López 
a,d

, Núria J. Divins 
a
, Miguel Allué 

b
, Andreas Jossen 

c
, Jordi Riera 

b
, 

Jordi Llorca 
a 

 

a 
Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, Ed. ETSEIB, 

08028 Barcelona, Spain  

b 
Institut de Robòtica i Informàtica Industrial (UPC-CSIC), Llorensi Artigas 4-6, 08028 Barcelona, Spain 

c 
Institute for Electrical Energy Storage Technology, Technische Universität München, Karlstr. 45, 80333 

Munich, Germany 

d 
Planta Piloto de Ingeniería Química (CONICET-UNS), Camino de la Carrindanga km 7, 8000 Bahía Blanca, 

Argentina 

 

 

* Corresponding author:  

Reinhold Koch 

Technische Universität München 

Institute for Electrical Energy Storage Technology 

Karlstr. 45 

80333 Munich 

Germany 

Tel.: 0049 89 289 26972 

Fax.: 0049 89 289 26968 

e-mail: reinhold.koch@tum.de 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/he/viewRCResults.aspx?pdf=1&docID=18455&rev=0&fileID=664350&msid={5E0C116B-0F57-4D30-8E62-2CDB12C4C5B3}


  page 2 / 17 

ABSTRACT 

In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded 

with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm
2
 has been used to generate 

a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm
2
. The fuel 

reformer behavior has been extensively studied under different temperature, ethanol-water flow rate and gas 

pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the 

ethanol-water fuel flow and gas pressure.  

A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control 

has been implemented on a real time system to take account of its nonlinear behavior. With this control the 

response time of the reformer can be reduced by a factor of 7 down to 8 seconds. 

The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands 

of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell 

can be omitted and an electric buffer at the output of the fuel cell is sufficient. 

KEYWORDS 

Ethanol steam reforming, Metal membrane, PEM Fuel Cell, Sensitivity analysis, Dynamic modeling, 

Reformer Control 
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1.  INTRODUCTION 

The conventional propulsion by an internal combustion engine in the automotive industry is no longer 

considered as being the only option. Poor efficiency, high emission rates and dependence on oil make it 

unattractive. An electric vehicle driven by an electric motor and fed by a battery is praised as the technology 

of the future. But this solution also implies several economic and technical problems mainly because the 

battery cells are still too expensive, too heavy and charging takes too much time. In city traffic, it will certainly 

prevail, because the elimination of emissions is particularly good for the air quality in the cities. But for long 

distance rides, for trucks and coaches, the battery will either limit the range too much or will take up too 

much space in the vehicle. If the battery development is extrapolated from the past into the future, it is not to 

assume that the specific capacity of a battery will significantly increase in the next few decades. 

The combustion of hydrogen is one of the cleanest ways to obtain a high amount of energy. Furthermore, 

its conversion inside a fuel cell to electrical energy yields the highest efficiency known today. The 

development of fuel cells has advanced in the last years and could be used for several applications: a fuel 

cell vehicle is just one of them. The greatest obstacle for the wide use of hydrogen as an energy carrier in 

our daily life is the generation and distribution of hydrogen. Although hydrogen can be produced in various 

ways, most of the hydrogen produced today comes from large chemical plants making its way to the final 

customer very long. Due to the lack of a proper way for hydrogen storage, its production should take place 

right at the refilling station or even in the vehicle itself making hydrogen storage unnecessary. Reforming 

technologies are suited for this purpose [1]. In a reforming process, a gaseous or liquid fuel is mixed with 

steam (steam reforming) or with a steam/air mixture (oxidative reforming) over an appropriate catalyst to 

yield mostly hydrogen and carbon dioxide, although minor amounts of carbon monoxide, methane and other 

light hydrocarbons are always present. However, hydrogen for low-temperature fuel cells can only be used if 

it fulfills high purity demands; even small amounts of carbon monoxide poison the hydrogen reaction at the 

anode of the fuel cell, resulting in a lower fuel cell potential and, consequently in a lower energy conversion 

efficiency. Therefore, the gas streams of fuel reformers have to be purified before being used in this type of 

fuel cells. Among the different methods to accomplish this (pressure washing, pressure swing adsorption, 

cryogenic distillation, membrane separation and catalytic purification), only membrane separation and 

catalytic purification are suited for on-board scenarios [1]. 

Recently, we have built a catalytic ethanol membrane reformer towards the simultaneous production and 

separation of pure hydrogen. The unit was successfully tested; achieving reaction yields of 3.1 mol hydrogen 

generated per mol of ethanol in the feed with hydrogen recuperation values up to 70% [2]. Steam reforming 

of ethanol was chosen due to its high efficiency and the possibility to apply the process at a small scale. In 

addition, bio-ethanol production ramped up in the last years, is safe, easy to handle, and its use may be 

considered CO2-neutral. In this work, we have modeled the catalytic ethanol membrane reformer and 

implemented a control system. We have also tested on-line the reformer with a PEM fuel cell. 
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2.  CATALYTIC ETHANOL MEMBRANE REFORMER 

2.1.  Description 

The ethanol reformer consists of two stages as shown in Fig. 1. The first step produces a reformed gas 

with a high hydrogen content, starting from an ethanol-water mixture over catalytic honeycombs loaded with 

RhPd/CeO2 in a tubular reactor [2]. The three main reactions, which occur consecutively during the reforming 

process, are decomposition of ethanol (eq. 1), the water gas shift reaction (eq. 2) and the reforming of 

methane (eq. 3) [3]. 

CH3CH2OH  CH4 + CO + H2  H = +50 kJ mol-1 (1) 

CO + H2O  CO2 + H2  H = -41 kJ mol
-1

 (2) 

CH4 + H2O  CO + 3 H2  H = +206 kJ mol
-1

 (3) 

In the second step, a palladium-based selective membrane (Reb Research & Consulting) separates the 

hydrogen from the rest of the reformed gas. The hydrogen is over 99.999% pure (checked by gas 

chromatography), satisfying even the rigorous purity demands of a PEM fuel cell.  

  

Fig. 1.  Scheme of the reformer processes. 

The details of the reformer and initial measurements were described in [2]. In this work we have 

implemented automated valves and sensors in order to set the reformer in a proper control environment. The 

current design of the reformer (Fig. 2) consists of a fuel tank and a fuel pump (Knauer Smartline HPLC). The 

liquid is pumped into the reformer core, which is maintained at a constant temperature by means of an 

electrical heating resistance. The temperature is measured with a thermocouple and is controlled by a PID 

controller (Fuji PXR4) as well as a solid state relay. The ethanol-water fuel first evaporates and enters the 

catalytic zone where it reforms to a mixture of hydrogen, methane, carbon monoxide and carbon dioxide. 

The reformed gas immediately enters the second stage in the same tubular reactor, where four Pd-Ag dead-

end membrane tubes (total membrane area of 30.4 cm
2
) separate part of the hydrogen from the rest of the 

reformed gas. After separation, the waste gas and the pure hydrogen streams leave the reformer core in 

different conduits through check valves and pass through water traps. The waste gas also passes through a 

particle filter, while the pure hydrogen gas is already particle-free because it has been filtered by the metallic 

membrane. Additional thermocouples were placed at different locations to control temperature gradients and 

isolation.  

The membrane separation process is driven by a pressure gradient. The pressure of the waste gas outlet 

is controlled by a pressure controller, which consists of a pressure meter with a separated valve (Bronkhorst 
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EL-Press P-702CV). The pressures at the waste gas outlet and inside the reformer core are assumed to 

have the same value. From now on, the term “waste gas pressure (PWG)” will refer to this pressure. The 

pressure on the pure hydrogen side is left at ambient pressure. The hydrogen flow rate is measured by a 

flow meter (Bronkhorst F-111B). The pure hydrogen and the waste gas effluents are monitored on line with 

an Agilent 3000A micro-GC equipped with PLOT U, Stabilwax and 5 Å Molsieve columns. 

  

Fig. 2.  Scheme of the ethanol catalytic membrane reformer. 

2.2.  Operation Characteristics 

The ethanol reformer can be controlled by four main variables: temperature, fuel mixture composition 

(steam-to-carbon ratio, S/C), pressure and fuel flow rate. The theoretical impact of the first three of the four 

parameters can be easily explained by the Le Châtelier’s principle taking into account the overall reaction 

(eq. 4). 

CH3CH2OH + 3 H2O  2 CO2 + 6 H2 H = +174 kJ mol
-1

 (4) 

Since the reforming process is endothermic, an increase in temperature shifts the reaction to the product 

side as do S/C ratios exceeding the stoichiometric value of 1.5 (CH3CH2OH:H2O = 1:3). The separation 

performance of the metallic membrane is not significantly affected by temperature. S/C values greater than 

1.5 limit the carbon deposition on the catalyst surface, but at the same time increases the amount of energy 

needed to heat and evaporate the additional water. In our previous study [2] we encountered the best 

operational value to get the highest hydrogen flow rate at S/C=1.6, and this is the value used in this work, 

which happens to equal a volumetric ratio of 1:1 for the ethanol-water mixture. 

The pressure effect is not straightforward since a change of pressure causes two opposite effects. On 

one hand, the reaction is progressively inhibited as the pressure of the reactor increases but, on the other 

hand, the hydrogen separation in the metallic membrane improves considerably following the Sievert’s law 

(related to the hydrogen partial pressure at both sides of the membrane, see below). Finally, the fuel flow 

rate commands obviously the total hydrogen flow rate, since the more fuel is provided the more reformed 

gas is produced within certain conditions (no membrane and catalyst limitations). At a fixed temperature and 

S/C ratio, pressure and fuel flow rate are the two variables to control during the ethanol reformer operation. 

3.  REFORMER BEHAVIOR 

3.1.  Static Response 

3.1.1.  Catalytic reaction 
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The ethanol reformer was tested at temperatures of 873 K and 923 K and at several different flow rates 

and pressures. In accordance to the preceding section, the hydrogen yield at 873 K was much lower than 

that at 923 K. Furthermore, at 873 K the hydrogen flow was not stable under high fuel flow rates. Therefore, 

further work was carried out at a fixed temperature of 923 K. 

Fig. 3(a) shows the selectivity attained at this temperature and 10 bar in the catalytic stage under different 

fuel flow rates and total ethanol conversion. An increase of the flow rate results in a decrease of the contact 

time between reactants (water and ethanol) and the catalyst, which negatively affects the water gas shift 

equilibrium (eq. 2) and less carbon monoxide is transformed into CO2.  

Fig. 3(b) shows the distribution of products obtained at the same temperature under different pressures at 

a fixed value of 250 μl/min of fuel flow rate (total ethanol conversion). In this case, the pressure has a strong 

influence on the hydrogen yield, the higher the pressure the lower the selectivity towards hydrogen. The 

effect of pressure on the reaction is related to the variation of moles between products and reactants. Since 

in the complete reaction (eq. 4) the moles of products double the moles of reactants, an increase of pressure 

inhibits the reaction; and the reforming of methane (eq. 3), which is the last step of the reforming process, is 

progressively shifted to the reactants side. 

   

Fig. 3.  Selectivity on a dry basis obtained at: (a) 923 K and PWG = 10 bar under different fuel flow rates; (b) 

at 923 K and FFuel = 250 µl/min under different pressures. 

3.1.2.  Membrane separation 

The hydrogen selective separation stage is a set of four Pd-Ag metallic membranes, which permeate only 

the hydrogen leaving the rest of the gas on the reformer side. The mass transfer mechanism can be 

expressed using the Sievert’s law (eq. 5). 

   (5) 

In Fig. 4. the separation capability of the membranes (% H2 permeated with respect to H2 produced in the 

catalytic stage) at different waste gas pressure and fuel flow rate values is shown. The hydrogen output 

pressure was left at ambient pressure. It can be seen that at high pressures the separation capability of the 

membrane increases almost linearly with the waste gas pressure. At low waste gas pressures this behavior 

changes and the separation capability decreases significantly. The measured values confirm the Sievert’s 

law, since the square root function becomes quite linear at higher argument values and is very nonlinear at 

lower argument values. At higher flow rates the separation efficiency decreases since the gas flow passes 

too quickly for the membrane to separate the hydrogen properly due to the physical limitation of the 

membrane surface area. 
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Fig. 4.  Hydrogen separation efficiency of the membrane stage measured at 923 K under different fuel flow 

rates and pressures. 

3.2.  Dynamic Response 

3.2.1.  Catalytic reaction 

The response to a change of fuel flow rate had a small dead time of 1 to 5 seconds. Unfortunately, no 

dependency on the operating conditions could be identified. Taking into account the experimental data, a 

dead time of 2 seconds was assumed for control purposes. The response after the dead time ending with the 

new fuel flow rate followed a First Order System type behavior (eq. 6). 

   (6) 

The time constant FF can be considered as the main dynamic time constant of the ethanol reformer and it 

is in the scope of 10 to 50 seconds as long as the flow rate of the hydrogen output is not lower than 10 

ml/min (Fig. 5). Operating below this limit would cause the reformer to become almost uncontrollable 

because the time constant becomes very large. For modeling purposes, the reverse value was used, which 

was approximated by a linear function with the parameters hydrogen flow rate and waste gas pressure. 

  

Fig. 5. Variation of the dynamic time constant of the reformer at different hydrogen flow rates and waste 

gas pressures as used in the reformer model. 

3.2.2.  Membrane separation 

The reformer showed an interesting dynamic behavior when the waste gas pressure was varied. When 

the waste gas pressure was decreased, a hydrogen peak could be noticed at the hydrogen outlet. On the 

contrary, if the waste gas pressure was increased, the hydrogen output showed a negative peak, which was 

much smaller than its positive equivalent resulting into a non-symmetrical response. To understand this 

behavior, the hydrogen partial pressure gradient inside the membrane separation stage of the reformer has 

to be considered.  

At static conditions, the partial pressure of hydrogen decreases along the membrane with an exponential 

function, as shown in Fig. 6(a). Due to a higher hydrogen concentration, the upper part of the membrane 

contributes much more to the pure hydrogen flow than the lower part. If the waste gas pressure is suddenly 

decreased, the valve of the pressure controller releases a high amount of gas. It can be assumed that the 

hydrogen poor gas at the lower part of the membrane is pushed outwards and the hydrogen rich gas, which 

was still above the membrane, is now pushed downwards. With this sudden change, the hydrogen partial 

pressure gradient changes to an almost constant distribution along the membrane, as shown in Fig. 6(b). 
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Now, the lower part of the membrane contributes much more to the separation process and a hydrogen peak 

is obtained until a new static hydrogen partial pressure gradient is established.  

In contrast, if the waste gas pressure is increased, the waste gas valve closes allowing less gas to exit 

the system and thus staying inside the reformer. However, this waste gas is hydrogen-poor and dilutes the 

gas inside the reformer, which results in a steeper hydrogen partial pressure gradient and hence a negative 

hydrogen peak. Far from being a limitation, we have conveniently used this transient behavior in the outlet 

hydrogen flow to decrease the response time of the reformer. 

    

Fig. 6.  Schematic explanation of the formation of a transient hydrogen peak following a decrease in the 

waste gas pressure of the reformer (see text for details). 

  

Fig. 7.  Example for hydrogen peak at pressure decrease 

Fig. 7 shows the shape of a hydrogen peak following a pressure decrease from P1 to P2. The time TPk 

(Tpeak) at the maximum of the hydrogen peak can be approximated by a linear function with the waste gas 

pressure and fuel flow rate as variables (Fig. 8(a)). However, the absolute value of the hydrogen peak, H2Pk 

(H2peak), cannot be adequately approximated by a linear function and a quadratic function has been used 

(Fig. 8(b)). Again, for modeling purposes and as we did for the time constant FF of the catalytic reaction, the 

inverted values have been used to normalize each hydrogen peak. The resulting normalized curves are 

shown in Fig. 9. They were approximated by a third order polynomial. 

 

    

Fig. 8.  Linear approximation of TPk (a) and quadratic approximation of H2Pk (b). 

  

Fig. 9.  Pressure response curves with third order polynomial approximation. 

When both characteristics, the catalyst and the membrane, are combined, the hydrogen yield over the 

whole operating range becomes quite linear and can be approximated by a simple linear function, as shown 

in Fig. 10. At low pressures, the reforming activity works better and compensates for the poor separation 

efficiency. At high pressures, the separation works better and compensates for the decrease in reformed 

hydrogen performance. 

 

Fig. 10. Hydrogen yield by the combination of catalytic reforming with membrane separation 



  page 9 / 17 

These two effects balance each other in a wide range of pressure values and result in a broad optimum 

plateau at which a high hydrogen yield can be obtained. For medium fuel flow rates, between 100 and 300 

ml/min, the maximum can be found at 10 bars. 

4.  DYNAMIC MODEL 

A complete dynamic model of the reformer must take into account that the total hydrogen output depends 

on two mechanisms that can be modeled by interconnected sub-models.  

The first sub-model takes into consideration that the static hydrogen output flow depends on the fuel flow 

rate and on the waste gas pressure at the given temperature of 923 K and an S/C ratio of 1.6 (see section 

2.2. ). The dynamic transition to changes in the input operational conditions takes place according to a first 

order system behavior with a variable time constant, as described in section 3.2.1. In this sub-model the 

waste gas flow is also modeled with the same dynamic behavior as the hydrogen flow. A block diagram of 

this sub-model can be found in Fig. 11.  

  

Fig. 11. Reformer sub-model 1: response to a fuel flow change 

The second sub-model calculates the additional hydrogen that is obtained when the waste gas pressure 

is decreased, as described in section 3.2.2. This sub-model is more complex, as shown in Fig. 12. It 

basically represents the behavior of the decentralized PI controller for the waste gas pressure and that of the 

hydrogen selective membrane. Initially, the pressure set point passes through a signal conditioning filter and 

is used to calculate the pressure error. 

  

Fig. 12. Reformer sub-model 2: response to waste gas pressure change 

This error is used by the PI controller to adjust the valve opening in order to establish an output flow rate 

that maintains the desired pressure. The delay of the valve is described by a separate first order system 

block. Finally, in this sub-model, the flow rate of the gas which leaves the reformer is subtracted from the 

produced waste gas. Subsequently the flows difference either increases or decreases the waste gas 

pressure inside the reformer although its maximum value is limited to the produced waste gas flow rate. An 

anti-windup has been implemented but excluded from the diagram to maintain its clarity. As in static 

conditions the additional hydrogen produced by a decrease in the waste gas pressure must be zero, only the 

difference between the produced gas and the gas leaving the reformer is considered. This difference is 

already peak shaped but in order to obtain a peak, similar to the one in Fig. 7, the peak time is adjusted with 

a second order model (with TPT1 and TPT2) and the peak value is calibrated using the quadratic function 

described in Fig. 8(b) having the waste gas pressure PWG and the fuel flow rate FFuel as input. 
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5.  REFORMER CONTROLLER 

The controller performs two main control actions which correspond to the two control variables: fuel flow 

rate and waste gas pressure. While the fuel flow rate is the most important variable, actuating on the 

pressure during dynamic load changes improves the system response time. 

    

Fig. 13. Controller action schematics: (a) fuel flow rate control action, (b) pressure control action 

5.1.  Fuel Flow Rate Controller 

The fuel flow rate controller implements three control actions as shown in Fig. 13(a): feed-forward, 

proportional and integral. The feed-forward control action uses the Hydrogen yield relation of Fig. 10 to 

estimate the fuel flow rate which is necessary to obtain the desired hydrogen flow rate. It is complemented 

with the proportional and integral actions [4]. 

The integral action provides accuracy to the controlled variable. A convenient time constant TN (=1/KI) for 

this action depends on the time constant FF of the reformer: rather small TN-values can be used when the 

reformer dynamics are fast and larger ones are necessary to ensure stability if the reformer dynamics is 

slow. 

For the reformer application, as FF can be estimated directly from the experimental relation shown in Fig. 

5, it was found that a convenient value for the integral action constant KI is (2  FF)
-1

. The effect of this 

Integral action alone with a moderate Proportional part (KP=5) would result in a system response of around 

60 seconds. 

If the PI-control is combined with the feed-forward action, the system response time decreases 

significantly to only about 12 seconds, but with the cost of a high overshoot (see Fig. 14, H2, FF+PI). This 

happens because the dead time of the system is not fully compensated and the integral part of the controller 

is quite strong. To reduce the time response two additional effects have been introduced: a) a Smith 

Predictor to account for the dead time and to avoid high fuel flow rate peaks and b) the proportional 

coefficient (KP’  FF  K3H2_FF with KP’=2) is made adaptively stronger by multiplying it by the system time 

constant FF with the system gain K3H2_FF, which applies when the fuel flow rate is changed, allowing the 

proportional part to be greater at lower system dynamics and smaller at higher system dynamics. In this way 

the proportional action of the controller compensates the system dynamics and almost assures a constant 

system response time throughout the entire operational range. With this control, the system response time 

decreases to about 10 seconds (see Fig. 14, H2, FF+I+FCP). 

5.2.  Pressure Controller 

The pressure controller assists the control action on the fuel flow rate as a second control variable [5]; 

see Fig. 13(b). The pressure controller acts only if the error of the set point to the actual hydrogen flow rate is 

bigger than 1.5 ml/min and in this case predicts the amount of hydrogen which will additionally leave the 
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reformer in the future at time TPk. The increase in hydrogen output in the future can come from two different 

sources: an increase of fuel flow (FH2_FF(t)), which depends on the chosen fuel flow controller configuration 

and tuning, and from a previous pressure decrease (FH2_P(t)). The estimated effect of a previous pressure 

decrease is calculated according to Fig. 8(b). and then stored on line during system operation in a history 

memory. All these stored estimations of additional hydrogen output is convoluted with the normalized 

pressure decrease response function of Fig. 9. By using this normalized response function only the peak 

value of the estimated hydrogen increase has to be stored at the time the pressure is decreased. Decreasing 

the pressure to obtain more hydrogen flow has a specific dead time TPk before the peak of the additional 

hydrogen occurs. The hydrogen prediction is evaluated at TPk (black circle in Fig. 13(b)) and the expected 

value is subtracted from the current hydrogen error resulting in the hydrogen error of the future at the time 

TPk. The pressure decrease necessary for 1 ml/min of hydrogen flow can be calculated according to the 

operating conditions PWG and FFuel. This value is multiplied by the hydrogen error at time TPk and the 

necessary waste gas pressure decrease is obtained. 

The pressure controller action relies on a proper system model and can only act as long as the pressure 

stays within a specific range. The pressure controller makes sure that, according to the hydrogen set point, 

the pressure is not decreased too far. When the fuel flow controller action and the pressure controller action 

are used, the response time is further reduced to 8 seconds (see Table 1, H2, FF+I+FCP+PB). An overall 

comparison of all control types behavior is shown in Fig. 14 and in Table 1. 

  

Fig. 14. Dynamic response of the controlled reformer for a step from 34 to 57 ml/min of H2 

Table 1. Performance of different controllers 
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6.  ETHANOL REFORMER AND PEM FUEL CELL 

The hydrogen supplied by the reformer is of high purity and is produced with a fast time response to set 

point changes. Hence, the reformer is convenient to supply hydrogen to a PEM fuel cell with no side effects 

like fuel cell catalyst poisoning produced by impurities or fuel shortage. When connected there is hardly any 

backlash from the fuel cell to the reformer: it operates almost in the same way as it did without being 

connected to a fuel cell. Fig. 15 gives an overview of the equipment used to connect the reformer and the 

fuel cell (SQUAREPAK PEM single cell from PRAGMA Industries, 5 cm
2
 active area, single serpentine flow 

field, external heating, 70°C operating temperature). 

 

Fig. 15. Diagram of the reformer and fuel cell test station 

There are only two minor consequences in the joint operation. First, the pressure at the hydrogen outlet of 

the reformer increases due to the pressure drops along the hydrogen line and auxiliary devices that supply 

the fuel cell. This pressure drop has been estimated to be only 200 mbar, hence it has a slight reduction on 

the separation efficiency of the reformer. This negative effect on the hydrogen yield can be compensated by 

increasing the waste gas pressure. Second, in the test set up, the hydrogen lines and the humidifier 

introduce an additional time delay for the hydrogen between the output of the reformer and the input of the 

fuel cell. To account for the slower response of the whole system a 16 second First Order System has been 

applied to the current set point of the electronic load in order to slow down the dynamics of the hydrogen 

demand for the reformer. 

Fig. 16(a) shows a test run in which the fuel cell output was ramped up to the maximum power point. The 

controller followed an algorithm which predicts the maximum power peak (FC Power prediction) in each time 

step by measuring the inner resistance of the cell. With this prediction the controller calculates the 

corresponding current (FC Current prediction) and the necessary hydrogen set point FH2* for the hydrogen 

production of the reformer in order to generate the necessary hydrogen to supply the fuel cell in the 

maximum power point. 

Fig. 16(b) shows the hydrogen set point FH2* and the measured hydrogen flow rates. It can be seen that 

the measurement of the second flow meter FH2, m2 which is closer to the fuel cell is retarded and smoothed 

compared to the measurement of the first flow meter FH2, m1. It also follows rather the step-response of a 

Second Order System. Since the current demand was only slowed down by a First Order System the 

stoichiometric ratio (Stoichiometric ratio, m2) calculated from the hydrogen measurement of the second 

meter decreases to values below 1 at the beginning of the test run. If the fuel cell would be located right after 

the reformer, the upper stoichiometric ratio curve of the first meter (Stoichiometric ratio, m1) – not going 

below a ratio of 1.4 – would apply [6]. 
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Fig. 16. Reformer and fuel cell operation: (a) electrical values of the fuel cell, (b) hydrogen supply values of 

the fuel cell 

Shorter tubes between the reformer and the fuel cell would also decrease their pressure drop. As a 

general rule, devices with pressure drops from the membrane separation process to the fuel cell need to be 

omitted. This could be done by using low pressure drop check valves and by taking advantage of the 

pressure drop of the fuel cell channels to measure the flow rate, allowing to omit the flow meter and also the 

water trap, which was only used to protect the flow meter. Fuel cells, which are humidified by using only the 

produced water inside the cell, would make separate humidification of the hydrogen unnecessary. 

Even if the reformer is much faster with the proposed control than with a standard PID-controller, it will be 

still slower than a fuel cell subjected to strong dynamic electrical loads. An electric buffer like a battery or a 

supercapacitor bank with the capacity to store the electrical energy necessary for several seconds of 

operation would solve this time mismatch problem. For the use in electric vehicles, fuel cells are always 

combined with electric buffers. Highly dynamic load changes are mainly supplied by the electric buffer 

reducing the load change for the fuel cell. In such an application the response time of the presented 

controlled reformer is sufficient. 

7.  CONCLUSIONS 

The static and dynamic characteristics of an ethanol reformer with a low temperature catalytic reformation 

and membrane separation have been thoroughly studied and the measurement results obtained are highly 

reproducible. The high purity of the produced hydrogen makes this ethanol reformer compatible with its use 

to supply hydrogen to a PEM fuel cell. An efficient controller has been proposed and implemented permitting 

the reduction of the response time of the reformer by a factor of 7 down to 8 seconds by acting 

simultaneously on the fuel flow rate and pressure. If the hydrogen lines that connect the reformer and the 

fuel cell are kept short and a small electrical energy buffer is added to the output of the fuel cell, the reformer 

can be conveniently matched to the dynamic capabilities of fuel cells. 

NOMENCLATURE 

Symbol Used in Description 

H Eq. 1 to 4 enthalpy 

Q Eq. 5 Mass flow of membrane separation 

Pe Eq. 5 Factor of the Sievert’s law 

 Eq. 5 Thickness of the metal membrane 
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A Eq. 5 Surface area of the metal membrane 

PWG Eq. 5, Fig. 6, Fig. 11, 

Fig. 12, Fig. 13 

Pressure of reformed gas and waste gas 

PH2_pure Eq. 5 Pressure at pure hydrogen outlet 

P* Fig. 12 Pressure set point 

PPGF Fig. 12 Pressure set point after the pressure control guide filter 

P Fig. 13 Pressure difference for pressure release 

FH2 Eq. 6, Fig. 13 Hydrogen flow rate 

FH2* Fig. 13 Hydrogen flow rate set point 

FH2_FF Fig. 11, Fig. 13 Hydrogen flow rate due to fuel flow rate control 

FH2_P Fig. 12, Fig. 13 Hydrogen flow rate due to pressure control 

eH2 Fig. 13 Hydrogen flow rate control error 

FH2 Eq. 6 Difference in hydrogen flow rate between one operating 

condition to another 

FFuel Fig. 3, Fig. 11, Fig. 12, 

Fig. 13 

Fuel flow rate 

FFuel_FF Fig. 13 Fuel flow rate due to feed forward control action 

FFuel_P Fig. 13 Fuel flow rate due to proportional control action 

FFuel_I Fig. 13 Fuel flow rate due to integral control action 

   

FF  Feed forward control 

FF Fig. 11 Time constant of the reformer to adjust between two operating 

conditions 

PH2 Fig. 6 Hydrogen partial pressure 

FWG Fig. 3, Fig. 6, Fig. 12, 

Fig. 13 

Waste gas flow rate 

Trel Fig. 7 Time at pressure release 

Tdead Fig. 7 Dead time for pressure release 

Tpeak, TPk Fig. 7, Fig. 8, Fig. 13 Time at which the peak value of hydrogen occurs 

Tdown Fig. 7 Time at which the effect of a pressure release is over 

H2Pk Fig. 7, Fig. 8, Fig. 13 Hydrogen peak value after pressure release 

P1 Fig. 7 Pressure before pressure release 

P2 Fig. 7 Pressure after pressure release 
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H2stat1 Fig. 7 Static hydrogen flow rate at pressure P1 

H2stat2 Fig. 7 Static hydrogen flow rate at pressure P2 

TFF Fig. 11, Fig. 13 Time constant of the fuel pump 

TPT1, TPT2 Fig. 12 Time constants of the Second Order Element to shape the 

modeled pressure release peak  

Tvalve Fig. 12 Time constant of the pressure control valve  

TPGF Fig. 12 Time constant of the pressure control guide filter 

Tt Fig. 13 Dead time for smith predictor in proportional control part 

KP Fig. 13, Table 1 Amplification factor of proportional control part 

KI Fig. 13, Table 1 Amplification factor of integral control part 

K3H2_FF Fig. 13 Amplification factor of the reformer system,  

equals hydrogen flow rate [ml/min] / fuel flow rate [ul/min] 

Fvalve Fig. 12 Flow rate before the waste gas pressure control valve 

Fout Fig. 12 Flow rate leaving the waste gas pressure control valve 

Volume Fig. 12 Volume of the reformer core 

PARAMETERS 

Figure Parameter Equation, Value 

Fig. 5 FF(PWG, FH2_FF) 
 

 K1FF = 41.2 *10
-3

 

 K2FF = -2.75 *10
-3

 

 K3FF = 0.802 *10
-3

 

Fig. 8 TPk(PWG, FFuel) 
 

 K1TPk = 7.20 

 K2TPk = -0.190 

 K3TPk = -5.67 *10
-3

 

Fig. 8 H2Pk(PWG, FFuel) 

 

 K1H2Pk = 0.240 

 K2H2Pk = -29.1 *10
-3

 

 K3H2Pk = -0.213 *10
-3
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 K4H2Pk = -1.41 *10
-3

 

 K5H2Pk = -0.0189 *10
-3

 

 K6H2Pk = 0.711 *10
-6

 

Fig. 9 FH2_P(t/Tpk) 

 

for 0.25 < t/Tpk < 2.5  

 K1H2_P = 0.443 

 K2H2_P = -2.29 

 K3H2_P = 3.25 

 K4H2_P = -0.405 

Fig. 10 FH2_FF(PWG, 

FFuel) 
 

 K1H2_FF = -12.4 

 K2H2_FF = 1.43 

Fig. 13 K3H2_FF = 0.188 

Fig. 11 FWG(PWG, FFuel) 
 

 K1WG = 23.8 

 K2WG = -3.29 

 K3WG = 0.629 

Fig. 11 TFF = 1s 

Fig. 12 TPGF = 3s 

 PI Control KP = 100 

 PI Control KI = 2s 

 Tvalve = 0.5s 

 Volume = 114 ml
 

 TPT1 = 2.5s 

 TPT2 = 0.7s 

Fig. 13 Tt = 2s 

 K3H2_FF = 0.188 

 KP See Table 1 

 KI See Table 1 
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Tables: 
 
 
Table 1. Performance of different controllers 

P-Controller 
KP 

I-Controller 
KI 

Feed-
forward 

Smith 
Predictor 

Pressure 
Controller 

Stability Damping Accuracy 
Response 

time 

- -  - -   - ≈ 50s 

5 (2 FF)
-1 - - -    ≈ 60s 

5 (2 FF)
-1
  - -    ≈ 12s 

2 FF K3H2_FF (2 FF)
-1
   -    ≈ 10s 

2 FF K3H2_FF (2 FF)
-1
       ≈ 8s 
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