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Abstract

A method to perform cleaning tasks is presented where
a robot manipulator autonomously grasps a textile and
uses different dragging actions to clean a surface. Ac-
tions are imprecise, and probabilistic planning is used
to select the best sequence of actions. The character-
ization of such actions is complex because the initial
autonomous grasp of the textile introduces differences
in the initial conditions that change the efficacy of the
robot cleaning actions. We demonstrate that the action
outcome probabilities can be learned very fast while the
task is being executed, so as to progressively improve
robot performance. The learner adds only a little over-
head to the system compared to the improvements ob-
tained. Experiments with a real robot show that the most
effective plan varies depending on the initial grasp, and
that plans become better after only a few learning itera-
tions.

1 Introduction
Robotized household environments are a promising field
where action planning can be useful. Typically to solve a
task, a set of perceptions and a set of actions are defined,
and a planner is used to choose the sequence of actions to
execute. In this paper we put the attention on repetitive ac-
tions that are difficult to model offline because some initial
conditions can change their outcomes. We use as an exam-
ple the task of cleaning surfaces with a robot using an au-
tonomously grasped textile, where the initial grasping of the
textile clearly changes the effectiveness of the actions.

The actions used to clean are represented with rules
which, given some preconditions on the state, define the ex-
pected behaviour of an action as a set of possible outcomes
with probabilities associated. To obtain the best results we
should use rules that accurately characterize any available
action in the current environment.

As initial conditions may introduce large variability, we
incorporate a learning system that improves the rules after
the execution of each action, leading to better plans in the
long term. Common learning methods usually need many
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Figure 1: On the left the WAM robot arm is cleaning lentils
from a table to a container. On the right three different grasps
of the textile used for cleaning, each one leading to different
behaviours of the cleaning actions.

executions until good rules are obtained, but we aim to fin-
ish the task quite fast after a few action executions. We pro-
pose starting with very simple handcrafted rules and update
them with a new heuristic based on them-estimate (Cestnik
1990) to get more accurate rules that will perform quite well
after a few executions. This is intended for the initial steps
until enough experience is obtained to apply more complex
methods that can refine the rules with more details. The cri-
teria of thenumber of actions executedandtime to complete
the whole taskwill be used to measure the success of the
method. A more simple approach, like a reactive action exe-
cution, will not provide a proper solution as the combination
of different actions cannot be taken into account.

The presented approach uses a WAM robot arm to per-
form the actions, and a Kinect camera to get a representation
of the state, which is assumed to be completely observable.
Figure 1 shows the environment used for the task, and differ-
ent grasping configurations. As the actions are stochastic,an
online probabilistic planner is used. As mentioned, a learner
updates the planning rules to adapt to the grasped textile.
The performance of the system depends on the quality of
the rules, so learning will be critical to get the best results.



This paper is structured as follows. Section 2 presents
some related work and where our idea fits in state of the
art on automatic learning. The proposed algorithm is intro-
duced in Sec. 3, where perceptions, actions and planning
are presented. Section 4 explains the details of the learning
procedure. Section 5 shows some experiments of cleaning a
surface and the improvements attained when using our ap-
proach. Finally, Sec. 6 is devoted to draw some conclusions
and future work.

2 Previous work
There are a few recent works in which a robot performs sim-
ilar tasks to the one presented in this paper. In (Kormushev
et al. 2011) and (Sato et al. 2011) robot skills to clean a
whiteboard are presented. The robot is trained using imita-
tion learning with hybrid position/force control to learn and
execute trajectories trying to maintain the force of the hand
against the whiteboard. Force feedback has also been used
to learn dynamic motion primitives that ensure that the robot
maintains contact and applies the desired force in tasks such
as wiping a table (Gams et al. 2010). Moreover, methodolo-
gies to sequence motion primitives have been proposed (Ne-
mec and Ude 2012). The surface cleaning strategy is fixed
and thus the robot is unable to adapt to different layouts of
dirt that could be cleaned more efficiently with simpler tra-
jectories.

For this, a perception system is necessary to acquire the
scene state, and actions should be selected accordingly. Then
a model-based planner can generate sequences of actions to
clean efficiently all kinds of dirt. As we have stochastic ac-
tions a probabilistic planner is needed. For large state spaces,
a very common planning technique is UCT (Kocsis and
Szepesv́ari 2006), which uses bandit ideas to guide a Monte-
Carlo planner. The algorithm finds near-optimal solutions
in finite-horizon or discounted MDPs. PRADA (Lang and
Toussaint 2010) is a probabilistic planner that handles the
uncertainty by converting the rules into a dynamic Bayesian
network for state representation, and predicts the effectsof
action sequences by using an approximate inference method
to efficiently propagate beliefs. PRADA has a better perfor-
mance than classic UCT, so it will be the planner used.

Creating models manually is tedious as it has to be re-
peated for every task and environment, but learning meth-
ods exist to generate models based on experience. Two dif-
ferent approaches can tackle the problem of learning mod-
els. The first one is reinforcement learning (RL). Model-
based bayesian RL that aims to obtain optimal behaviour
as it chooses actions that maximize the expected reward as a
function of the belief-state. However, this optimization prob-
lem is intractable so near optimal solutions have been pro-
posed (Asmuth and Littman 2011).

The second approach is learning actions models. Using
the accumulated knowledge of all executions of an action, a
set of rules defining the model is generated. These rules de-
fine relational worlds which allow to generalize much bet-
ter over different states, as the same rule may apply to sev-
eral similar objects. Methods for learning stochastic actions
(Pasula, Zettlemoyer, and Kaelbling 2007) and partially ob-
servable domains (Mourao, Petrick, and Steedman 2010) are

available. These approaches lack an exploration-exploitation
behaviour, and they require several samples for each action
before they can get useful models.

(Lang, Toussaint, and Kersting 2010) propose a solu-
tion to this exploration-exploitation problem using a strat-
egy based on the Explicit Explore or ExploitE3 (Kearns
and Singh 2002) algorithm and updating the rules with Pa-
sula’s algorithm. Although in the end good results are ob-
tained, the algorithm just explores and uses vague rules until
enough experience is acquired, getting bad results during the
initial executions.

As executing actions in real robots has a large cost, we
like our robot to perform as well as possible also during
the first executions until enough experience is obtained to
learn the action models. We propose using a very simple set
of initial rules which can adapt with fast learning heuristics
until enough samples are obtained to apply action learning
algorithms. The initial rules will begin with very optimistic
outcomes, getting the advantages of the optimism under un-
certainty bias (Brafman and Tennenholtz 2003).

The rules are provided to the learner which has to up-
date their probabilities online to improve the estimated out-
comes of the actions. Several heuristics have been proposed
and their performances have been compared (Janssen and
Fürnkranz 2010). The family of parametrized heuristics, and
in particular them-estimate (Cestnik 1990), allows to ad-
just the trade-off between learned estimations and a priori
probabilities. Similar to the work of (Agostini, Torras, and
Wörgötter 2011), we want to produce confident estimates
with a few examples by regulating the influence of them
value, but having stochastic actions we can’t know a pri-
ori the number of actions needed to cover all possibilities.
Therefore we propose a new heuristic that decreases them
value as experiments are carried out so as to adapt quickly
the rule outcomes, but the decrease ofm is gradually slowed
down so that a small influence of the a priori probability is
maintained for a long time to take into account unexperi-
enced outcomes.

3 Proposed Method
The method proposed in this paper is aimed at cleaning a
surface using a calibrated RGB-D camera and robot arm
grasping a cloth.

Observations are continuously acquired with the camera
and processed to have an updated representation of the en-
vironment. The robot has a set of actions consisting of se-
quences of movements to clean or displace dirt. Given a rep-
resentation of the environment and a set of rules defining the
available actions, a planner chooses a sequence of actions
to clean the surface efficiently. An action is then performed
by the robot, and once it is completed, the learner analyzes
the changes in the state to update the rules of the executed
action accordingly. The system keeps replanning, executing
actions and learning if necessary until the task is complete.

Actions
A set of actions is designed to clean a surface containing
small objects like lentils. These actions are parametrized



(a) Move to container (b) Join 2 groups (c) Group scattered

Figure 2: Cleaning actions.

with ellipses representing the dirty areas on the scene, and
generate a sequence of points defining the cleaning move-
ments. Lentils are detected with a simple RGB segmentation
algorithm. The cleaning tool is always oriented perpendicu-
lar to the direction of motion to get effective moves.

Actions can be divided in two groups.
• Cleaning actionsthat remove dirt from the surface, mov-

ing it towards a container positioned near the edge of the
surface (Fig. 2a).

– Fast move to container (ellipse):
∗ Pushes the lentils in a dirty area to the container posi-

tion using a grasped cloth.
– Straight move to container (ellipse):
∗ It is equivalent toFast move to container, but ensures

that the trajectory is straight at the cost of being a little
slower.

– Short move to container (ellipse):
∗ It is equivalent toFast move to container, but only

does a short movement towards the container, ensur-
ing that the trajectory is straight, although it won’t
reach the container if the dirt is far from it.

• Grouping actions that rearrange the dirty areas on the
surface, so that they become easier to clean by means of
future actions.

– Join 2 Groups(ellipse1, ellipse2):
∗ The movement pushes the lentils of ellipse1 to el-

lipse2 joining them (Fig. 2b).
– Join 3 Groups(ellipse1, ellipse2,
ellipse3):

∗ Moves ellipse1 and ellipse2 to the position of ellipse3.
– Grouping scattered dirt(ellipse):
∗ Moves scattered groups together to get compact

groups that are more manageable (Fig. 2c).

These actions are stochastic due to several factors:
• Actions rely on the accuracy of the depth information pro-

vided by RGB-D cameras, which may have some errors.
Although using a cloth provides some compliance, some-
times actions may fail to move the dirt as expected.

• The same action may get different outcomes for similar
dirty areas. For example, some dirt may spread during the
trajectory in some cases, while they may move success-
fully in other similar cases.

• The cloths used for cleaning produce different results de-
pending on the way they are grasped.

Action:
straightMoveToContainer(X)
Preconditions:
dirt(X), mediumSize(X),¬scattered(X)
Outcomes (Success probability: predicate changes):
0.4: ¬dirt(X), clean(X)
0.3: ¬mediumSize(X), smallSize(X)
0.2: ¬mediumSize(X), smallSize(X) scattered(X)
0.1: noise

Figure 3: Rule example for removing lentils.

Planning
The planner selects the set of actions to execute based on the
perceptions and the probabilistic effects of action sequences.
The task is quite complex, and selecting the fastest action
sequence is challenging. For example, plans beginning with
groupingactions maypenalizein the beginning (remove no
dust) compared tocleaningactions, but they can provide the
best results in the long run.

Using a probabilistic planner is important when actions
have several possible outcomes with different probabilities.
Deterministic planners (Little and Thibaux 2007) only con-
sider the most probable outcome for each action, while a
probabilistic planner takes into account all outcomes.

The planner takes as input the state representing the scene
and a set of rules defining the expected results of the actions,
and it outputs a plan consisting in a sequence of actions.
These actions will be converted into motions that the robot
will perform to clean the dirty areas.

State representing the scene: The states is defined as

s = (d1, ..., dn, near(di, dj), ..., near(dk, dl)) (1)

where di are the dirty areas represented by ellipses and
near(di, dj) indicates dirty areas whose positions are close
to each other.

Each dirty area is defined asdn = (Id, s, σ)

• Id: Identifier.

• s: Size, wheres ∈ {big,medium, small}.

• σ: Scattered, whereσ ∈ {true, false} accounts for com-
pact or scattered distributions.

Action rules: We are using noisy indeterministic deic-
tic (NID) rules (Pasula, Zettlemoyer, and Kaelbling 2007),
where each outcome has associated the list of predicates
that change when the rule is applied. There may be several
rules with different preconditions for every action, and sev-
eral outcomes for every rule. An example is shown in Fig 3.

4 Learning
The planner needs a set of rules defining the actions that may
be performed, and the quality of the plans will depend on the
precision of these rules. As our environment is stochastic,it
is difficult to define accurate rules for every surface, type
of dust, robot and grasping of cleaning tools. To solve this
problem, we will learn the actual outcome probabilities for
each configuration while performing the cleaning task with



initially inaccurate rules. The learner updates the expected
rule outcomes for every action that is executed to reflect the
result of the execution. Also, it saves a record of previously
executed actions and their results to get better estimates of
the outcomes.

Having stochastic actions means that the rule defining the
action may have several outcomes for just one set of precon-
ditions. After executing an action that we want to learn, the
robot will have to take a new perception and look carefully
for differences in the state to know which outcome was ob-
tained. When no outcome matches the result of the action,
the noise outcome probability will be increased.

Learning heuristics
We want the system to rapidly refine the outcomes to adapt
to the new environment, but we also want to avoid wrong
premature estimations to degrade the performance of the
system, as it is learning at the same time that it is solving
the task.

A learning heuristic to prevent these premature wrong es-
timations is them-estimate (Cestnik 1990), that includes a
parameterm to implement a trade-off between learned out-
comes and a priori probabilities in rule outcomes

P =
p+mP0

p+ n+m
, (2)

whereP is the estimated probability,P0 the a priori proba-
bility, p the number of positive examples andn the number
of negative examples.

The problem with this heuristic is that small values ofm
may yield wrong estimates of rule outcomes, while a high
value ofm would entail the system taking too much time
to converge to the learned estimates. We propose to use a
different heuristic:

P =
p+ (m/

√
p+ n)P0

p+ n+ (m/
√
p+ n)

. (3)

This decreasing-m-estimate is similar to them-estimate
when there are only a few examples, favouring a priori prob-
abilities. But as the number of examples increases, its influ-
ence decreases, leading to better estimates that have little
influence from a priori probabilities. The value ofm should
depend on the stochasticity of the task. In our experiments a
value of10 provided good estimates and was low enough to
converge fast to the learned estimates.

Stop learning: Learning adds some overhead to the sys-
tem. After executing an action to be learned, the arm has to
leave the visual field of the camera to get a good perception
of the surface and estimate correctly the outcome obtained.
Otherwise, planning would rely on partial perceptions that
may have occlusions.

Therefore, we only learn actions until we have enough
examples to consider that the learned estimate is quite accu-
rate. Using the Hoeffding inequality, we can have a bound
for having a high probability(1 − δ) that our estimatêp is
accurate enough|p̂ − p| ≤ ǫ. The number of trials required
is

T ≥ 1

2ǫ2
ln

2

δ
. (4)

Initial rules

The initial rules were written manually, defining only the
basic expected behaviours of the actions. As the proposed
learner is intended only for the first executions, little ef-
fort should be spent on these initial rules, as they will be
changed later to more precise ones when enough experience
is obtained. Based on the optimism under uncertainty bias
(Brafman and Tennenholtz 2003), all rules are defined with
a probability1.0 of getting the best outcome, and as actions
get executed, this probability tends to the actual one.

Another possible set of optimistic rules is learning the
probabilities of outcomes for the best scenario, which in our
case is a very good cloth grasp, and use them as the ini-
tial rules. These rules will converge faster to the actual ones
as they already have learned some of the dynamics of the
system and their outcome probabilities will be closer to the
actual current ones.

5 Experimental results

We have carried out two experiments to analyze the learner
performance in the task of surface cleaning. Both experi-
ments involved cleaning a surface with 30 lentils spread over
it. The robot had to move the lentils to a container positioned
near an edge of the surface. The task was repeated a num-
ber of iterations in each experiment to analyze the learning
process. The value ofm was set to10 andT to 12 in both
experiments.

First experiment: rules evolution over time. We an-
alyzed the estimated probabilities of the rules over time
(Fig 4). For clarity, only 4 rules are shown. Figure 4a shows
the learning process starting with optimistic rules with a1.0
probability for the best outcome, and along 15 iterations.
Then the resulting rules were used in new situations with
two different graspings (Figs. 4b and 4c).

As can be observed, these two grasps produce different
rules. The grasp of Fig. 4b yields very good results withjoin
actions, while the grasp in Fig. 4c gets very bad results with
them, particularly the one joining two groups. Also theclean
fastaction has significant differences between both grasps.

Second experiment: improvement using learning. Us-
ing the rules obtained during the previous experiment, we
measured the number of actions and time taken to clean with
new grasps. The experiment was repeated 4 times and the av-
erage of the results is shown in Fig. 5. As can be seen, the
number of actions required to complete the tasks decrease
as the rules improve. Also, the learner stops refining actions
once it gets enough examples of them, reducing the learning
time after a few iterations.

Moreover, the same experiment was repeated using the
original m-estimate to compare its performance with our
proposal. Although them-estimate also improves the rules,
the decreasingm-estimate obtains better results with fewer
iterations as shown in Fig. 5c.
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(a) Initial rule learning.
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(b) Refining rules from (a) with a new grasp.
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(c) Refining rules from (a) with another grasp.

Figure 4: Rule learning over time with m=10. In (a) initial rules are obtained with a common grasp. In (b) and (c) rules from
(a) are refined with new grasps. Observe that each particulargrasp changes the outcome probabilities of the different rules, e.g.
join 2 groups performs well in (b) but bad in (c).
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Figure 5: Improvements using the learner.(a) Number of actions executed and the number of them that required learning as
they were considered unknown.(b) Distribution of time between planning, action execution and learning.(c) Time taken to
clean the board using the proposed decreasingm-estimate and the originalm-estimate.

6 Conclusions

In this work we have shown the use of a learner integrated in
a surface cleaning system where a planner is used to choose
good sequences of actions to clean efficiently with very little
experience. Different grasps of the cloth vary significantly
the rule outcomes probabilities, which makes the learner a
very important piece to get accurate rules for the planner.
As seen in the experiments, good rules improve the plans
obtained, which allow the system to clean faster.

The learner produces quite accurate rules after a few ex-
ecutions using the decreasingm-estimate heuristic. It also
adds a little overhead to the system, which almost disap-
pears after a few executions when most used rules get al-
ready learned. Overall we can conclude that the inclusion of
a learner for rule refinement is highly recommendable in dy-
namic environments where accurate rules are not available.
Once enough experience is obtained, more complex meth-
ods for refining the rules preconditions and outcomes (Pa-
sula, Zettlemoyer, and Kaelbling 2007) can be used to get
more accurate rules.

A future improvement to the system would be integrating
the initial learning heuristic with the more complex action

model learner to incrementally update the rules precondi-
tions and outcomes, thus getting the best of using both learn-
ing methods simultaneously.
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