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Abstract: In a Hierarchical Model Predictive Control (H-MPC) framework, this paper explores
suitable time-variant structures for the hierarchies of different local MPC controllers. The idea is
to adapt to different operational conditions by changing the importance of the local controllers.
This is done by defining the level of the hierarchy they belong to, and solving within each level
the local MPC problem using the information provided by the higher levels at the current time
step and the predicted information from the lower levels obtained in the previous time step.
As selecting a hierarchy results in a combinatorial optimization problem, it is explicitly solved
for a limited number of relevant topologies only and then the switching between topologies is
defined with a multiobjective optimizer, so as to decide the best H-MPC scheme according to the
expected performance. A comparison with fixed-topology H-MPC controllers is done, showing
the effectiveness of the proposed approach for the power control of a hydro-power valley.
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1. INTRODUCTION

Despite of the advantages of Model Predictive Control
(MPC) over other control methods, the application of
this control technique in large-scale systems resulted to
be impractical in many application domains due to the
computation time required to solve on-line the correspond-
ing optimization problem. To make the real application of
MPC in large-scale systems possible, different hierarchical
and distributed MPC (HD-MPC) approaches have been
proposed in the literature during the recent years like
Rawlings and Stewart (2008); Venkat et al. (2008); Doan
et al. (2011); Valencia et al. (2011); Ocampo-Martinez
et al. (2012). HD-MPC schemes can deal with the con-
trol of large-scale MPC problems since they divide the
complex overall problem into several sub-problems, trying
to achieve some degree of coordination among subsystems
that are solving local simpler MPC problems with locally
relevant variables, control goals, and constraints, without
solving the centralized MPC problem.

Compared with the centralized MPC solution, the perfor-
mance of the system with an HD-MPC controller might
decrease, but the total computational cost can be re-
duced by defining proper communication and coopera-
tion strategies, and in some algorithms by negotiation
among subsystems. In Alvarado et al. (2011) a compar-

ison of different HD-MPC methods is presented, each
of them exhibiting different performance, computational
effort, and complexity characteristics. Among the many
schemes available in the literature, this paper considers
those based on hierarchical MPC (H-MPC), see Scattolini
(2009). In H-MPC controllers, the system is divided into
different functional layers. The control actions of a layer
are then computed considering the information from other
local controllers at a higher level of the hierarchy. Although
such approaches have been reported to produce suitable
results, the communication requirements and the selection
of the hierarchies are crucial.

The main contribution of this paper consists in a novel
scheme where the H-MPC controller has the flexibility
to switch between different hierarchies (solving sequence),
but they all have a common cost function. Then, the
control action applied to the system will be selected ac-
cording to the decision of a multiobjective optimization
module, comprising not only the global objective, but
also some others specifications and management of con-
straints (due to the hierarchical decomposition). For the
particular case study of this paper, the cost functional is
a combination of tracking error of the power demanded
and the economic benefits. We assume the availability of
H-MPC structures that assure stability and feasibility of
the controller under the hierarchical decomposition, while



the switchings between those H-MPC controllers will be
activated just in case it is possible to increase some of
the performance indices while keeping the others constant
(Pareto dominance criterion).

The remainder of the paper is organized as follows. In
Section 2, H-MPC theory is introduced. In Section 3, an
H-MPC controller capable of switching between different
solving sequences based on a multiobjective optimizer is
presented. In Section 4, the hydro-power valley case study
is introduced and numerical results are presented. Differ-
ent schemes considering fixed and non-fixed communica-
tion topologies are compared, showing the benefits of the
switching scheme proposed in this paper, as different struc-
tures fit better when the system is operating in different
power reference regions. Finally, the main conclusions and
some lines of future research are presented in Section 5.

2. HIERARCHICAL MODEL PREDICTIVE
CONTROL (H-MPC)

2.1 Model Predictive Control

Consider the discrete-time non-linear system whose dy-
namic evolution is described by the following state-space

model:

z(k+1) = f(z(k),u(k)), (1)
with z(k) € R™ and u(k) € R™ being the state and the
input vector respectively, and f : R” x R™ — R". Often,
a quadratic function of the form
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is used to measure the performance of the system. Here,
T=[xT(k+1),...,27 (k+ Ny, (3a)
u=[ul(k),...,u" (k+ N, —1)]7, (3b)
where N,, N, are the prediction and control horizon
respectively; @, R, and S are weighting matrices positive
definite, and Au(k +1) = u(k +1) — u(k + 1 — 1). The
superscript T denotes the transpose operator.

Assume z(k) € X, and u(k) € U for all ¥ € N, where
X and U determine the feasible values of the states and
the inputs respectively, and they are given by the physical
and operational constraints of the system. Then, the MPC
problem can be formulated as a non-linear optimization
problem

min J(Z, u) (4a)
subject to

x(k+1+10) = f(z(k+1),u(k+1), x(0)=uxzy, (4b)

zk+)eX, wk+l-1)elU, I=1,...,N,—1,

uk+1)=ulk+Ny,—1), =Ny, .., Np.

Typically, such minimization is implemented in a central-
ized way. For large-scale systems, centralized MPC may

become impractical since it might require to optimize a
huge amount of variables, and to exchange large amounts
of information, which in turn might imply a huge compu-
tational burden. Therefore, H-MPC schemes are proposed
to deal with large-scale MPC problems given their capabil-
ities to divide a complex problem into several less complex
sub-problems.

2.2 Hierarchical Model Predictive Control

Since the goal is to deal with large-scale systems, H-MPC
arises as an alternative to overcome the computational
problems associated with the implementation of a central-
ized MPC scheme. Assume M subsystems distributed in L
hierarchical levels, where there are P, subsystems at each
level, for ¢ = 1,..., L. To place a stronger focus on the
case study in the present paper rather than attempting
to present a very general framework, we consider the case
L = M, so we allow just one subsystem in each hierarchy.
Therefore, each subsystem may be denoted with just one
subindex r as Sy, with r € {1,..., M}.

In this paper, we assume no state coupling. This assump-
tion will hold for example in flow networks, whose subsys-
tems are just connected through control actions, or if the
partitions are selected in such a way that the manipulated
signals are the only common/shared variables, see, e.g.,
Ocampo-Martinez et al. (2011), or the states affecting
subsystems can be written as functions of their own control
variables. This assumption can be relaxed by selecting the
adequate class of H-MPC controller that can deal with the
state coupling. The dynamics of subsystem .S, are given by

2 (k+1) = fr(r(k), ur(k), unr (k), u e (k)),  (5)
where z,.(k) and w,. (k) correspond to the state and the in-
put vectors of S, up (k) is the vector of inputs belonging
to subsystems at higher hierarchy levels, and u,.(k) is the
vector of inputs belonging subsystems in lower hierarchies.
The solving sequence of the optimization problems is given
by the predefined hierarchy, where subsystems in a higher
level are solved first, communicating their resulting control
sequences and state trajectories to the subsystems in a
lower level. For the information needed in subsystem S,
that comes from lower hierarchies but it is not yet calcu-
lated, predictions coming from their local MPC controller
from previous time steps are used.

Sequences T,, U, up, and uy, are accordingly defined
as in (3), Q, is the set of feasible control actions for ,,
and 2, (i, (k). un, (k) wr(k); z-(k)) is the feasible set for
the states, the initial condition x.,.(k), and the prediction
model (5). Then, the local optimization problem related
to subsystem S, and arising from the partitioning of the
whole large-scale system can be formulated as

min J,(Z., un,r(k), w1, (k)), (6a)
subject to

T, € Er(ar(k)aah,r(k),ﬂl,r(k);:L'T(k))’ (Gb)

Uy € Q, (6c)

where J,.(-) denotes the cost function related to subsystem
S;.. Hence, this H-MPC approach is decomposed into local
optimization problems (6) and the procedures used to
guarantee the communication among subsystems. From



(6), local optimization problems are coupled to each other,
ie., the value of the cost function J.(-) in (6a) and
the decision space of S, depend on the decisions of the
remaining subsystems.

However, the way the hierarchies are selected is a crucial
step. For example, as shown in Figure 1 (like in the case
study with M = 3 subsystems), there are in total 6
possible hierarchical structures than can be considered.
In this paper, we want to have an extra flexibility in
the H-MPC controller, in order to have the opportunity
to change the hierarchies. What we expect in general
is that the subsystems at the higher levels will have a
better local performance than the rest as they will impose
their control actions to the other subsystems. However,
when the subsystems are coupled, the way the lower level
subsystems react will also affect the higher levels. So
the question about which is the best hierarchy remains
open and, as a possible answer, in the next section we
propose a switching method to include extra flexibility
in conventional H-MPC controllers, so as to change the
structure of the H-MPC according to a better expected
performance.
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Fig. 1. Different possible hierarchies for the case of M = 3
subsystems. In dotted lines the information that is
shared at the beginning of the time step k. Then,
following the solving sequence from top to bottom, the
local MPC controllers calculate their control actions
and transmit them (dashed lines) to the controllers in
the lower levels

3. SWITCHING METHODOLOGY BASED ON
MULTIOBJECTIVE OPTIMIZATION FOR H-MPC

In this section, a methodology to control the way solving
sequence of the MPC controllers of the subsystems is
presented. The idea is to control the large-scale system
by using a set of H-MPC controllers with different hierar-
chies, to get better control decisions. Once the H-MPC
controllers suggest their sequence of control actions, a

multiobjective switching algorithm will process the infor-
mation and will determine the best control action accord-
ing to multiple performance indices, see, e.g., Bemporad
and Munoz de la Pena (2009) and Nunez et al. (2010).
It is important to stress that each local controller may
have different cost functions, not necessarily related to
the indices in the multiobjective switching algorithm. In
Figure 2, a scheme of the operation of the controller is
presented.
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Fig. 2. Dynamic switching topology

According to the criteria, different H-MPC controllers are
used at different time steps. For example, in Figure 2, when
switching from H-MPCg to H-MPCs, the subsystem Sj
has the higher priority, but the priorities of subsystem Sy
and S change, giving subsystem S a higher importance.
This setup fits in systems where for example, in the
morning some specific subsystems are more relevant to
be optimized, but then because of the changes over time
of the operational conditions, the optimization of other
subsystems in the afternoon is more important.

It is assumed that the communication between the M sub-
systems is always available, but we can control how to use
it in an H-MPC structure. Assume we have selected Ny
different H-MPC controllers, each controller ¢ with a differ-
ent configuration of hierarchies. So in total, there are Ny
selected information exchange combinations (hierarchies).
The switching strategy between all possible hierarchies is
time consuming, especially when no parallel computation
is available. To select a proper number of structures, some
criteria could be, e.g., the computation time, decay rate of
transmission, RMS of the output, distributed balancing of
the performance of the different regions, among others. In
this paper we just use all the possible combinations (six
H-MPC controllers in total), and even they can be run
in parallel, a pruning or better selection of just the most
used hierarchies can be done, so to reduce the number of
combinations.

In Figure 3, a scheme of the overall controller is presented.
In total Neyy H-MPC controllers work in parallel. The



switching between the control actions suggested by each
controller is decided by a multiobjective decision algo-
rithm, the control action of which is applied based on the
performance indices.
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Fig. 3. Overall control scheme

The optimal control action sequences u., ¢ = 1,..., Negy
(comprising the information for all the subsystems) coming
from each of the H-MPC controllers are used to evaluate in
open loop a global model of the process over the prediction
horizon. With the information of those N1 controllers,
the optimal input u.- from the controller ¢* is selected
based on the evaluation of multiple objective functions
and this controller will be used during the sampling time
defined for the switching algorithm. The switching criteria
will depend on a criteria that might change according
to multiple factors. Often the objective functions are
conflicting, i.e., a solution that optimizes one objective
may not optimize others, see, e.g., Bemporad and Munoz
de la Pena (2009); Nunez et al. (2010). Thus, instead of
minimizing a single objective function, we consider more
performance indices:

rrlllin{Jl(uc,mo),Jg(uc,$0)7---le(uwxo)} (7)

the variables u. and Jy(u.,xg), £ = 1,...,1, are the se-
quence of future control actions and the objective func-
tions to minimize respectively. The solution of multiobjec-
tive problems is a set of control action sequences called
Pareto-optimal set. In this paper, the Pareto-optimal set
is obtained by just evaluations of the given u., ¢ =
1,..., N¢tr1. One method to select a solution from the
Pareto-optimal set is by using a weighted sum of the
different objectives, so the best controller ¢ will be the one
that minimizes Zle:l weJe(ue, o), with wy the weighted
factors. From the control sequence of controller ¢, just the
first component u(k) has to be applied to the system.

To assure the feasibility of the controller and the con-
vergence of the iterative process under the hierarchical
decompositions, one conservative assumption is to require
that each H-MPC can satisfy those conditions. Then, as for
the effects of the switching control topologies on the closed-
loop stability and performance, the dwell time should be
selected in such a way to assure asymptotic stability, see
Liberzon (2003). In this paper, the switching is done only
if another H-MPC control provides a Pareto dominant
solution (thus, some indices will get at least a better per-
formance, while the others are constant), and then, among
the Pareto solutions, the one that minimizes the function
Zle:l wyJe(ue, xo). For the implementation in this work,
the conditions of the systems were safe enough to not have
to face any of the typical problems related with feasibility
or convergence (a through analysis of these issues is part
of the further research).

In Venkat et al. (2008) and Giovanini (2011), for dis-
tributed model predictive controllers, it is shown for linear
systems, that it is possible instead of using a switching
method to obtain similar results making the weights of the
cost function time-varying and allowing the optimization
find the optimal solution. This might be interesting to
address in a further research, so to have rules (time-varying
weights) that indicate in a fast way the best hierarchy
based on the conditions of the system, so as to emulate
the integer optimization problem that is actually solved in
this paper with a complete enumeration of almost all the
hierarchies run in parallel (as N1 might not be small in
general).

4. RESULTS

The Hydro-Power Valley (HPV) benchmark presented in
Savorgnan et al. (2011) is used for testing the mnovel
approach, see Figure 4. The system is partitioned into 3
subsystems with the following elements:

e Subsystem 1: Lakes 1 and 2.
e Subsystem 2: Lake 3.
e Subsystem 3: River dams.

In order to verify the superiority of the proposed switching
H-MPC, first six regular fixed H-MPC controllers with
different structures have been implemented. In Figure 4,
the scheme of the partition of the system and the set of
N¢ir controllers are shown.

The objective function considers the reference tracking and
the reduction of the strong variations in the level of the
lakes (state variables). It is expressed as

k+Np

D Apeet(t) = p(t)] + (h(t) = hes) "Q(A(E) — hes),  (8)

t=k+1
where p(t) is the power generated by the HPV at step t,
with p(t) = Zle pi(t). Moreover, A is a weighting factor,
Dret(t) is the reference of the power, h(t) is the vector
with the water level of the lakes, and hgs is a reference
for the levels. For the local MPC controllers, N, = 48,
and N, = 32. The mean square error (MSE) and mean
absolute error (MAE) of the tracking error will be used
for comparison purposes.
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Fig. 4. Proposed control scheme for the benchmark

Figure 5 shows the reference power trajectory and the gen-
erated power for the fixed H-MPC schemes. The responses
of the controllers are suitable; however, we can see that the
performance of some of them is better in some regions than
in others. The most notorious examples of tracking error
are highlighted by some circles in the figure. This might
is due to the lack of flexibility of the hierarchies, at some
time steps, it is more relevant to control first the lakes,
and then, given their control signal, to control the river
dams (or vice-versa).
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Fig. 5. HPV responses the different controllers

Now, all N¢,1 = 6 configurations are used in the
multiobjective-based switching topology for H-MPC con-
trollers. Three quantitative indices will be used to trigger
the multiobjective switching mechanism:

(1) Mean square tracking error (MSE):
k+ N,
(e, m0) = D (pres(t) — p(t)” (9)
t=k+1
(2) Economic performance reference tracking in Euros
(MAE Economic), where ¢(t) shown in Figure 6 is
the cost of the electricity at time ¢:

k+N,
J2 (ucv .7;0) = Z C(t) max (pref(t) - p(t), 0)
t=k+1
k+Nyp
+0.5 Z c(t) max (p(t) — pret(t),0)
t=k-+1
(3) Weighted sum, combining the effects of both objec-
tives (normalized):

(10)

Jl(ucl\}mo) + 0'75J2(1101\;I’0)7 (11)
Jl J2

where JI and JJ are values used to normalize the
objective functions (computed using their maximum
value among the evaluation of the Ng¢; controllers).

Jg(uc, Io) =0.25

To obtain the predictions in each of those indices, the
control actions suggested by each H-MPC controller are
applied to a global model of the system.

Price c(t)

c(t) [Euros/MW]
S 3

>
g

=3
@

<3
N

1 2 3 4 5 6 7 8
Time [s] x10*

Fig. 6. Prices c¢(t) used in the economic objective function
JQ (uc, I‘O)

Figures 7, 8, and 9 show the results of power tracking
and the selected H-MPC controller during the simulation,
for the three cases MSE, MAE Economic, and Weighted
sum (MO), respectively. The weighted sum case, which is
a combination of the criteria MSE and Economic MAE,
provides the best results in terms of both objective func-
tions.
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Fig. 7. HPV responses (MSE)

Table 1 presents the MAE and MSE comparison for
the three switching configurations. The one using MSE
reflects the negative effect of providing less power than
the one needed (reference). Using MAE Economic, the
structures generating less power than the power reference
are penalized, but the tracking error increases. With the
combination of both objective functions, we managed
to reduce the undesired effects of the other controllers,
reaching a better performance in terms of both MSE and
MAE indices.
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Table 1. MAE and MSE of different schemes
of selection

Criterion MAE MSE
Ji(ue, o) MSE 0.8044 | 1.3469
Ja(ue,z0) MAE Economic | 0.7996 | 2.0836
J3(uc,zo)  Multiobjective 0.6020 | 0.7381

In the example, it is highly surprising that better track-
ing and better economic performance are achieved by
minimizing a cost function that penalizes a combination
of tracking and economy, rather than one that penalizes
tracking error only (or economic performance only). This
must be due to the particular structure of the system, and
because in the dynamic simulations just the starting point
is the same in all the cases (in closed-loop, the performance
is dependent of the different decision at every time step,
and for the three controllers the inputs are different).

5. CONCLUSIONS AND FUTURE WORK

A hierarchical model predictive control (H-MPC) ap-
proach that adapts to different operational conditions by
switching between solving sequence topologies using a
multiobjective optimizer, is proposed in this paper. The
approach was tested in the control of a hydro-power val-
ley, showing its effectiveness in comparison with a fixed-
structure H-MPC controller.
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