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Abstract— We present an adaptive sliding-mode extremum widespread optimization problems arising in differenticoh
seeker that minimizes an unknown function that is subject applications.
to an unknown static constraint. The same algorithm can be h d h | ext i
applied when the static constraint is replaced by a dynamic ioe, In t e .prc.)pose .approac » a Qe”efa ex r_emum seeking
provided that the dynamics possess strong stability propeies. ~ algoritm is first devised for a static plant. This is done by
The application and feasibility study is focused on hydroge estimating the gradient of the output and then applying a

consumption minimization in PEM fuel cell based systems. standard steepest descent algorithm. The input and output o
the plant are differentiated, and then the gradient of thetpl
. INTRODUCTION is extracted with a sliding-mode adaptive estimator. Wercla

Increasing demands on pollution reduction is driving inthat the algorithm also works for dynamic plants if the plant
novation on clean energy sources. Among these, fuel cefdtisfies some stability properties. The claim is suppdsied
(FCs) are regarded as one of the most promising tecglmulating the behavior of the extremum seeker when applied
nologies, due to their potential efficiency, compactness ario an FC.
reliability [2]. FCs are electrochemical devices that geie The system under evaluation is composed of an au-
electrical energy from hydrogen and oxygen, with puréonomous PEM fuel cell generation system (FCGS). The
water and heat as by-products. Considering that hydrogenf€GS roughly comprises five main subsystems: the air flow
widely available and can be obtained from many renewablgreathing), hydrogen flow, gases humidity, stack electro
sources using solar and wind energy, fuel cells represeghemistry and stack temperature subsystems. It is assumed
an attractive, feasible alternative to reduce fossil fuel d that the input reactant flows are efficiently humidified arel th
pendence. However, the widespread use of hydrogen stck temperature is well regulated by dedicated contsolle
combustible -and the resulting “hydrogen economy”- despitin addition, it is considered that sufficient compressed hy-
its interesting possibilities, has some technologicaliess drogen is available, therefore the main attention is foduse
to be resolved. In spite of recent advances, their relgtivebn the air management. In Fig. 1 a schematic view of
high costs, improvable efficiency and reduced lifetime rethe FCGS under consideration is represented. The most
main as major limitations. For this reason, together withielevant components related to the FC flow system are deeply
the continuous improvement of materials and componentsharacterized in [6].
the incorporation of advanced control strategies embaalies
major technological issue, in order to achieve cost redacti
performance improvement and efficiency optimization. kn th
light of these considerations, it becomes clear that in rorde
to optimize efficiency, hydrogen minimization problem ass Supply Manifold W,
as a major challenge. Therefore, the current paper addresse
the analysis and design of optimizing supervisory corgrsl|
for fuel cell systems. In particular, robust extremum segki
algorithms based on the so callddling-mode paradigm are
considered for the case of air flow reference management vs.
stack current minimization.

Extremum seeking algorithms deal with the problem
of minimizing or maximizing a plant output with a set
of decision variables. This problem represents a class of

PEM Fuel Cell Based Generation System
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Il. ADAPTIVE EXTREMUM SEEKING wherek; € R is the estimator gain angl iS obtained using
A Satic case the uniform exact differentiator described in Section II-C

Consider the problem of minimizing a smooth real-valued Lemma 1 Suppose that(t)

# 0 almost everywhere (a.e.)
objective function

(this is our persistence of excitation condition),kebe such

y=h(xu, xeR" uck, (1) that .
. , kz> pa(kulz +d)+ &, zeZ (6)
subject to the constraint € f(x,u) and let us state the
following assumptions. for somedy > 0 and suppose th%{%(t) € Z fort > 0. Then,
Assumption 1: There exists a smooth functign R — R"  the solutionsz(t) of the estimator (5) converge tgft (t) in
such that finite time.
0=f(xu) ifandonlyif x=g(u). Proof: Notice that
Assumption 2: The functionH (u) := h(@(u),u) is twice oh. oh
continuously differentiable and there is an open interal y(t) = —x(t) + =—u(t)
of interest, such that: ox ou
1) The inequalities andx(t) = g—ﬁu(t). so we have
0°H v (Ohde ohy = JH
p< 2 w<p, 0= (Gege+ 5 ) o0 =Fnu0. @
ho!d for somepy, p2 > 0 ar_ld alue 2. (HenceH is Using (7) we can rewrite (5) as z(t) =
strictly convex when restricted t@.) szIgn((a—H _ ) uz) (t). Sinceu(t) # 0 almost everywhere,
2) The set we have o
7 (" (2) = zeR:z:a—H(u),ueg 2(t)_k25ign<ﬁ_ >(t) ae ®)
Jdu Jdu
contains the origin. Lets:= ‘;—ﬂ —z be the sliding variable. Its time derivative
If @ andh were known, then the optimal pair is given by
T - . doH . _ d oH
(x",u") = argmin h(x,u) (@) §t)=———(t) —Zt) = —kgsign(s(t)) + — —=—(t) a.e. (9)
0=f(x,u),ueD dt du dt du

Now we can take the standard approach to provesthat O

could be easily found by solvin
Y Y g in finite time: Define a Lyapunov functiov(s) = /2 and

0— d_H( ) = @‘3_40 T @ (u*) 3) compute its time derivative along the trajectories of (9,,i
Jou Jxdu du _ d oH

(such a solution always exists under condition (2)) and  Vs() =s-8(t) < —I§ (kz_ dt au ) (1) <
setting x* = @(u*). On the other hand, the optimization < —|sl(ke— palu])(t) a.e. (10)
problem becomes more challenging and of greater practical o
interest whery is available (e.g., from measurements) put (with a slight abuse of notation, we have %gtt) = Vs(s) o
andh are not known. To solve this problem, we suggest toS(t)). From[u] <ky|Z +d (cf. (4)), (6) and (10), we have
estlmat H and feed it to a continuous-time steepest descent Ve(t) < —&[st)| a.e. (11)

algonthm
_ Thus, the time derivative is negative. This proves that the
U(t) = — Ly o0 (1) - k() (1), ) point s= 0 is an asymptotically stable equilibrium of (9).

wherez(t) € R is an estimate o8 at timet, k, € R is To show convergence in finite time, notice that (10) can be

the algorithm gain andy, «) : R — {0,1} is the indicator rewritten as .

function of the intervallt;,), i.e., we ‘turn’ k,z(t) ‘on’ Vs(t) < —Go/Vs(t) a.e

only whent >t;. The switching time is to be defined laterhjch implies that [9]

(see (12)). The ternd(t) is a differentiable signal included )

to ensure a persistent excitation for the estimator. It tssen Va(t) < ( Vs(0) — @t) _

in such a way that it satisfies the bounds 2
d(t)] < dB and |d(t)| < d_1 It follows that at the time
— — s(0
wheredy andd; are positive constants to be determined later. t1= 2%)) (12)
We propose an adaptive sliding-mode estimator of the
form we haveVs(ty) = 0 (hences(t;) = 0). [ |

2(t) = kesign((y—z)a) (t) ,  2(0) =0. (®)



( e e [ e o Suppose we are interested in driving the skdiethe optimal

\ L equilibrium pair (2). If%—ﬂ was known and the equilibrium
(p(u*),u*) is at least asymptotically stable, then the optimal
value could be reached by setting

=)=~k (1)

Remark 1: Instead of (12) (which requires knowledge ofsg extremum seeking problem reduces again to the problem
s(0)), the switching timet; can be determined online by of estimating‘f,—” online.

monitoring the erroe:=y—zu and marking the time where  f the solutionsx of (13) converge tap(u) fast enough and

e=0 with u# 0. X quickly comes close tcg%u as well, then it makes sense

oH
Because of the presence dft), z= 5y cannot be made 4 apply again the algorithm (4), (5), which we now know
exactly equal to zero, but it can be driven to a small valug,qrks for the case — )

proportional tod.
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Fig. 2. Proof of Theorem 1

To motivate our next assumption, consider a linear system

Theorem 1: Let = [—d/k,,d/k,] and suppose that: X = Ax+Bu

1) #CZ. with A Hurwitz. For each constant the equilibrium is given

g; ;((ttl))i(i@fae ande(2) satisfies (6). by x = @(u) = —A~'Bu. Let us define the error
Then, it follows from equations (5) and (4) that and 2 e=x—@(u) (14)

are positive invariant sets and thgt) — % ast — o. an let us compute its dynamics:

Proof: Define a candidate Lyapunov functidéf(z) = e— Ale+ (p(u))+Bu—qu(u) — et A-1BG

Z/2. From Lemma 1 we know that, during the sliding dt
motion (i.e., fort > ty), z(t) = §H(t) so* We know from linear system theory that the error satisfies
_ d oH 9°H 92H the bound (see, e.g., [10, Sec. 4.9])
2(t) = aa—(t) = ﬁu(t) = —ﬁ(kuz(t) —d(t)), a ,
u u u )| < aexp(—At)[[e(0)[| + 5Bl sup |u(T)]
and A o<T<t
: 0%H 0°H = for some positive constants and A. A similar bound can
Va(t) = TR (k“ZZ_Z' d) (1) < _WM (klzl = d) (1) be found fore'if we compute the second derivative of the

2 - " error. We have
The termsZ 1 andk,|Z —d are positive whenevere 2 and

z¢ B, respectively. Thus/; is negative whenevere 2 — %

and |zl decreases monotonically whenewer 2 — %. This and
implies that# and 2 are positive invariant sets and that
Z(t) — # ast — o wheneverz(t;) € 2 (see Fig. 2). ®

Theorem 1 suggests the following practical consideration_rsh. . h hat th . Kinas'i
for designing the extremum seeker (4), (5): is estimate shows that the zero-input (takin@s'input)

1) Choose a gairk, for the steepest-descent aIgorithm,reSponse decays to zero exponentially fast, while the zero-

a constan®, > 0 and a strict subinterva¥” of 7 of state response remams_bounded for every bounded input. In
s o other words, the dynamics for the error is input—state stabl
initial conditions foru.

L . In the general nonlinear case, the error equation is
2) Ford(t), use a periodic signal with zero average and g q

é=Ae—A 1Bl

. . a .
()]} < aexp(~At)[|0)[| + +-[B]| sup |G(T)|.
o<r<t

amplituded. Choosed small enough so that (a) e— f(e+ o(u),u)— 0—(00. (15)
a) BCLX Jdu
b) u(0) € .7 impliesu(t) €  for all t € [0,t1] (this Notice that, foru'=0 the origine= 0 is an equilibrium
ensures that(ty) € 2). of (15), uniformly inu.
3) Set the estimator gain &s(z) = ky|Z| +d+ %. Assumption 3: There are exists positive constamtsand

, A and a class#” function y such that
B. Dynamic case

To alleviate the notation, we will now drop from the e(t)]| < aexp(—At)[|e0)] +V(Oiu<p |G(T)[)
functions’ arguments whenever the dependence is obvious. _ . _ ==
Consider now the problem of minimizing the output (1)for all t >0, uniformly in u andu.
that results from the dynamic relation Remark 2: It follows form (4) and (5) that

%= f(x,U) (13) 0] < kykz +dy .

1This equation could also be obtained by applying the eentatontrol SO the time derivgtive of the error Wi”. decay, exponenyiall
method [8] to (8). fast, to a small neighborhood of zerokif andd; are small.



Let us write the output’s time derivative as noise signal. We assume thgp(t) is twice continuously

_oh/. 0. oh. OH. oh. differentigble gnd that the first derivative is Lipschitzthvi
y= I e+ a—u + a—u = a—u+ a—e known Lipschitz constant > 0.
X u u u X Define the error sighalb = zp — n and construct the
(cf. equation (7)). The estimator (5) can thus be written asiynamical system
7= kzsign(<(;—H— )024— ?eu) . n = —ko(o)+z
! X 7 = —k@(o),
Under the persistence of excitation condition we can write
where
_ . JoH dheé 1. 3 .
z=k,sign W_H— xa) &€ @ (o) = |o|Zsign(o) + |o|2 sign(o)
or, more compactly, »(0) = 55|gr(a) +20+ SH |o|“sign(o)
oH . 5_h e and k; andk, are constant positive gains dependentlon

z=kgsign(s), s=fi—z+f,, fi: 5!

“ 9xu’  The variablezg and z; are the estimations of)p and no,
respectively. Indeedz (t) converges exactly tgyg in finite-
time, with the convergence time independent of the initial
differentiation error (see [1] for details).

~Gu’

At the sliding surfacez is equal to%—ﬂ plus an error
fo, proportional tokyk;+d; (cf. Remark 2) and inversely
proportional tou: Sincef, can grow without bound as gets
close to zero, it is clear that it is not possible (nor desapb I1l. EXTREMUM SEEKING PROBLEM STATEMENT IN
to maintain the sliding motion all times. Thus, we proceed PEM FCGS
with a ‘heuristic’ analysis of what happens when the indingA PEM Fuel Cell Generation System
motion occurs and when the sliding motion is lost. . ) _

By repeating the Lyapunov analysis of Section II-A, we As stated in the introduction, fuel cells represent a rad-

can see that the estimator drivesto the sliding surface ically different approach to energy conversion, one that
whenever could replace conventional power generation technologies

K, > |f'1|+|f'2| (16) in a wide variety of applications, from automotive and
stationary power systems to portable appliances. In par-
The time derivative off; is not problematic and has beenticular, a proton exchange membrane (PEM) fuel cell is

address in (6). Let us write an electrochemical device that converts hydrogen chemical
fa oh energy into electric power energy, without the intermesliat
fo= R f3:= &e, production of mechanical work and with water and heat

as only by-products [4], [5]. Nevertheless, improvements i

this field of technology require interdisciplinary resdaeand

. fau— tfs the development of new technologies. From the automation

fa= e control point of view, the natural step is to face the chajken

of designing and implementing reliable control strategies

in order to improve the efficiency of the actual fuel cell

eneration systems, improving its operations ranges and

nsuring optimal performance.

. e . With regard to models for FCGS, there are several dif-
2) uis too small. Then tr,'f sliding condition does not holdg et approaches that describe the dynamic behaviour of

andz does not trackjy + f, with f, large. autonomous PEM fuel cell generation systems, but only a

In the numerical experiments performed so far, by settingy are suitable for control design purposes. Among them,

k; high enough, the tracking errar— 41 can be made one of the most complete and accurate models available in

reasonably small. the open literature was developed by J. Pukrushpan et al.

in the Mechanical Department of the Michigan University.

_ _ . . ) This model provides a detailed description of the dynamics
The time functionsu and y can be computed with a ot 5 75 j\\-high pressure FC stack fed by a 14-kW air

uniform exact differentiator [1], a differentiator based the ,p, compressor. The system is sized to represent the high

generalized super twisting algorithm [7]. . i pressure FC stack used in the Ford P2000 fuel cell electric
Let n(t) be a Lebesgue-measurable function defined oppicle.

[0,) and take it as the input signal. Suppose thét) can
e decomposed as B. Nonlinear System Model

o Considering that in the model presented in [6] the anode
N{t) = Mo(t) +v(t) subsystem is decoupled from the cathode subsystem and
where no(t) is the unknown base signal that we wish todoes not enter in the air control loop, its dynamics can be
differentiate andv(t) corresponds to a uniformly boundedneglected and the system order is reduced by one [5].

so that we can writd, as

From the sliding condition (16) and the expressionsfor
and f, we arrive at the following two possibilities:

1) uis large enough. Then the sliding condition holds an&

z tracks 41 + f, with f, small.

C. Uniform Exact Differentiator



As aresult of the reduction and rebuilding work performedoltage. Further details of the model, assumptions and-oper
on Pukrushpast al. model, the following sixth order control ating conditions can be found in [6].
design model can be proposed [5]: The system efficiency optimization can be achieved by
regulating the air mass flow entering the stack cathode. Sup-

6 _X_ F(x,.u,t.) _Gf (t,xg + gFt,ﬁ, u 6 (17) pose that a proper low level controller ensures the referenc
xeR”; ueR; f:RP=>R; g:R° =R comburent flow, then the load demand will be satisfied with
with f and g piece-wise continuous oh and sufficiently Minimum fuel consumption if an efficient flow reference
smooth onx: manager is designed. In addition, oxygen starvation could
T be averted in order to extend the stack lifetime. To this end,
X=[kp Pem Msm Moyca Mypca Prm] (18)  the following air flow reference is proposed based on (4):
e X1 = wp: angular speed of the compressor motor that ch’ref (t) = —Lppe) (1) - kuiZ(t) +- (1) , (19)

feeds the stack cathode through the supply manifold.

o X = Py total pressure inside the supply manifold,wherez(t) € R is an estimate of‘;—ﬂ at timet and ky =
consisting of the sum of the partial pressures of tha x 10~7 is the algorithm gain for the current system. A
gases that constitute the air (oxygen, nitrogen and wateinusoidal ditter signati(t) was applied in order to ensure
vapour). persistent excitation for the estimator (5).

e X3 = Mgy total mass of air in the supply manifold,
consisting of the sum of the instantaneous masses
oxygen, nitrogen and water vapour.

e X4 = Mo, ca: iNStantaneous oxygen mass in the stack’s The steady state map of the analysed system (static
cathode channels. This state is affected by the oxygealationship betweeMt, and Iy at different power loads)
consumed in the reaction, the amount of oxygen cominig depicted in the following figure:
from the supply manifold and the oxygen mass outgoing
through the return manifold.

o X5 =M, ca: iNStantaneous mass of nitrogen inside the

stack’s cathode channels. It only relies on the incomin N \/
nitrogen from the supply manifold and the outgoing ni- | ~.
trogen that leaves the stack through the return manifolciu \_/’/
e Xg = Pm: total pressure inside the return manifold, =" i \__/ =
consisting of the sum of the partial pressures of th \_////

gases that constitute the air. 5
The control inputu(t) is the voltage of the compressor —/-’/

DC motorVep. oot oo oo
Suppose now that the control problem\&f, regulation

is solved, for instance by the stabilizing Super TwistingFig. 3. Steady-state analysis of the system performancéffereht load

controller proposed in [3]. Then, the continuous-timegése ~ conditions

descent algorithm (4) presented in section Il, can be tuned t

determine the flow reference and find the optimum operatiné;n

value for each power loaB aq.

Br PEM FCGS Operation Ranges and Minimums of Hydro-
gen Consumption
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Notice that low air mass flows implies low stack voltage
d, hence, higher stack current in order to kd&gq
constant. At the same time, a higher air mass flow would
C. Minimization Problem require a higher compressor current, increasingThus, if
The objective of the case study is to optimize the hydroge¢pntinuity holds, there must be a minimizing value of air
consumption of the FCGS in every operating conditioninass between the two extrema of air mass flow.
minimizing the stack current demand under different load

" ) . IV. SIMULATION RESULTS
conditions. Note that the consumed hydrogen in the reaction

(Wh, react) is directly related to the stack curreng) A. Algorithm Performance
nlg In this section, the FCGS performance is evaluated under
Wi, reae = GHZE, the action of the extremum seeking supervisor control (19).

Then, the features of the designed algorithm are examined

whereGp, stands for the molar mass of hydrogaris the to- . : ) . .
tal number of cells of the stack afdthe Faraday’s constant Fhrough simulation tests, which aim to demonstrate its nom-

[6]. Therefore, the optimization procedure can be statea aﬁmal trackmg performance. To this end, a series O.f power
oo D .~ loads (ranging from 15 kW to 40 kW) were chosen in order
the problem of minimizing the real-valued objective funati

to illustrate the air regulation performance in a wide range
y=h(xu)=lg = Pload 7 of operation (Fig. 4). o _ _
Vg Note that abrupt and significant changes in the amplitude
subject to the constraimt = 0, whereRqyq is the power of the load demandH,) were considered to test the profi-
required by an external load ang; is the fuel cell stack ciency of the algorithm under exacting operating condgion
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Fig. 4. Extremum seeking algorithm test: system dynamical

In Fig. 4, four different variables can be simultaneously 4]
appreciated, the power loadP§), the stack currentlg),
the compressor air flowWp) and the fuel cell oxygen

stoichiometry fo,), defined as: 5]
Ao, — Woz,ca,in
%2 Wo, reaa (6]

with Wo, cain the oxygen partial flow entering the cathode [7]
andWo, reat the oxygen flow consumed in the reaction.

In Fig. 5 it is shown that the current optimization (and 8
then the oxygen minimization) is successfully achieved for
all the tested operating conditions, obtaining efficienmy i [°]
provements up to 20 %. Moreover an adequate comburept,
flow is always ensured through the stack while the loa
demand is satisfied with minimum fuel consumption.
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Fig. 5.
map

Extremum seeking algorithm test: system trajectamythe static

V. CONCLUSIONS

A general extremum seeking algorithm was presented. A
feasibility study of its implementation in PEM fuel cells
hydrogen minimization was carried to assess its perfor-
mance. The algorithm evaluation has been conducted using
a benchmark model of a fuel cell system for an electric
vehicle. The analysis has established the viability of the
presented technique in fuel cells, aiming to improve its
energy efficiency.

Taking into account several features, such as the natural
time constants of the controlled system, robustness and
implementation simplicity, the extremum seeking algarith
is shown to be a highly efficient solution for this challengjin

problem, proving to be capable of robustly tracking the
optimal hydrogen consumption.

Now that the suitability of the approach has been con-
firmed, the following stage will be the development and
implementation of these algorithms in actual fuel cell pgan
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