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Abstract— This paper presents an analysis of uncertainty in
the calibration of a network of cameras. A global 3D scene
model, acquired with a LIDAR scanner, allows calibrating
cameras with non overlapping fields of view by means of the
DLT-Lines algorithm. Once the projection matrix is computed
for each camera, error sources are propagated to compute
estimates of each camera position uncertainty. We validate
the consistency of the uncertainty analysis with Monte-Carlo
simulations, and apply the technique in a real camera network.
This allows to evaluate the accuracy of DLT-Lines in real
settings.

I. INTRODUCTION

Networks of cameras have become ubiquitous for covering
large areas. While traditional applications consist mostly of
surveillance tasks [1], recently robotic guidance and human-
robot collaboration has enlarged the applications portfolio of
camera networks. Intrinsic and extrinsic camera calibration is
essential to locate detected events into world models [2], so
reliable and accurate calibration is usually required in order
to successfully accomplish the desired tasks.

Different calibration methodologies behave differently in
the presence of noisy data. For instance, [3] shows that the
accuracy of calibration depends on the number of parameters,
the type of input data and the calibration optimization
criteria. In a wide variety of cases, uncertainty propagation
can be analyzed using first order techniques [4].

In this work we consider the calibration methodology
proposed in [5], that exploits the use of a rich LIDAR range
data and images to calibrate a non-overlapped camera net-
work [6], where a coarse calibration is performed manually,
followed by fine calibration matching 3D lines to 2D image
lines using the DLT-Lines (Direct Linear Transformation)
algorithm [7]. The method provides estimates of the camera’s
projection matrix from the knowledge of 3D points and 2D
lines. Once this projection matrix is computed, the camera
pose is readily obtained by factorization [8]. In this paper
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Fig. 1. (a) Barcelona RobotLab camera network used for our calibration
experiments. (b) Platform used to acquire LIDAR data. (c) Result of
propagating the error from the data to the projection camera matrix and
then to the camera pose. The result have been augmented by a factor 10
for better visualization.

we derive expressions for the uncertainty covariance of such
camera pose estimates. To do so, we compute a first order
linearization of the method around the provided solution and
use it to perform first order error propagation [9]. We validate
the obtained uncertainty with synthetic data based on Monte-
Carlo simulations, and with real data from a non-overlapped
camera network. Fig. 1 illustrates real world estimates of the
pose covariance for each camera in the network.

The paper is organized as follows, first we present the
related work on camera calibration, uncertainty analysis, and
the DLT-Lines algorithm. Then, we deduce the first order
error propagation analysis for the camera’s projection matrix
and the camera pose. Next we validate these results using
synthetic data and compare with Monte-Carlo simulations.
We then use the main result to analyze the error in a real
world camera network. Finally we argue the conclusions and
discuss possible future work.



II. RELATED WORK

Nowadays, camera networks are ubiquitous. Cameras can
be installed outdoors [10], or indoors [11], and can build
overlapped [12] or non-overlapped [13] shared views. Over-
lapping fields of view usually allow matching scene features
among cameras and therefore provide extrinsic information
for calibration. Conversely, non-overlapped fields of view
require finding alternative sources of extrinsic, camera po-
sitioning, information. For example, some outdoor/indoors
scenes have cars/people traversing the various fields of view.
In [10] statistical tracking of traffic, based in image features,
allows finding the network topology. In [14], a method that
infers the camera network topology is proposed, defining
arrival and departure regions. The system requires a priori
knowledge of each camera position that is computed using
GPS devices. Statistics about camera dependence are reached
using vehicle recognition.

Auto-calibration methods can also be used to estimate
the camera parameters using image features. In [15], fun-
damental matrices are used to compute the relative camera
positions. They utilize a vertical vanishing-point and an
infinity homography. A common world coordinate system is
defined to eliminate the overlapping constrain. We propose
a method that leverages a 3D map and a non-overlapped
camera network where the planar assumption is eliminated
due to the use of 3D information. another advantage of our
method is that it does not require special auto-localization
devices to obtain initial position priors for the cameras.

An analysis of camera calibration uncertainty is needed
to evaluate the quality of metric reconstructions that can
be inferred from the images in the camera network. This
analysis in camera calibration has been discussed in [16],
concluding that the error inflicted by the bad estimation
of intrinsic parameters affects the extrinsic parameter esti-
mation. Some precedents related to uncertainty analysis are
presented in [17], where the calibration is preformed using
essential matrices. First order error propagation is proposed
between the calibration and the motion parameters. In [3],
the analysis is made measuring parameter correlation. We
propose instead a first order estimation analysis of the full
extrinsic calibration.

III. CAMERA CALIBRATION

The pin-hole camera model maps the 3D projective space
to the 2D projective plane. Using homogeneous coordinates,
a scene point, M = [X Y Z 1]T is imaged as a point m =
[u v 1]T :

m .
= P M = K [R t]M (1)

where .
= denotes equal up to a scale factor, P is a 3× 4

projection matrix, K is a 3× 3 upper triangular matrix
containing the intrinsic parameters of the camera, R is a 3×3
rotation matrix representing the orientation of the camera
and t is a 3× 1 vector representing the position of the
camera [18]. The rotation, R and translation, t are defined
with respect to a fixed absolute (world) coordinate frame.
Having estimated the camera projection matrix, the intrinsic

and extrinsic parameters can be estimated by decomposing
P [8].

A. Line based Calibration, DLT-Lines

As proposed in [7], we use image lines instead of isolated
points. Image processing can be used for fine tuning the
location of the lines in the image and therefore automatically
improve the calibration data input.

The projection of a 3D line Li to the camera image plane
can be represented by the cross product of two image points
in projective coordinates

li = m1i×m2i. (2)

Any point mki lying in the image line li implies that
lT
i mki = 0. Hence, applying the multiplication of lT

i to both
sides of the perspective camera model, i.e., lT

i mki = lT
i P Mki,

leads to
lT
i P Mki = 0, (3)

where Mki is a 3D point in projective coordinates lying in
Li. The properties of Kronecker product [19] allow to obtain
a form factorizing the vectorized projection matrix:

(MT
ki⊗ lT

i ) p = 0, (4)

where p is the vectorization of the matrix P. Considering
N ≥ 12 pairs (Mki, li), one forms a matrix B, N × 12, by
stacking the N matrices MT

ki⊗ lT
i . Alternatively, given a 3D

line Li and its projection represented by the image line li,
any 3D point lying on Li can be paired with 2D line li. On
the other hand, any image line li can be paired with any 3D
point lying on Li, i.e more than one image line can be paired
with a 3D point.

A least squares cost function can be expressed as:

F(m,M, p) = pT BT B p, (5)

where B is MT
ki ⊗ lT

i . Which allows the formulation of the
least squares problem

p̂ = argmin
p

F(m,M, p)

s.t. pT p = 1 (6)

The solution of the vectorized projection matrix is the right
singular vector corresponding to the least singular value of
B.

B. Factorization of the Projection Matrix

Having estimated the projection matrix, P, the camera
intrinsic and extrinsic parameters can be obtained using QR-
decomposition [20]. More precisely, given the sub-matrix
P3×3 containing the first three columns of P, and S an anti-
diagonal matrix

S =

 0 0 1
0 1 0
1 0 0

 , (7)

the QR-decomposition allows factorizing P3×3
T S = QU ,

where Q is an orthogonal matrix and U is an upper trian-
gular matrix. Then, the intrinsic parameters and the rotation



matrices are computed as K =−SUT S and R =QT S. Finally,
the camera position is obtained with t = K−1 p4, where p4 is
a 3×1 vector containing the fourth column of P 1.

IV. ERROR PROPAGATION

In this section we derive first order error propagation
formulas for the DLT-Lines calibration process. In a first step
we derive the expression propagating error variance in the
calibration data to error variance in the projection matrix
entries. In a second step we derive error propagation from
the matrix entries variance to the camera projection center.

A. DLT-Lines error propagation

As stated, we are interested in the least squares solution
to equation (4). This section explores the sensitivity of this
equation, and how measurement error propagates to the final
estimate.

The optimization problem in Eq. 5 can be seen as a black
box which accepts lines (li) and points (Mi) and outputs the
least squares estimate of the projection matrix P:

P = f (l1, ..., lN ,M1, ...MN) (8)

Assuming f is differentiable, a first order Covariance prop-
agation is obtained from

ΣP = J f Σli,Mi JT
f . (9)

What remains is to compute the Jacobian of f , i.e. J f .
Although f does not have an explicit solution (it is the
result of an optimization problem), an implicit system can
be written from the Karush-Kuhn-Tucker (KKT) conditions:

G(l,M, p,λ ) =

{
2BT

(l,M)B(l,M)p+2λ p = 0,

pT p−1 = 0.
(10)

The implicit function theorem [9] can now be used to provide
J f :

J f =−
(

∂G
∂{p,λ}

)−1(
∂G

∂{li,Mi}

)T

13×6N
.

Note that J f is a matrix of size 13×6N, while ΣP is of size
12×12. In the calculation of ΣP we just use the first twelve
rows of J f since the last row is the row equivalent to the
Lagrange multiplier.

It is worth noting that the covariance of the line measure-
ments is actually obtained from 2 image points. As such, a
first order estimate for these covariances is obtained from
the linearization of Eq. 2:

Σli = Jli Σm1i,m2i JT
li (11)

where Jli is the Jacobian of equation 2.

1If the diagonal of K contains negative values then it is corrected
by post multiplying by a diagonal matrix. In Matlab/Octave D=
diag(sign(diag(K))); K= K*D; R= D*R; t= D*t;.
In addition, since ±P are both solutions of Eq.4, the factorization of P may
imply det(R) =−1. If det(R) =−1 then the factorization of P is repeated
using −P.

B. Error propagation to the camera center

Propagating uncertainty from the estimated P into its
decomposition K[R t], or the separate intrinsic parame-
ters (scaling, shear or principal point), involves computing
the Jacobian of the transformation starting from the QR-
decomposition and ending with the calibration parameter
extracted from P (see Sec.III-B). Despite straightforward,
this process involves lengthy expressions, where in many
cases one wants just an indicator of the precision of the
calibration. The uncertainty of the camera projection center
is one indicator of the precision of the calibration that can
be computed using concise expressions.

Denoting the projection center referred to the world coor-
dinate system as Mc = [Xc Yc Zc]

T , one has that Mc projects
to a point at infinity, mc = [0 0 0]T =~0, i.e.

~0 .
= P [MT

c 1]T . (12)

Representing the projection matrix as a collection of
columns, P= [p1 p2 p3 p4], the projection center can be com-
puted as the solution of the linear system of three equation in
three unknowns, [p1 p2 p3]Mc =−p4. Considering that one
wants to apply operations (derivatives) on the transformation
from P to Mc, it is convenient to derive a closed form for
Mc. Using the Cramer’s rule to solve the system, one has Xc = det([−p4, p2, p3])/W

Yc = det([p1, −p4, p3])/W
Zc = det([p1, p2, −p4])/W

(13)

where W = det([p1 p2 p3]). It is interesting to note that
the choice of the world coordinate system is key to obtain
concise expressions. Instead of t = K−1 p4, one has Mc =
P−1

3×3 p4 which differs from t just by a rotation 2 and avoids
decomposing P = K[R t].

Finally, one propagates the error variance of the projection
matrix, ΣP, to the error variance of the projection center, Σc,
as an explicit formula

Σc = JcΣPJT
c , (14)

where Jc denotes the Jacobian of the vector Mc with respect
to the P matrix elements.

V. EXPERIMENTS

In order to validate the proposed uncertainty analysis we
conduct some experiments in a synthetic environment for
which one has available precise and accurate ground truth.
In addition, we apply the proposed uncertainty analysis to
a real setup based on an outdoor scene encompassing a
number of buildings, the Barcelona RobotLab, which has
been reconstructed in 3D using LIDAR data, thus providing
directly the required 3D information for the DLT-Lines
calibration methodology.

A. Synthetic experiments

In this section the variance of the entries of the projection
matrix, ΣP, predicted using the proposed uncertainty analysis

2Noting that P3×3 = KR and p4 = Kt one has Mc = (KR)−1Kt = R−1t.



(a) VRML setup (b) RGB intensity image (c) RGBD intensity image (d) RGBD range image
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(f) First order noise propagation
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(g) Monte Carlo simulation

Fig. 2. Analysis of camera calibration uncertainty. (a) VRML setup. (b) RGB image. (c) RGBD intensity image. (d) RGBD range image. Each line
defined in the RGBD image corresponds to a line in the RGB image, and leads to a 3D line in the world/RGBD coordinate system. (e) 3D lines form
the required input data for DLT-Lines calibration. (f) Relation between the error in the RGB image coordinates and the projection matrix parameters. (g)
Monte Carlo simulations of the same relation between image error standard deviation and the standard deviation of the projection matrix elements.

(a) Setup (b) Noise in uv and XY Z

(c) Noise in uv (d) Noise in XY Z

Fig. 3. Single camera setup. (a) 3D information is known for the image
lines shown. (b) Standard deviation of calibration noise of P11, entry (2,4) of
P, given combined noise in uv and XY Z. (c) Standard deviation of calibration
noise propagated from noise in uv ranging from 0 till 6 pixel, red line;
compared against Monte Carlo uncertainty analysis, blue line. (d) Standard
deviation of calibration noise propagated from noise in XY Z ranging 0 to
0.02 meters, red line; compared against Monte Carlo uncertainty, blue line.

(Eq.9) is compared with a Monte Carlo based uncertainty
analysis. The experiments are done using synthetic data
which allows us to define with high accuracy a camera loca-
tion and a set of fixed image points and the corresponding set
of 3D points. We consider various levels of white Gaussian
noise in image points, 3D points, or both. Experiments are
conducted in two different scenarios in order to show that the
proposed uncertainty propagation methodology effectively

takes into account the structure of the scenario.
The first synthetic setup is formed by two cameras, namely

a mobile color-depth (RGBD) camera which collects 3D data
and a fixed RGB camera. See Fig 2(a). Figure 2(b) shows
a synthetic image simulated for the RGB camera, while
Figs. 2(d) and (e) show synthetic intensity and range images
simulated for the RGBD camera.

In this setup, we analyze what happens when just the RGB
image has noise. In other words, the noise in 3D points is
set null (σM = 0)3. Uncertainty analysis was done using both
the proposed propagation methodology and Monte Carlo
simulations. Monte Carlo was configured to do 300 runs for
each level of noise. The standard deviation of the noise in the
2D points varies from 0 to 6 pixels (σm = 0 : .06 : 6 pixels).
Having all the runs, the variance of every entry of P, i.e.
ΣP(i j) for i = 1..4 and j = 1..4, has been estimated.

The linear propagation of the standard deviation of each of
the entries of P, computed with the proposed methodology,
is shown in Fig. 2(f). As expected some entries of P are
more robust to noise than others. Figure 2(g) shows the
Monte Carlo simulation results for each level of noise, again
for all the entries of P. Plots (f) and (g) indicate that
the analytical values obtained using the linear propagation
analysis match those of Monte Carlo results when for values
of σm lower than approximately 3 pixels. Nonlinearities have
more incidence for large image noise, making our first order
approximation unreliable. Nonetheless, pixel value noises
in ranges below 3 pixels are acceptable for most imaging
sensors.

The second setup is based on a single RGBD camera.

3To improve readability, variance is written using upper case, Σ, and
standard deviation is written using lower case, σ .



The setup can be seen in Fig. 3(a), which corresponds to
a typical ’L’ shaped corridor. Camera calibration ground
truth is known and is used to assess the validity of the
noise propagation estimation method. Figure 3(b) shows
the theoretical value for σP(2,4) in the presence of noise
simultaneously in both the image and the range values. The
plot shows the correlated effects between the image and
range noise values.

Monte Carlo simulations were also run for this setup. Plots
(c) and (d) show both the analytic and estimated value of σ

for P(2,4) as a function of variations in image and depth
noise.

Plot (c) shows once more that the first order approximation
is only valid up to around σm = 3 pixels. The theoretical
prediction is nevertheless accurate for lower levels of noise
showing that the proposed uncertainty analysis takes cor-
rectly into account the scene structure (li,Mi). Nonlinear
effects have less influence for variations of range as shown
in plot (d).

B. Experiments in real scenarios

For our experiments we use a mobile Pioneer 3AT robot
equipped a 3D range sensing device consisting of a Hokuyo
UTM-30LX laser mounted on a slip-ring. The laser res-
olution is set to 0.5 degrees in azimuth with 360 degree
omnidirectional field of view, and 0.5 degrees resolution
in elevation for a range of 270 degrees. Each point cloud
contains 194,580 range measurements of up to 30 meters
with noise varying from 30mm for distances closer to 10m,
and up to 50mm for objects as far as 30m. Our robot
includes also two Flea2 cameras [21]. The dataset used for
the experiments is the Barcelona RobotLab dataset [6].

The computation of straight lines from the point cloud
relies on identifying and intersecting planes. The method
to segment planar regions is motivated by Felzenszwalb’s
algorithm to 2D image segmentation [22], and extended to
deal with non-uniformly sampled 3D range data [23].They
image and 3d lines are associated manually.

We analyze pose error in different indoor and outdoor
scenarios. The first experiment involves an indoor scenario.
In this scenario, a camera calibration pattern is used to
compare classical image based calibration with our 3D-2D
line-based calibration scheme. We show the result in Fig. 4.

The next experiment consists in the estimation of pose
uncertainty for the calibration of the camera network ex-
plained in [5]. Calibration results for a subset of 3 are shown
in Fig. 1. The top frames contain the camera images, the
reprojected 3D point cloud, and the 3D lines used for cali-
bration. The bottom frame shows again the 3D lines used for
calibration and the estimated 3D poses and their associated
position covariances. These covariances are magnified 10
times to ease visualization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a methodology for estimating
the calibration uncertainty of a networked camera. Calibra-
tion data has been assumed to combine 2D (image) and

Fig. 4. Indoor experiment. We apply the calibration method using a point
cloud and one of our robot cameras. The top frame shows the lines used,
and the inset in the bottom frame shows the computed covariance poses.

3D data. In this work 3D data is acquired using a TOF
sensor, such as LIDAR, or simply using color-depth (RGBD)
cameras. More conventional scenarios can also use floor
plans, where ground lines (intersections of walls and floor)
combined with vertical lines (intersections of nonparallel
walls) form the necessary 3D data.

Our methodology starts by estimating the camera projec-
tion matrix using 3D and image lines using the DLT-Lines
algorithm. In other words, the projection matrix is estimated
by minimizing a quadratic cost-function (MLS). The fact that
calibration corresponds to the minimization of a cost function
allows propagating the covariance of the calibration data to
estimate the covariance of the projection matrix. Given the
estimate of the covariance of projection matrix we can finally
propagate the uncertainty to the camera location.

We have demonstrated that our uncertainty analysis is con-
sistent by testing it with Monte-Carlo simulations. Besides
we studied our analysis approach in a real non-overlapped
camera network from the Barcelona Lab dataset.

As future work we propose exploring novel data acquisi-
tion and filtering modalities which allow charactering lesser
conservatively the error caused by extracting line features
from the LIDAR range and camera sensor.
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