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Abstract— This paper proposes an interval observer-based
actuator fault detection and isolation (FDI) approach. An
interval observer matching the healthy system mode is designed
to monitor the system. When the system is in different modes,
state or output interval vectors predicted by the interval
observer manifest different dynamical behaviors. To guarantee
reliable FDI, a collection of invariant set-based FDI conditions
are established. Under these conditions, actuator faults can be
accurately detected and isolated during the transition between
different modes. At the end, the effectiveness of this proposed
approach is presented by using a numerical example.

I. INTRODUCTION

Interval observer-based robust fault detection (FD) is the
development of the well-known observer-based FD tech-
niques [5]. Propagating the effect of uncertainties through
the system models, an interval observer matching the current
system mode can predict output intervals to bound real out-
puts. Generally, FD is performed by testing the consistency
between predicted output intervals and real-time outputs.

In this approach, only the healthy interval observer is
used to monitor the system. When the system is healthy,
in steady state, the real outputs should be bounded by
output intervals predicted by the interval observer. As fault
occurrence always indicates system mode switching, the
predicted output intervals generally have different dynamical
behaviors under different faults. The behavioral difference
of the interval observer under different faults provides the
possibilities to isolate the faults, which is the fault isolation
(FI) principle of the approach proposed in this paper.

The design of the interval observer is based on the
Luenberger structure. For simplicity, only uncertainties and
faults with known magnitudes are considered. Anyway, this
approach can be extended to the case of parametric uncertain-
ties and faults with unknown magnitudes but known bounds.

In the literature, only results concerning the interval
observer-based FD can be found [3], while interval observer-
based FI is still blank in the scientific community. Thus, this
paper has two main contributions. First, it proposes a novel
way to extend interval observers to FI applications. Second,
the proposed approach ensures that the considered faults

F. Xu, V. Puig and C. Ocampo-Martinez are with the Institut de Robòtica
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are detectable and isolable during the transition between
different modes as long as FDI conditions are satisfied.

Section II introduces zonotopes and invariant sets. Section
III introduces the plant model and the interval observer.
In Section IV, the expression of residual zonotopes and
their bounding zonotopes are derived. The FDI algorithm
is proposed in Section V. In Section VI, a collection of FDI
conditions are established. In Section VII, a numerical ex-
ample illustrates the effectiveness of the proposed approach.
Section VIII draws some conclusions.

The notation ⊕ represents the Minkowski sum, |.| denotes
the elementwise absolute value, Br is a r-dimensional
unitary box and the inequalities are explained elementwise.

II. PRELIMINARIES

A. Zonotopes

Definition 2.1: The interval hull �X of a zonotope1

X = p ⊕ GBr ⊂ Rn is the smallest interval box that
contains X , i.e., �X = {x : |xi − pi| ≤‖ Gi ‖1}, where Gi
is the i-th row of G, and xi and pi are the i-th components
of x and p, respectively. O

Property 2.1: Given zonotopes X1 = p1 ⊕ G1B
r1 ⊂ Rn

and X2 = p2 ⊕ G2B
r2 ⊂ Rn, the Minkowski sum of them

is X1 ⊕X2 = {p1 + p2} ⊕ [G1 G2]Br1+r2 . �
Property 2.2: Given a zonotope X = p⊕GBr ⊂ Rn and

a compatible matrix K, KX = Kp⊕KGBr holds. �
Property 2.3: [2] Given a zonotope X = p⊕GBr ⊂ Rn

and an integer s (with n < s < r), denote by Ĝ the matrix
resulting from the recording of the columns of the matrix G
in decreasing Euclidean norm. X ⊆ p⊕ [ĜT Q]Bs where
ĜT is obtained from the first s − n columns of matrix Ĝ
and Q ∈ Rn×n is a diagonal matrix whose elements satisfy
Qii =

∑r
j=s−n+1 | Ĝij |, i = 1, . . . , n. �

Property 2.4: [1] Given a zonotope X = p⊕GBr ⊂ Rn,
a strip denoted as S = {x ∈ Rn || cx−d |≤ σ} and a vector
denoted as λ ∈ Rn, then X∩S ⊆ X̂(λ) = p̂(λ)⊕Ĝ(λ)Br+1

where p̂(λ) = p+λ(d−cp) and Ĝ(λ) = [(I−λc)G σλ].�

B. Invariant Sets

Theorem 2.1: [4] Considering the stable plant xk+1 =
A◦xk +B◦δk, where A◦ and B◦ are constant and δk ∈ ∆ =
{δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ constant, and letting
A◦ = V ΛV −1 be the Jordan decomposition of A◦,

Φ(θ) ={x ∈ Rn :
∣∣V −1x

∣∣ ≤ (I − |Λ|)−1
∣∣V −1B◦

∣∣ δ̄
+ θ} ⊕ ξ◦

1In this paper, p and G are called the center and segment matrix of the
zonotope, respectively.



is robust positively invariant (RPI) and attractive for the sys-
tem trajectories, with θ any vector with positive components
and I the identity matrix.

1) For any θ, the set Φ(θ) is (positively) invariant, that
is, if x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.

2) Given θ ∈ Rn, θ > 0, and x0 ∈ Rn, there exists k∗ ≥ 0
such that xk ∈ Φ(θ) for all k ≥ k∗. H

Proposition 2.1: [4] Considering the same plant and
denoting X0 as a RPI initial set, each of the set iterations

Xj+1 = A◦Xj ⊕B◦∆, j ∈ N,

where j denotes the j-th element of the set sequence and N
represents the set of natural numbers, is a RPI approximation
of the minimal RPI (mRPI) set. Furthermore, as j tends to
infinity, the set sequence converges to the mRPI set. N

III. PLANT MODELS AND INTERVAL OBSERVERS

A. Dynamical Models

The linear discrete time-invariant model of the plant under
actuator faults is considered as

xk+1 = Axk +BFiuk + ωk, (1a)
yk = Cxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are
constant matrices, xk ∈ Rn, uk ⊂ Rp and yk ∈ Rq are
states, inputs and outputs at time instant k, respectively, ωk
and ηk represent system uncertainties in states and outputs,
respectively, and Fi, i ∈ I = {0, 1, · · · , N}, is a p × p
diagonal matrix modeling the i-th mode of the system, where
F0 is the identity matrix to describe the healthy mode2.

All diagonal elements of Fi belong to [0, 1] where 0
and 1 represent the complete outage and health of the
corresponding actuators, respectively, and a value in (0, 1)
denotes partial performance degradation of actuators. It is
assumed that ωk and ηk belong to

W ={ωk ∈ Rn : |ωk − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn},
V ={ηk ∈ Rq : |ηk − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq},

where ωc, ηc, ω̄ and η̄ are constant vectors. Furthermore, W
and V can be rewritten as zonotopes

W =ωc ⊕Hω̄B
n,

V =ηc ⊕Hη̄B
q,

where Hω̄ ∈ Rn×n and Hη̄ ∈ Rq×q are diagonal matrices
with the main diagonal being ω̄ and η̄, respectively.

Assumption 3.1: The plant is stable and the pair (A,C)
is detectable. �

Assumption 3.2: One and only one persistent fault occurs
at one time and the system keeps operating in a mode such
that it goes into steady state of the mode before a mode
switching induced by a fault. �

2I represents a finite range of actuator fault modes more critical to the
system.

B. Interval Observers

According to the healthy system model (1), the healthy
interval observer is designed as

X̂k+1 =(A− LC)X̂k ⊕ {BF0uk} ⊕ {Lyk}
⊕ (−L)V ⊕W, (2a)

Ŷk =CX̂k ⊕ V, (2b)

where X̂k and Ŷk are predicted state and output zonotopes,
and L is chosen to ensure the observer contractiveness.

Assumption 3.3: The initial plant state is denoted as x0

and the initial zonotope for the interval observer is denoted
as X̂0 and x0 ∈ X̂0 holds. �

According to (2), Property 2.1 and Property 2.2, the center
x̂ck+1 and segment matrix Ĥx

k+1 of X̂k+1, and the center ŷck
and segment matrix Ĥy

k of Ŷk are computed as

x̂ck+1 = (A− LC)x̂ck +BF0uk + Lyk − Lηc + wc, (3a)

Ĥx
k+1 = [(A− LC)Ĥx

k − LHη̄ Hω̄], (3b)
ŷck = Cx̂ck + ηc, (3c)

Ĥy
k = [CĤx

k Hη̄]. (3d)

As k increases, the order of predicted zonotopes grows up
dramatically. Thus, Property 2.3 is used to reduce the order
of predicted state and output zonotopes.

C. FDI using Interval Observers

According to [3], the interval observer-based FD consists
in testing whether

0 ∈ �Rk, (4)

where 0 represents the zero vector and Rk = {yk}⊕ (−Ŷk)
is the predicted residual zonotope at time instant k.

The proposed FI principe is that, when the system is
healthy, predicted residual zonotopes always contain 0 while
the predicted residual zonotopes will exclude 0 and vanish to
a different domain determined by the particular faulty mode
once the system is affected by a fault.

The prediction of interval observers and the computation
of interval vectors are based on zonotopes and their interval
hulls, respectively. For simplicity, all the following discus-
sions are directly based on zonotopes.

IV. RESIDUAL ZONOTOPES AND BOUNDING ZONOTOPES

A. Residual Zonotopes

Whenever a fault occurs, residual zonotopes start to drift
towards different domains which are no longer centered at 0
because of the model mismatch between the system current
model and the interval observer internal model.

According to (1) and (2), the expression of residual
zonotopes3 is further derived as

Rk = {yk} ⊕ (−Ŷk)

= C{{xk} ⊕ (−X̂k)} ⊕ {ηk} ⊕ (−V ). (5)

3Rk generally represents residual zonotopes predicted by the interval ob-
server whereas Ri

k is especially used to denote predicted residual zonotopes
under the i-th mode.



To obtain the residual zonotopes, those zonotopes defined
as X̃k = {xk} ⊕ (−X̂k) should be firstly considered. When
the system is healthy, X̃k is written as

X̃0
k = {xk} ⊕ (−X̂k)

= {xk − x̂ck} ⊕ Ĥx
kB

sk . (6)

According to (1), (2) and (3), and using x̃0,c
k and H̃0,x

k to
denote xk − x̂ck and Ĥx

k in (6), respectively, the center and
segment matrix of X̃0

k+1 can be computed as

x̃0,c
k+1 = (A− LC)x̃0,c

k − L(ηk − ηc) + (ωk − ωc), (7a)

H̃0,x
k+1 = Ĥx

k+1 = [(A− LC)Ĥx
k − LHη̄ Hω̄]. (7b)

Similarly, when the system is in the i-th (i ∈ I \ {0})
faulty mode, the zonotope X̃k is written as X̃i

k with the same
expression as in (6). According to (1), (2) and (3), and using
x̃i,ck and H̃i,x

k to replace xk− x̂ck and Ĥx
k in (6), respectively,

the center and segment matrix of X̃i
k+1 are computed as

x̃i,ck+1 = (A− LC)x̃i,ck +B(Fi − F0)uk − L(ηk − ηc)
+ (ωk − ωc), (8a)

H̃i,x
k+1 = Ĥx

k+1 = [(A− LC)Ĥx
k − LHη̄ Hω̄]. (8b)

Eventually, according to (5), the residual zonotopes in the
healthy mode and the i-th faulty mode are deduced as

R0
k = CX̃0

k ⊕ {ηk} ⊕ (−V ), (9a)

Rik = CX̃i
k ⊕ {ηk} ⊕ (−V ). (9b)

According to Definition 2.1, in this paper, the interval hull
width of a zonotope is defined as follows.

Definition 4.1: The interval hull width4 of a zonotope
X = p⊕GBr ⊂ Rn is defined as follows: width(X) = (2 ‖
G1 ‖1, 2 ‖ G2 ‖1, · · · , 2 ‖ Gn ‖1), where Gi (1 ≤ i ≤ n)
is the i-th row of G. O

Remark 1: According to (7b) and (8b), the segment ma-
trix expression of X̃0

k is the same as that of X̃i
k, which means

that the mode switching does not affect the interval hull
width of Rk and no matter which mode the system is in,
width(R∞) is constant. ♦

Practically, one uses the interval hull width of a residual
zonotope Rka at time instant ka to approximate width(R∞),
as long as the approximation is sufficiently precise.

B. Residual-bounding Zonotopes

This subsection establishes bounding zonotopes for (7) and
(8) by using the zonotopes of uncertainties.

A zonotope to bound X̃0
k+1 is denoted as X̌0

k+1 = x̌0,c
k+1⊕

Ȟ0,x
k+1B

š0k+1 . Using W and V to replace ωk and ηk in (7a),
the center and segment matrix of X̌0

k+1 are derived as

x̌0,c
k+1 = (A− LC)x̌0,c

k , (10a)

Ȟ0,x
k+1 = [(A− LC)Ĥx

k − LHη̄ LHη̄ Hω̄ −Hω̄].
(10b)

4If X is an empty set, width(X) = 0.

The zonotope-based dynamics of (10) is established as

X̌0
k+1 = (A− LC)X̌0

k ⊕ L(−V )⊕W ⊕ LV ⊕ (−W ).
(11)

Similarly, a bounding zonotope for X̃i
k+1 in (8) is denoted

as X̌i
k+1 = x̌i,ck+1 ⊕ Ȟ

i,x
k+1B

šik+1 . The center and segment
matrix of X̌i

k+1 are derived as

x̌i,ck+1 = (A− LC)x̌i,ck +B(Fi − F0)uk, (12a)

Ȟi,x
k+1 = [(A− LC)Ĥx

k − LHη̄ LHη̄ Hω̄ −Hω̄],
(12b)

and a set-based dynamics of (12) is given as

X̌i
k+1 =(A− LC)X̌i

k ⊕B(Fi − F0){uk} ⊕ L(−V )⊕W
⊕ LV ⊕ (−W ). (13)

Remark 2: It is known that, for all k∗ ≥ k, zonotopes
predicted by (7) and (8) are always bounded by those
predicted by (11) and (13), respectively, i.e., X̃0

k∗ ⊆ X̌0
k∗

and X̃i
k∗ ⊆ X̌i

k∗ , as long as X̃0
k ⊆ X̌0

k and X̃i
k ⊆ X̌i

k hold.
Furthermore, according to (5), residual-bounding zono-

topes of R0
k and Rik can be respectively computed as

Ř0
k = CX̌0

k ⊕ V ⊕ (−V ), (14a)

Řik = CX̌i
k ⊕ V ⊕ (−V ). (14b)

Note that, as long as Remark 2 is satisfied, the persistent
inclusion R0

k ⊆ Ř0
k and Rik ⊆ Řik always hold.

V. FDI AND SYSTEM STATUS DETERMINATION
ALGORITHM

A. Fault Detection and Isolation

It is assumed that the system is firstly healthy. Thus, the
residual zonotopes Rk always include 0. FD consists in real-
time testing whether the criterion (4) is violated.

Furthermore, it is assumed that a fault is detected at time
instant kd, thus, X̂kd and Rkd can be obtained. At kd, one
can construct an initial zonotope X̌kd to initialize all faulty
bounding zonotopes dynamics X̌i

k (i = I \ {0}), such that
all the X̌i

kd
contains X̃kd , i.e., Řikd contains Rkd .

After initializing, residual-bounding zonotopes matching
the current system mode always bound Rk after kd whereas
the rest of residual-bounding zonotopes not matching the
current system mode can only bound Rk at the first several
time instants after kd and finally diverge from Rk.

Thus, starting from the fault-detected time instant kd, the
fault can be isolated by real-time testing if

Rld ⊆ Řild , i = 1, 2, . . . , N, ld > kd, (15)

is violated for all the Řik at each time instant, respectively,
where i represents the i-th faulty mode.

By repeatedly testing (15) at each time instant after kd,
the time instant when there is one and only one residual-
bounding zonotope that can contain the current residual
zonotope Rk is the fault-isolated time instant. Under a set
of conditions established in next sections, this FI approach
can isolate faults during the transition induced by a fault.



Algorithm 1: FDI (SSD) algorithm

Input: x0, X̂0 and I = {0, 1, · · · , N};
Output: Mode index f ;

1 At l: Fault← FALSE, Switching ← FALSE;
2 while Fault 6= TRUE do
3 l← l + 1;
4 if 0 6∈ Rl then
5 Fault← TRUE (A fault is detected);
6 end
7 end
8 Construct an initial zonotope: X̌l;
9 for i ∈ I\0 = I \ {0} do

10 X̌i
l ← X̌l and recurse (13);

11 end
12 while Length(I\0) > 1 do
13 l← l + 1;
14 for i ∈ I\0 do
15 if Rl 6⊆ Řil then
16 Remove i from I\0;
17 end
18 end
19 end
20 f ← I\0 (The fault is isolated);
21 return f ;
22 while Switching 6= TRUE do
23 l← l + 1;
24 if Rl 6⊆ Řfl then
25 Switching ← TRUE;
26 end
27 end
28 Construct an initial zonotope: X̌l;
29 for i ∈ I\f = I \ {f} do
30 X̌i

l ← X̌l and recurse (11) and (13);
31 end
32 while Length(I\f ) > 1 do
33 for i ∈ I\f do
34 if Rl 6⊆ Řil then
35 Remove i from I \ {f};
36 end
37 end
38 l← l + 1;
39 end
40 f ← I\f (System status is determined);
41 return f ;

B. System Status Determination (SSD)

It is assumed that a fault is isolated at time instant ki
and this fault corresponds to the m-th mode. In this mode,
the residual zonotopes Rk (k > ki) should be bounded by
the m-th residual-bounding zonotopes Řmk . Thus, a mode
switching from the m-th one can be detected if

Rk ⊆ Řmk , k > ki (16)

is violated at time instant k. Otherwise, it is still considered
that the system is in the m-th mode.

Furthermore, it is assumed that a mode switching is
detected at li. Similarly, by using an initial zonotope to
initialize the dynamics of X̌0

k and all X̌i
k (i 6= 0,m) such

that Ř0
li

and all Řili (i 6= 0,m) contain Rli , then SSD can
be identified by finding the residual-bounding zonotope Řik
(i = I \ {m}) that can persistently bound Rk for k ≥ li.

Finally, the index of the found residual-bounding zonotope
indicates the new system mode. Algorithm 1 collects the
FDI and SSD procedures, where the operator Length(.)
computes the number of elements in a set.

C. Initial Zonotope for X̌i
k

It is assumed that the system is in the m-th mode, a
fault is detected at time instant kd. According to Section
V-A and V-B, the aforementioned initialization at kd is a
key precondition for the effectiveness of the proposed FDI
approach. Thus, a crucial point is to construct an initial
zonotope X̌kd at kd for all the corresponding bounding
zonotopes X̌i

k (i = I \ {m}).
Comparing (7) and (8) with (10) and (12), respectively, it

is known that X̃u
kd

can satisfy the requirement as the initial
zonotope at kd, where u denotes the index of the current
new and unknown mode. Thus, a zonotope that bounds
X̃u
kd

can also be used as an initial zonotope. But, since
X̃u
kd

is unknown, instead, the idea is to use the obtainable
information Rkd to construct an initial zonotope X̌kd .

Defining V0 = Hη̄B
q , at kd, (5) can be transformed into

Rkd = C{{xkd} ⊕ (−X̂kd)} ⊕ {ηkd − ηc} ⊕ (−V0). (17)

By adding −(ηkd − ηc) to both sides of (17), (17) turns into

Rkd ⊕ {−(ηkd − ηc)} = C{{xkd} ⊕ (−X̂kd)} ⊕ (−V0),

and considering −(ηkd − ηc) ∈ (−V0), one has

C{{xkd} ⊕ (−X̂kd)} ⊕ (−V0) ⊆ Rkd ⊕ (−V0).

Thus, a key condition C{{xkd} ⊕ (−X̂kd)} ⊆ Rkd is
obtained, i.e.,

CX̃u
kd
⊆ Rkd . (18)

Rkd is denoted as Rkd = rckd ⊕ H
r
kd
Bsrkd , Ci and Hr

kd i
denotes the i-th row of C and Hr

kd
, respectively, and rckd i is

the i-th component of rckd . According to (18), one has

| Cix̃kd − rckd i |≤‖ H
r
kd i
‖1, i = 1, 2, · · · , q. (19)

It is seen that (19) includes q equations, each of which
determines a strip. If the intersection of all the q strips is a
closed set, denoted as ˜̃Xkd , then ˜̃Xkd can bound X̃u

kd
.

Assumption 5.1: The output matrix C ensures that the in-
tersection of (19) is closed. X̃ is a given zonotope determined
by the physical constraints of the plant and X̃ can always
be chosen to bound X̃i

k for k ≥ 0, i ∈ I. �
Thus, an initial zonotope X̌kd can be found by computing

a zonotope overapproximation X̄k for ˜̃Xk and this overap-
proximation can be computed according to Property 2.4.



Property 2.4 computes zonotope approximations for the
intersection of a zonotope and a strip. In order to compute
X̄k, an initial zonotope is required by Property 2.4 and X̃
in Assumption 5.1 is used as the initial zonotope.

Thus, at kd, by letting X̌kd = X̄kd to initialize all
the corresponding bounding zonotopes in (11) and (13), FI
(SSD) during the transition can be implemented.

In the case that C is invertible, (18) is transformed as

X̃u
kd
⊆ C−1Rkd ,

where C−1 is the inverse of C. In this case, C−1Rkd is
directly used as an initial zonotope, i.e., X̌kd = C−1Rkd .

VI. FDI AND SSD CONDITIONS

A. Bounding Zonotopes for X̌i
k

When the system is healthy, a zonotope to bound X̌0
k+1

in (10) is denoted as X̆0
k+1 = x̆0,c

k+1 ⊕ H̆0,x
k+1B

s̆0k+1 . For
simplicity, X̌0

k+1 can be directly defined as

X̆0
k+1 = X̌0

k+1. (20)

To establish guaranteed FDI conditions, it is assumed that
all possible values of control inputs uk belong to

U = {uk ∈ Rp : |uk − uc| ≤ ū, uc ∈ Rp, ū ∈ Rp},

where uc and ū are constant. Further, U can be rewritten as a
zonotope U = uc⊕HūB

p, where Hū ∈ Rp×p is a diagonal
matrix with the diagonal entries composed of ū.

Similarly, a zonotope to bound X̌i
k+1 in (12) is denoted

as X̆i
k+1 = x̆ick+1 ⊕ H̆ix

k+1B
s̆ik+1 . Using U to replace uk in

(12a), the center and segment matrix of X̆i
k+1 are derived as

x̆ick+1 =(A− LC)x̆ick +B(Fi − F0)uc, (21a)

H̆ix
k+1 =[(A− LC)Ĥx

k B(Fi − F0)Hu − LHη̄

LHη̄ Hω̄ −Hω̄]. (21b)

An equivalent set-based dynamics for (21) is derived as

X̆i
k+1 =(A− LC)X̆i

k ⊕B(Fi − F0)U ⊕ L(−V )⊕W
⊕ LV ⊕ (−W ). (22)

As per Theorem 2.1, one computes the corresponding
invariant sets for X̆0

∞ and X̆i
∞, respectively. Using these

invariant sets as initial sets of (11) and (22), X̆0
∞ and X̆i

∞ can
be obtained by infinitely iterating (11) and (22), respectively.

It is impossible to compute sets at infinity. Instead, one can
only obtain RPI approximations S̆0 and S̆i for X̆0

∞ and X̆i
∞,

respectively. As long as S̆0 and S̆i are sufficiently precise,
they can be used to replace X̆0

∞ and X̆i
∞.

Remark 3: The best is that S̆0 and S̆i are RPI approxi-
mations of the limit sets X̆0

∞ and X̆i
∞. But, in case that S̆0

and S̆i are not RPI approximations, they are still acceptable
as long as they sufficiently approximate X̆0

∞ and X̆i
∞. ♦

B. Guaranteed FDI Conditions

As per (11), (14), (20) and (22), bounding zonotopes R̆0
k

and R̆ik of Ř0
k and Řik are derived as

R̆0
k = CX̆0

k ⊕ V ⊕ (−V ), (23a)

R̆ik = CX̆i
k ⊕ V ⊕ (−V ). (23b)

Theorem 6.1: Considering the plant (1), the interval ob-
server (2), actuator modes I, Assumption 3.1, 3.2, 3.3 and
5.1, and the boundedness of uncertainties, once a fault
occurs, the detection and isolation of the fault can be
guaranteed as long as the FDI conditions hold:

1) FD conditions:

0 ∈ R̆0
∞ and 0 6∈ R̆i∞, i ∈ I \ 0, (24)

2) FI conditions:

width(R∞) 6≤ width(R̆i∞ ∩ R̆j∞), i 6= j, i, j ∈ I. (25)
Proof : 1) The condition (24) means that, in the faulty

modes, residual zonotopes can not contain the zero vector,
which assures that all considered faults can be detected.

2) According to Remark 1, the mode switching only
affects the center of residual zonotopes and does not affect
the interval hull width. If (25) holds, it implies that at infinity
one and only one residual-bounding zonotope that can fully
include R∞, which indicates the fault.

Since the transition is determined by the eigenvalues of
A−LC in (2), (11) and (22), once the transition completely
disappears, the dynamical behaviors of (11) and (22) enter
into steady state. Thus, the steady state behaviors approxi-
mate the system behaviors at infinity. Thus, (25) can ensure
that all residual-bounding zonotopes not matching the current
system mode will finally diverge from Rk. �

Since it is impossible to compute zonotopes at infinity, the
FDI conditions (24) and (25) only have theoretical value. In
practice, one always turns to approximations. According to
Section VI-A, R̆i∞ can be approximated by

R̊i∞ = CS̆i ⊕ V ⊕ (−V ), i ∈ I. (26a)

Thus, the off-line checking of the guaranteed FDI con-
ditions is to use the approximations in (26) to replace the
corresponding sets in (24) and (25).

Note that, although the analysis of the proposed approach
is based on zonotopes, the predictions of the interval observer
and the prechecking of the FDI conditions are based on the
interval hull of zonotopes.

VII. NUMERICAL EXAMPLE

The numerical example only considers two different actu-
ator faults F1 and F2 and the dynamics of the example is
described as (1). The healthy interval observer is designed
as (2) and the residual zonotopes are defined as (5). The
parameters of the illustrative example are given as

• model parameters: A =

[
0.8667 −1.2343
0.01 1

]
,

B =

[
0.01 1

1 0.01

]
,C =

[
0.5 0
0 1.5

]
,



• disturbances: w̄ =
[
0 0

]T
, wc =

[
0 0

]T
,

• noises: η̄ =
[
0.05 0.05

]T
, ηc =

[
0.15 0.15

]T
,

• observer gain: L =

[
0.3334 −0.8229
0.02 0.1333

]
,

• faults: F1 =

[
0.75 0

0 0.75

]
, F2 =

[
0.9 0
0 0.9

]
,

• sinusoidal inputs: uc =

[
2
2

]
, Hū =

[
0.2 0
0 0.2

]
,

• x0 =

[
0
0

]
, X̂0 =

[
0.1
0.1

]
⊕
[
0.5 0 0
0 0 0.5

]
B3.

After iterating (7b), (11) and (22) fifty steps offline,
width(Rk), R̆0

k, R̆1
k and R̆2

k are almost constant. Thus, these
fifty-step iterations can be used as the approximations for
width(R∞), R̆0

∞, R̆1
∞ and R̆2

∞ to check the FDI conditions.
The two components of the approximations are listed as

• width(R50) = (0.1816, 0.2150),
• �R̊0

50 = ([−0.1816, 0.1816], [−0.2150, 0.2150]),
• �R̊1

50 = ([−1.1074,−0.5759], [−4.3812,−3.1937]),
• �R̊2

50 = ([−0.5519,−0.1214], [−1.8815,−1.1485]),
• width(�R̊0

50 ∩�R̊1
50) = (0, 0),

• width(�R̊0
50 ∩�R̊2

50) = (0.0602, 0),
• width(�R̊0

50 ∩�R̊1
50) = (0, 0).

It is seen that the example satisfies (24) and (25) and the
proposed approach can be used for FDI. FDI of the two faults
is separately simulated. The scenarios for both faults are set
as follows: from time instant 0 to 50 the system is healthy,
from time instant 51 to 100 a fault occurs, from time instant
101 to 150 the system gets healthy again.

FDI is illustrated in Figures 1 and 2, which shows that
the faults can be firstly detected and then isolated during the
transition and is consistent with the theoretical analysis.
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Fig. 1. FDI of the fault 1
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Fig. 2. FDI of the fault 2

VIII. CONCLUSIONS

In this paper, an interval observer-based FDI approach
is proposed and a group of guaranteed FDI conditions
based on invariant sets are established. An advantage of this
approach is that it can isolate faults during the transition
between different modes. The future research will focus on
developing easier ways to construct initial zonotopes for
residual-bounding zonotopes and exploring possibilities to
further reduce the FDI conditions.
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