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Abstract— Supervision of long-lasting extensive botanic exper-
iments is a promising robotic application that some recent tech-
nological advances have made feasible. Plant modelling for this
application has strong demands, particularly in what concerns 3D
information gathering and speed. This paper shows that Time-of-
Flight (ToF) cameras achieve a good compromise between both
demands. A new method is proposed to segment plant images
into their composite surface patches by combining a hierarchical
segmentation of the infrared intensity image, provided by the
ToF camera, with quadratic surface fitting using ToF depth data.
Leaf models are fitted to the segments and used to find candidate
leaves for probing. The candidate leaves are ranked, and then the
robot-mounted camera moves closer to selected leaves to validate
their suitability to being sampled. Some ambiguities arising from
leaves overlap or occlusions are cleared up in this way. Suitable
leaves are then probed using a special cutting tool also mounted
on the robot arm. The work is a proof-of-concept that dense
infrared data combined with sparse depth as provided by a ToF
camera yields a good enough 3D approximation for automated
cutting of leaf discs for experimentation purposes.

I. I NTRODUCTION

Recent advances in depth sensors [1], deformable object
modelling [2], and autonomous mobile manipulation [3] have
considerably widened the scope of robot application. One area
that is nowadays gaining attention since it could benefit from
all these advances is the monitoring and maintenance of large
botanic experimentation fields, e.g., for plant phenotyping.
The goal is to determine the best treatments (watering, nu-
trients, sunlight) to optimize predefined aspects (plant growth,
seedling, flowers) and, towards this aim, experiments entailing
many repetitive actions need to be conducted [4]. Measure-
ments and samples from leaves must be regularly taken and
some pruning may need to be performed [5]. These are tasks
for which robots would be very handy, however, difficulties
arise from the complex structure and deformable nature of
plants, which do not only change appearance through growing,
but whose leaves move also on a daily cycle.

In the last twenty years, several robotic systems have
been introduced for the automated harvesting of tomatoes,
cucumbers, mushrooms, cherries, strawberries, and other fruits
(for a review see: [6]), but these systems have not yet reached
the stage of commercialization due to the challenges posed by
the task. The automated probing of plant leaves is a related,
but new research topic in agricultural robotics with many
potential applications. For example, probes could be taken
from plants automatically in order to detect plant disease
or nutritional deficiencies. Treatment of singular plants can
then prevent spreading of disease in fields and reduce the
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application of chemicals. Another potential application is the
fast probing of plants in research laboratories for phenotyping
purposes. We expect to face similar challenges as the ones
previously encountered with picking robots in agriculture: (i)
the recognition and localization of the target, e.g, fruitsand
leaves, given the varying appearances of plants, and (ii) the
probing, grasping, cutting or detachment of parts of the plant
under weakly constrained conditions in natural environments
[7], [8]. Another major challenge in agricultural roboticsis
the guidance of motions through crop fields or greenhouses,
which is a topic that is not addressed in this work.

The first challenge requires new solutions for the recognition
and localization of leaves to be developed. Previously color
vision has been used to obtain some relevant plant features,
mainly for recognition and classification purposes [9], but
when it comes to extracting structural/geometric information
for 3D modelling and robot manipulation, the concourse of
a user is required to provide hints on segmentation from
multiple views [10]. If a fully automated process is sought,
depth information needs to be extracted through stereo [11],
structured light [12] or a laser scanner [13]. These techniques
have proven adequate for offline modelling, but either require
special conditions or are too slow to be used in online
robot interaction with plants. Recently, Time-of-Flight (ToF)
cameras have been proposed as a good alternative [14], since
they provide low-resolution depth images at 25 frames-per-
second. This permits quickly acquiring and fusing images from
different viewpoints [15], which is very useful since one-shot
plant data are often partial or ambiguous. Some works have
exploited the best of both technologies by combining ToF data
with high-resolution color images to deliver dense depth maps
[16], [17].

Concerning robot action, planning and learning algorithms
for the manipulation of deformable objects [18] are deemed
to play an important role in this context. Planning needs to
encompass the motion of the camera as well, since plants
are prone to occlusions and merging of close leaves, so that
selecting the best next viewpoint may be crucial to disocclude
leaves [19], [20] as well as to determine and access suitable
probing points.

More precisely, we address the problem of accurately plac-
ing a cutting tool on a leaf, in order to acquire sample discs
from several plants at different developmental stages, so as
to subsequently analyze their relative growth rates [21]. Thus,
the emphasis of this work is onsensing-for-actionmethods
developed to segment leaves, fit quadratic surfaces to them,
determine best candidates for probing, move the cameras to
get a closer view, determine a suitable sampling point on the
chosen leaf, and finally reach this point with a disc-cutting
tool. Intensity-based segmentation is complemented with depth
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Fig. 1. A. WAM arm used in the experiments holding the ToF sensor, a color
camera (data not used), and the cutting tool used to extract samples from the
leaves. B-C. Typical intensity image and color-coded 3D point cloud acquired
with a ToF camera (200×200 PMD CamCube 3.0).

data supplied by a ToF camera to delimit and fit surface
patches to the leaves. The ToF camera and the cutting tool
are mounted on the robot end-effector (as shown in Fig. 1),
so that an egocentric coordinate frame is used for all motions.

II. OVERVIEW OF THE METHOD

The probing of a leaf follows a two-stage approach (see
Fig. 2). Initially, the robot arm is moved to a position from
which a general view of the plant is obtained. The depth
and infrared images acquired with a ToF camera (Section III)
are segmented into their composite surfaces as described in
Section IV. Leaf-model contours are fitted to the extracted
segments, the validity of the fit and the graspability of the leaf
are measured, and the segments are ranked (see Section V).
A target leaf is selected and the robot moves the camera to
a closer, fronto-parallel view of it. The validity of the target
and the graspability are re-evaluated (see Section V-A and V-
B). If the leaf is considered to be suitable for being sampled
based on these criteria, the probing tool is placed onto the
leaf following a two step path (see Section V-C). If the target
is considered to be non-suitable for probing, another target
leaf (from the general view) is selected and the procedure is
repeated.

III. 3D IMAGE ACQUISITION

Depth measurements are acquired by a ToF camera (see
Fig. 1A-B). This type of sensor has the main advantage of
providing registered depth and infrared-intensity imagesof a
scene at a high frame-rate. ToF cameras use the well-known
time-of-flight principle to compute depth. The camera emits
modulated infra-red light in order to measure the travelling
time between the known emitted waves and the ones reflected
back over the objects in the scene.

ToF cameras have two main drawbacks: low resolution (e.g.
200×200 pixels for a PMD CamCube 3.0 camera) and noisy
depth measurements due to systematic and non-systematic
errors [22]. On the one hand, low resolution can be a big
problem for large environment applications, but it has not such
a negative impact when the camera is used at close ranges as
it is our case. On the other hand, noisy depth measurements
due to non-systematic errors get amplified by working in
such a short range. Mainly the ones due to multiple light

Fig. 2. Flow diagram of the suggested probing procedure (seeSection II).

reception and light scattering. Systematic errors get highly
reduced by calibration procedures and non-systematic onescan
be palliated using filtering techniques [23].

Here we apply two filters to remove undesired wrongly
estimated point depths and noise: a jump edge filter and an
averaging filter [24]. Sometimes these false measurements
are indicative of possible model misinterpretation or object
occlusion and, therefore, their detection and 3D localization
in the scene may provide valuable information for computing
the next-best-view that can help to disambiguate or improve
occluded leaf visibility and pose estimation [25].

IV. D EPTH SEGMENTATION

In this section we describe an algorithm for segmenting the
sparse and noisy depth data measured by the ToF camera into
surface patches in order to extract task relevant image regions,
i.e., leaves. We assume that plant leaves are usually represented
by a single surface in 3D space. While this assumption may
not be generally valid, we however assume that it holds in most
cases. Due to the many occlusions present in grown plants and
the variability of leaves in terms of size, orientation, and3D
shape, the application of appearance models directly to the
image data with the purpose of leaf segmentation would be
extremely challenging, also since partial shape models might
have to be utilized.

Removing noise and invalid points in the depth data using
the jump-edge filter provides a sparse depth map. We segment
the data by using the infrared-intensity image of the depth
sensor as an auxiliary image. Unlike depth, which is measured
using the ToF principle, the corresponding infrared-intensity
image provides complete (dense) information with little noise.
In comparison with color or respective gray-level images, the
infrared intensity images are more amenable to segmentation,
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since plant-type characteristic color textures are not present
here. The segments are then selected and merged based on
the available depth information, which can be sparse.

The algorithm proceeds as follows. First, the infrared-
intensity image is segmented with a standard algorithm at
different resolutions. Details can be found in [26]. This is
necessary since we do not know beforehand at which res-
olution good regions will appear. Those segments which fit
the depth data best, according to a parametric surface model
(see Section IV-A), are selected, and a new segmentation is
constructed. This procedure has been described in detail in
[20], and will thus not be repeated here. From this intermediate
segmentation and the respective estimated parametric surfaces,
a graph is build, where the nodes represent segments and edges
represent the pairwise similarity of the segments surfaces,
as described in Section IV-B. Then, to remove remaining
over-segmentations present in the intermediate segmentation,
a graph-based merging (clustering) procedure is employed
which allows us to handle the non-local character of surface
properties (see Section IV-C and IV-D). An overview of the
algorithm is provided in Figure 3.

The method requires currently about≈ 28 s to segment
an image and to fit surface models using Matlab and non-
optimized code.

A. Fitting of quadratic surface models

For modelling the 3D surfaces of image regions, we use a
quadratic function, which allows (among others) the modeling
of planar, spherical, and cylindrical shapes. Surfaces with more
involved curvatures could also be managed within the same
approach, but are not required for the application at hand.
Moreover, we use quadratic functions that allow computing
depthz explicitly for the x-y coordinates in the form ofz =
f(x, y). This way, surfaces are described by five parameters
a, b, c, d, and e, where the depthz can be expressed as a
function of x andy throughz = ax2 + by2 + cx+ dy + e.

For a given segmentsi we perform a minimization of the
mean squared distance

Ei,model= 1/N
∑

j

(zj − zj,m)2 (1)

of measured depth pointszj,m from the estimated model depth
zj = fi,model(xj , yj), wherefi,model is the data-model function
and N is the number of measured depth points in the area
of segmentsi. The optimization is performed with a Nelder-
Mead simplex search algorithm provided in MATLAB.

B. Segment graph

A nearest-neighbor graph is constructed from the image
segments. For each image segment, the boundary points are
extracted and the local neighborhood within a radius of1 px of
each point is searched for points belonging to other segments
that lie within a predefined absolute depth distance. For
computing the depth distance, the fitted depth derived for the
respective segment point is used, i.e.|fi(xi, yi)− fj(xj , yj)|,
where i and j denote neighboring pixels belonging to dif-
ferent segments, respectively. Two segments are considered

neighbors if the respective boundary points are less than
d3D = 1 cm apart. The segments define the nodesV of the
segment graph(V, e). An edgee exists between two segments
if they are neighbors according to the condition given above.

C. Segment dissimilarity

We define a dissimilarity measureed between two segments
si andsj by estimating how well the surface model of segment
si describes the depth data of segmentsj and vice versa. Let
fi be the surface model of segmentsi, and fj the surface
model of segmentsj . Then, we compute the fitting errors

Ei/j = 1/ni

∑

p∈si

[fj(x, y)− z(x, y)]2 , (2)

and

Ej/i = 1/nj

∑

p∈sj

[fi(x, y)− z(x, y)]2 , (3)

where z(x, y) is the measured depth at(x, y), fj(x, y) and
fi(x, y) are the estimated depth value using surface models at
(x, y), andni andnj are the number of points in segmenti
andj, respectively. Note that the surface parameters have been
estimated before, hence no surface fitting has to be performed
at this step. Then smaller error is selected, yieldinged.

D. Graph-based merging of segments

The pairwise dissimilarities between segments are used to
sort the graph edgeseij in order of increasing dissimilarity.
For this purpose, we define a labell enumerating the edges in
ascending order. The total number of edges isn. We further
define a merging thresholddmerge, which in our case should be
chosen in the range between1 and5 cm2 to be in proportion
to the expected range of target fitting errors in the given
scenario. The surface models of all graph nodes or segments
are also stored in a list, because they may be updated during
the procedure.

Then the algorithm proceeds as follows.
(1) We select the first edge of the ordered list labeledl = 1.

(2) The two segments linked by the edge labeledl are
merged if the edge dissimilarityed(l) < dmerge. In this
case, a new regionsi∪j is created and the respective
surface modelfi∪j is found. The surface models of
region si and sj are replaced by the new surface model
fi∪j . A flag is set indicating whether the surface model
of a segment has been updated or not. If however
ed(l) ≧ dmerge, nothing needs to be done.

(3) We select the next edge of the ordered list labeled
l = l+1. If one of the segments linked by the respective
edge has been updated previously and thus flagged, the
edge dissimilarity between the segments is recomputed
using the current surface models.

(4) Step 2-3 are repeated untill = n.
Working consecutively along the ordered list and updating

the surface models along the way allows us to avoid testing
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for all possible merging combinations, which may easily lead
to a combinatorial explosion. This strategy gives preference
to merges of segments with large similarity. The method
is related to Kruskal’s algorithm for finding the minimum
spanning tree of a graph [27], with the main difference that
certain graph edges have to be updated after each merge.

V. EXTRACTION OF GRASPING POINTS

We assume that the procedure described above delivers
segments that correspond to leaves of the plant. This assump-
tion may not always hold, but it is a good enough working
hypothesis as we will demonstrate below.

The goal of this work is to identify and model leaves from
ToF data in order to find suitable grasping points and approach
vectors for probing. We use the following strategy. First, a
target segment is selected from the processed data obtained
from a far (general) view of the plant. Using the surface normal
and 3D position of the target, we move the robot arm with the
mounted ToF camera to a closer position to the target and align
the viewing direction of the camera with its surface normal.
At this close position, a new image is acquired, which we use
to confirm or reselect our target. If a suitable leaf target is
found, a grasping point is identified and an approach to the
leaf is planned.

For probing a leaf, two main requirements have to be met
by the grasping point for the task to be executable:
(i) The grasping point should lie within the part of the leaf

that points away from the stem of the plant. This way,
the risk of collisions with the stem and other leaf parts
can be reduced. We further want to approach the leaf
from the side to maximize the touched leaf area.

(ii) The grasping point should not be occluded and or ob-
structed by other leaves (or objects) in the vicinity of the
points.

To fulfill requirement (i), a leaf-specific contour needs to
be fitted to the leaf segment boundary in order to map leaf-
specific grasping points along the segment boundary (see
Section V-A). The contour fitting error here gives us a measure
of validity of the selected points. The grasping points from
(i) are further tested for their graspability using criteria (ii)
(see Section V-B). Both the contour fitting error and the
graspability measure are important for evaluating whethera
planned grasp is executable.

The contour fitting and grasp point identification requires
about2 s for a single segment using Matlab and non-optimized
code.

A. Contour fitting for grasping-point identification

We extract the outer 2D boundaryCi of segmenti, consist-
ing of a set of points{x, y, z}. BeforeCi can be compared
with the model boundary, we need to rotate the boundary in 3D
to a predefined orientation, that aligns its surface normal with
the z-axis. This way, perspective distortions can be removed
at least partly, leading to a point set{x, y}r, where we ignore
variations in thez-coordinate, since we are only interested in
the projection of the leaf boundary onto thex-y plane.

Fig. 3. Schematic of the leaf-extraction algorithm. ToF data (depth and
infrared intensity) is acquired and the infrared-intensity image is segmented at
different resolutions (level 0-2). Surface models are fittedto the segments and
those segments along the segmentation hierarchy that fit the depth data best
are selected. From the selected segments a segment graph is constructed and a
graph-based segment merging procedure is employed. Final segment contours
are fitted to predefined model contours and grasping points aredetermined.
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For each plant type, we have extracted the leaf boundary
which is characteristic for the specific plant. We smooth the
boundary points with a Gaussian function. The resulting values
provide a set of weighted boundary points{x, y, w}m, defining
our model boundaryCm.

Compared to the model boundaryCm that is characteristic
for a specific leaf,Ci might be translated, rotated, or scaled
in 2D. These three transformations provide four parameters,
i.e., a translation vector(xt, yt), a rotation angleθ, and
scaling factorα. Applying these transformations toCi leads
to a transformed set of points{x, y, z}trans. The distance of
the transformed boundary to a model boundary for given
transformation parameters is defined as

D(Ci, Cm) = ni −
∑

pk∈Cm

∑

pj∈Ci

wkδ(xj − xk)δ(yj − yk)/ni

+
∑

pk∈Cm

∑

pj∈Ci

wkδ[δ(xj − xk) + δ(yj − yk)]/nm

(4)

with nm =
∑

pk∈Cm
wk and ni =

∑
pj∈Ci

1, where δ(a) = 1

if a = 0 and zero otherwise, andpk = (xk, yk) and pj =

(xj , yj). This distance measure decreases the more points of
the segment contour are matched to the model contour and
increases the more points of the model contour are unmatched.

We find the parameters of the transformations that provide
a best match to the model contour by minimizing the distance
D(Ci, Cm) using a Nelder-Mead simplex search algorithm
provided in Matlab. Once the segment contour has been fitted
to the model contour, we can identify grasping points. We
assume that predefined grasping points are provided together
with the leaf contour model, as illustrated in Figure 4. For each
model grasping point, we find the point on the segment contour
that has the smallest distance to the model grasping point.
Together with the resulting grasping pointxg = (xg, yg, zg),
we also provide the validity measure of the fit.

B. Graspability of identified grasping points

We consider a grasping point (which by definition here lies
on the boundary of the segment) to be graspable, if there are no
obstructing objects, i.e. other leaves, in its direct vicinity, and if
the given boundary is a true leaf boundary, i.e., it is not caused
by an occlusion. We define a graspability measure by counting
(negatively) the points in a circular area (in 2D) around the
grasping point that belong to another segment and are located
within a predefined threshold distanced (here,d = 10 cm)
from the grasping point, or have a depth valuez smaller than
zg, yielding

g(xg, yg, zg) = −
∑

Θ[Θ(d− |x− xg|) + Θ(zg − z)]

×|1− δ[sl(xg, yg)− sl(x, y)]| , (5)

whereΘ(a) = 1 if a > 0 and zero otherwise, andsl(x, y)
and sl(xg, yg) are the segment labels of points(x, y) and
(xg, yg), respectively. The radius of the circular area around
the grasping point is chosen equal tod.

C. Intermediate goal position and probing point

To probe the leaf, the probing tool needs to be placed such
that the leaf can slide during the approach into the cavity of

(A) Dieffembachia (B) Potus (C) Anturium

Fig. 4. Model contours for different plants used in our experiments with
associated grasping points. Dieffembachia was used for experiments (A-C),
Potus for experiment D, and Anturium for experiment E. Model contours have
been extracted from single selected leaves.

the tool, which is only two centimeters wide. For this approach
to be successful, the probing tool needs to be aligned with the
orientation of the leaf. For this purpose, the average surface
normal of the leaf is computed. Furthermore, the probing
tool needs first to be placed at an intermediate goal position
at a certain distance of the grasping point. We compute the
intermediate goal position by first defining an approach vector
for the grasp according toag = xg−xc, wherexc is the center
point of the leaf. The approach vector is normalized and used
together with the grasping point to compute the intermediate
goal positionxgoal = xg + 10ag, at 10 centimeters distance
from the edge point towards the outside of the leaf.

We further define a probing point at which the tool should
be finally placedxprobing = xg − 2ag. The probing point is
located at 2 centimeters distance from the edge point towards
the inside of the leaf.

VI. EXPERIMENTAL SETUP

The experimental setup includes a PMD CamCube Time-
of-Flight camera and a PointGrey Flea camera rigidly attached
to the last link of a Barrett WAM arm (Fig. 1). The PointGrey
Flea camera is however not used in the experiments here. As
can be observed, the cameras are displaced from the robot
end-effector position to leave room for a cutting tool we have
designed to take samples of some selected leaves.

We have opted for a configuration where the cutting tool
is outside the field of view of the camera. This implies that,
during the robot motion from the close view of the leaf to the
placement of the cutting tool, the leaf is not in the camera
field of view, and the motion is then performed in open loop.
Implicitly we are assuming that the leaf will not move and
that the robot has enough precision along this small motion.

The robot and plant initial relative configuration assures that
the plant’s region of interest is reachable by the robot’s cutting
tool. In the same way that plant position is guaranteed to be
inside the field of view of the camera’s initial pose. In the
close view, the camera is place in a frontal configuration at 40
centimeters of the localized leaf.

VII. B ASIC VERIFICATION OF THE METHOD

The presented robotic leaf-probing strategy assumes that
for successful sampling of plant leaves it is advantageous to
move first to a closer and fronto-parallel viewing position with
respect to the leaf surface. To support this claim, we verify
that (i) surface normals of leaves can indeed be accurately
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Fig. 5. A. Validity of the leaf as a function of the measured enclosing
angle of the surface normal with thez-axis (camera viewing direction) for
the artificial leaf. B. The same for a real leaf. The validity measures the
correlation between the measured and transformed 2D contour of a segment
and a 2D model-leaf contour.

estimated with the given method, and (ii) that moving to a
closer, fronto-parallel view of a leaf allows better verification
of suitable leaves for probing and thus also a better determi-
nation of grasping points.

To test assumption (i), we used a planar artificial leaf.
For this purpose, the shape of a real leaf (Dieffembachia)
was taken and cut from a carton. The shape was also used
as a model leaf for this particular experiment. The artificial
leaf was attached to a beam and rotated around its center to
attain different angles of its surface normal with the viewing
direction of the PMD camera. The leaf was rotated in steps of
5 deg, starting at0 deg, and a depth and an infrared-intensity
image was acquired at each step. Using our method, the leaf
was segmented and the surface normal was computed by fitting
a plane to the 3D points of the segment. The enclosing angle
of the measured surface normal with thez-axis in the camera
coordinate system was calculated. Fitting of a line to the data
revealed an approximate measurement error of about±0.7 deg,
which demonstrates that a sufficiently accurate estimationof
the surface normal can be obtained with the system.

To verify assumption (ii), we used the model-leaf contour
to calculate the validity of the extracted segments during the
previous experiment. The validity measures the correlation
between the measured 2D contour of a segment and a 2D
model-leaf contour (see Section V). We observed that the
validity decreases with increasing angle, i.e., the further we
move away from the fronto-parallel position, the more difficult
it becomes to recognize the leaf due to view-dependent shape
distortions and other visibility impairments. This also implies
that the grasping point cannot be accurately determined past
some angle, because the model-leaf contour together with
the associated grasping point will fit the segment boundary
only very poorly. We further acquired depth and infrared-
intensity images from various viewing angles of a real leaf
(the very leaf that had also been used to extract the model-leaf

shape in the previous experiment). The computed validitiesare
displayed in Fig. 5 and show the same trend as the validities
obtained for the artificial leaf. The experiments demonstrate
that the method is capable of extracting the target leaf despite
different viewing conditions and without having to change
the parameters. A close view for probing is desirable since
it increases the amount of data that can be gathered about a
leaf (the resolution), which is immediately evident and does
not need to be demonstrated.

Combining the data for the artificial and the real leaf
showed that the validity follows roughly a linear relationship.
By finding the mean distance of the measured points to the
fitted line, we obtained an approximate error measure of
the computed validity values of about±0.1. However, this
measure has been computed for leaves that are mostly planar.
Bended or curled leaves might show larger errors.

VIII. L EAF PROBING

After having verified the basic assumptions of our approach,
we test the method on different plants and for different
viewpoints. Each experiment proceeds in the same way: First,
the plant is examined from a far (general) viewing position of
the robot arm. The ToF data is processed and a target leaf is
selected. Second, using the target’s pose, a new robot position
is planned and the robot is moved to get a close view of the
target. Third, the ToF data from the new view is processed
and the target is confirmed if it is of sufficient validity and
graspability (g > −10). Only then the reaching movement
is computed and the grasp is executed. Throughout all the
probing experiments, the same set of parameters is used in
the algorithms withdmerge= 1 cm2. Note that the maximum
validities obtained in these experiments are smaller than in
the benchmark experiments, since here the model-leaf contour
might not perfectly describe the selected leaf due to natural
variations in the shape appearance of the leaves.

In Figure 6, the results of the analysis of the ToF data for
five experiments (A-E) obtained for the far viewing position
are shown. In general, depth segmentation delivered suffi-
ciently good results for identifying targets of interest. Except
for experiment C (Fig. 6C), for which segmentation failed,
targets of sufficient validity could always be found. The values
of the validity and graspability measure are summarized in
Table I. Targets selected during the experiments are labeled
with a unique number in the figures and the table. The
computed grasping points are indicated with a star-shaped
symbol in the figures.

Based on the selected target, a close view on the target
can be planned using its 3D pose. After moving to the close
position, the newly acquired data is analyzed. As can be seen
in Figure 7, segmentation improves in the close view compared
to the general view, and in all cases except experiment C,
target leaves can be confirmed indicated by a sufficiently large
validity (v > 0.3). However, in experiment E, the validity
decreased by0.14, which is nevertheless still in the error
margin of the validity computation. The validity measure
can be impaired by many factors, e.g., shape differences
of the real leaf compared to the model leaf, non-optimal
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Fig. 6. Segmentation and target selection results for ToF data acquired from a far viewing position relative to the plant for five different experiments (A-E).
Depth is color coded with increasing depth coded from red to blue (3rd and 5th column). The grasping points of selected and labeled target segments are
marked with a red star. The validity measures the correlation between the measured and transformed 2D contour of a segment and a2D model-leaf contour.

solutions encountered by the fitting procedure, segmentation
errors distorting the boundaries.

Since the contour models are just a rough approximation
and the validity estimation is afflicted with some error (see
Section VII), validities are expected to increase from the far
view to the close view, only if the change in the viewing angle
is large (> 30 deg). Graspabilities close to zero indicate that a
grasp is executable, however, some noise in the segmentation
or data can cause the graspability value to deviate slightlyfrom
zero, e.g., experiment D.

The close view in experiment C provides more information
on the plant than the far view. Now several leaves can be
distinguished, reflected in the larger validity of the segments.
As a consequence, a better target (labeled 7) with higher
validity can be selected for the grasp.

Furthermore, moving from a far-view to a close-view allows
collecting more data about a segment and bringing the camera
in a fronto-parallel position with respect to the leaf. In Table I,
the enclosing angle of the surface normals with the camera
viewing angles of the leaf for the far and the close view are
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Fig. 7. Segmentation and target selection results for ToF data acquired from a close viewing position relative to the plant for the five different experiments
(A-E). Depth is color coded with increasing depth coded fromred to blue (2rd and 4th column). The grasp points of selected and labeled target segments are
marked with a red star. The results for the close view of target1 are shown in Fig. 3.

reported, showing that surface normals have been re-estimated
after going to the new view and are sufficiently aligned with
the z-axis for the close view. In experiment C however the
viewing direction of the camera could not be aligned well
with the surface normal of the leaf in the close view, because
two leaves were merged in the far view and thus no surface
normal of a singular leaf could be isolated at the beginning.

The target segments and their respective grasping points are
now used to compute the approach for probing the leaf. In
Figure 8, the 3D point cloud of target 2 is presented together

with the grasp point (hexagram), the center point of the target
(circle), the probing point (diamond), the intermediate goal
position (square), the surface normal (black line), and the
approach vector connecting all these points (green line). Using
this information the intermediate goal position of the robot can
be calculated.

The grasps were then executed by first going to the interme-
diate goal position and then advancing to the probing position.
Images of the probing for the experiments are presented in
Figure 9A-E, demonstrating the successful execution of the
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Fig. 8. Target point cloud and approach points. The 3D pointsof the selected
target segment 2 of experiment A (see Figs. 6-7A) are shown together with
the associated center point (circle), probing point (diamond), grasping point
(hexagram), the intermediate goal position (square), the surface normal (black
line), and the approach vector (green line), which intersects all these points.
Distances are given in centimeters.

Fig. 9. A-E. Color images documenting the successful execution of grasps.
The probing tool could be accurately placed on the leaf and a disc-shaped
piece of the leaf could be cut. F. A leaf after a sample has been taken with
the cutting tool.

task. Once the cutting tool is correctly placed, it can be used
to take a small sample of the leaf by cutting out a small disc.
In Figure 9F an image of a leave after sampling is shown.

The accurate placement of the probing tool indicates that
surfaces have been correctly estimated by the approach. The
successful execution can be partly attributed to a precise leaf
estimation, i.e., surface normal and grasping points, which
could be obtained using the data acquired from the close view
position.

Movies of the experiments can be found at
http://www.iri.upc.edu/people/galenya/pub/LeafProbing.

TABLE I

VALIDITY , GRASPABILITY, AND ENCLOSING ANGLEα IN DEG OF THE

SURFACE NORMAL WITH THE CAMERA VIEWING DIRECTION FOR THE FAR

VIEW AND THE CLOSE VIEW OF EXPERIMENTSA-E IN COMPARISON.

Example vview 1 vview 2 gview 1 gview 2 αview 1 αview 2

A (target 1) 0.51 0.48 -31 0 6.9 4.7
A (target 2) 0.44 0.46 0 0 5.7 6.5
B (target 3) 0.55 0.51 0 0 18.5 7.3

C (target 4/7) 0.16 0.5 0 0 15.6 17.0
D (target 5) 0.5 0.54 0 -5 1.2 2.6
E (target 6) 0.47 0.33 -29 0 26.8 6.0

IX. CONCLUSIONS

We presented a method for modeling, monitoring, and sam-
pling plant leaves using infrared-intensity images and depth
maps acquired with a PMD camera. Since quadratic surface
models are used to guide the segmentation of the infrared-
intensity image, sparse or noisy depth data can be used, which
often poses a problem to approaches working in the depth
space directly. Then, segments that are candidates to being
leaves are ranked and a closer view of the most promising is
taken. In this way, for example, two leaves that were initially
merged into a single segment due to insufficient resolution in
the far view, could be separated and modeled from the close
view. Grasping points could be extracted with high accuracy
and disc samples of leaves were successfully cut.

The problem of leaf segmentation has been addressed before
by Quanet al. (2006), who proposed an image-based plant
modeling system based on structure from motion, but which
requires user interaction in the segmentation procedure to
delineate some leaves [10]. In another related work, leaves
were segmented from combined color images and stereo depth,
and subsequently classified using the normalized centroid
contour distance [9]. Different from these approaches, we
extract leaves from ToF data and infrared-intensity images.
Segmentation is fully automatic and based on a novel depth-
segmentation algorithm which can be applied to sparse or
noisy depth data and cope with curved surfaces. Another
difference is that leaf models are fitted explicitly which allows
localizing grasping points.

The proposed system for automated plant probing is related
to vision-based robotic systems for fruit and vegetable picking,
which have been proposed in the past for the automation of
harvesting tasks [6]. Commonly these systems first process
and segment the data in order to identify and represent the
target. Based on this representation, a robot action, i.e.,cutting
or grasping, is executed. Often the image processing task is
eased by fixing the environment in a specific manner. For
example, in a fruit-detachment system developed by Fenget
al. (2008) strawberries were grown on a uniformly colored
surface to simplify image segmentation [7]. In our system the
environment is less constrained, and the proposed computer-
vision system is thus more complex. Furthermore, a new
robotic application, i.e., the automatic sampling of leaves with
a specific cutting tool, was introduced and explored. To the
authors’ knowledge, this is the first time that an active vision
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approach using ToF depth has been applied to robotized plant
measuring.

The method is based on several assumptions: (i) the bound-
aries of leaves are visible in the infrared-intensity image, (ii)
the leaf surfaces can be modelled by a basic quadratic function,
(iii) leaves of a specific plant type can be described by a
common 2D contour, (iv) leaves are large enough to allow
analyzing them with a ToF camera, and (v) the leaves are static
during probing. These assumptions may be violated under
certain conditions, but nevertheless we expect the method to be
applicable to many different types of plants given a controlled
environment.

In conclusion, we tackled a quite complex task that required
the extraction of task-relevant plant parameters from plant
images using a multi-stage algorithm, as well as the difficult
problem of the actual execution of the robot motion towards
the plant. The automation of plant probing has potentially a
wide range of applications both in the agricultural industry
where certain, currently manual, tasks have to be executed
repetitively for many plants, usually of the same type, and
in botanic experimentation, e.g., for phenotyping, where leaf
sample discs are widely used to analyze plant development in
order to determine the factors affecting growth.
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[19] S. Foix, G. Alenỳa, and C. Torras: “Towards plant monitoring through
Next Best View”.Proc. Intl. Conf. of the Catalan AI Society (CCIA’11),
Lleida, 2011.
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