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Leaf segmentation from ToF data
for robotized plant probing

G. Alenya, B. Dellen, S. Foix, and C. Torras

Abstract— Supervision of long-lasting extensive botanic exper- application of chemicals. Another potential applicatisrtlie
iments is a promising robotic application that some recent tech- fast probing of plants in research laboratories for phepiaty
nological advances have made feasible. Plant modelling for this purposes. We expect to face similar challenges as the ones

application has strong demands, particularly in what concerns 3D . | tered with picki bots i icultui
information gathering and speed. This paper shows that Time-of- previously encountered with picking robots in agricultufig

Flight (ToF) cameras achieve a good compromise between boththe recognition and localization of the target, e.g, fruitsl
demands. A new method is proposed to segment plant imagesleaves, given the varying appearances of plants, and @i) th

into their composite surface patches by combining a hierarchical probing, grasping, cutting or detachment of parts of thatpla
segmentation of the infrared intensity image, provided by the \\hqer weakly constrained conditions in natural environtsien

ToF camera, with quadratic surface fitting using ToF depth data. . . - .
Leaf models are fitted to the segments and used to find candidate [7], [8]. Another major challenge in agricultural robotics

leaves for probing. The candidate leaves are ranked, and then the the guidance of motions through crop fields or greenhouses,
robot-mounted camera moves closer to selected leaves to validatewhich is a topic that is not addressed in this work.

their suitability to being sampled. Some ambiguities arising from  The first challenge requires new solutions for the recogmiti
leaves overlap or occlusions are cleared up in this way. Suitable and localization of leaves to be developed. Previously rcolo

leaves are then probed using a special cutting tool also mounted . . .
on the robot arm. The work is a proof-of-concept that dense vision has been used to obtain some relevant plant features,

infrared data combined with sparse depth as provided by a ToF mainly for recognition and classification purposes [9], but
camera yields a good enough 3D approximation for automated when it comes to extracting structural/geometric infoiiorat

cutting of leaf discs for experimentation purposes. for 3D modelling and robot manipulation, the concourse of
a user is required to provide hints on segmentation from
multiple views [10]. If a fully automated process is sought,
depth information needs to be extracted through stereq [11]
Recent advances in depth sensors [1], deformable objggictured light [12] or a laser scanner [13]. These teakesq
modelling [2], and autonomous mobile manipulation [3] havRave proven adequate for offline modelling, but either negui
considerably widened the scope of robot application. Oee alspecial conditions or are too slow to be used in online
that is nowadays gaining attention since it could benefifrorohot interaction with plants. Recently, Time-of-FligHfof)
all these advances is the monitoring and maintenance of lagmeras have been proposed as a good alternative [14], sinc
botanic experimentation fields, e.g., for plant phenotypinthey provide low-resolution depth images at 25 frames-per-
The goal is to determine the best treatments (watering, nd&cond. This permits quickly acquiring and fusing imagesfr
trients, sunlight) to optimize predefined aspects (plaotijn, different viewpoints [15], which is very useful since orfess
seedling, flowers) and, towards this aim, experiments lmgai plant data are often partial or ambiguous. Some works have
many repetitive actions need to be conducted [4]. Measuploited the best of both technologies by combining ToR dat
ments and samples from leaves must be regularly taken afieh high-resolution color images to deliver dense deptipsna
some pruning may need to be performed [5]. These are tagks), [17].
for which robots would be very handy, however, difficulties Concerning robot action, planning and learning algorithms
arise from the complex structure and deformable nature ff the manipulation of deformable objects [18] are deemed
plants, which do not only change appearance through growigg play an important role in this context. Planning needs to
but whose leaves move also on a daily cycle. encompass the motion of the camera as well, since plants
In the last twenty years, several robotic systems hawge prone to occlusions and merging of close leaves, so that
been introduced for the automated harvesting of tomatogsjecting the best next viewpoint may be crucial to disatelu
cucumbers, mushrooms, cherries, strawberries, and athts f |eaves [19], [20] as well as to determine and access suitable
(for a review see: [6]), but these systems have not yet reachfobing points.
the stage of commercialization due to the challenges poged b More precisely, we address the problem of accurately plac-
the task. The automated probing of plant leaves is a relat@gy a cutting tool on a leaf, in order to acquire sample discs
but new research topic in agricultural robotics with manftom several plants at different developmental stages,sso a
potential applications. For example, probes could be tak@fsubsequently analyze their relative growth rates [2hLsT
from plants automatically in order to detect plant disease emphasis of this work is osensing-for-actiormethods
or nutritional deficiencies. Treatment of singular plan# ¢ developed to segment leaves, fit quadratic surfaces to them
then prevent spreading of disease in fields and reduce #H®&ermine best candidates for probing, move the cameras to
, . L . - get a closer view, determine a suitable sampling point on the
Authors are with Institut de Raltica i Informatica Industrial, . . . . . .
CSIC-UPC, Llorens | Arigas 4-6, 08028 Barcelona, Spainchosen leaf, and finally reach this point with a disc-cutting
{gal enya, bdel | en, sfoi x,torras}@ri . upc. edu tool. Intensity-based segmentation is complemented vetiiid

I. INTRODUCTION
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Move to initial far position and acquire
depth/IR images

Extract and evaluate
potential target leaves

Select target
leaf

~"

Move robot to close, frontal view of
Fig. 1. A. WAM arm used in the experiments holding the ToF serescolor target leaf and acquire depth/IR images
camera (data not used), and the cutting tool used to extragtlea from the
leaves. B-C. Typical intensity image and color-coded 3D pdioud acquired
with a ToF camera (200200 PMD CamCube 3.0). Extract target leaf and grasping points

data supplied by a ToF camera to delimit and fit surface
patches to the leaves. The ToF camera and the cutting tool
are mounted on the robot end-effector (as shown in Fig. 1),

so that an egocentric coordinate frame is used for all mstion < Sample leaf in two-step path )

Il. OVERVIEW OF THE METHOD Fig. 2. Flow diagram of the suggested probing procedure $&tion I1).
The probing of a leaf follows a two-stage approach (see
Fig. 2). Initially, the robot arm is moved to a position from

which a general view of the plant is obtained. The depth ception and light scattering. Systematic errors get lhigh

and infrared images acquired with a ToF camera (Section 1l L 4
) . . : uced by calibration procedures and non-systematicaares
are segmented into their composite surfaces as described in_ . S .
palliated using filtering techniques [23].

Section |IV. Leaf-model contours are fitted to the extracteoe

segments, the validity of the fit and the graspability of thef | Here we apply two filters to_ r?moye undeswec_j wrongly
are measured, and the segments are ranked (see Sectiort mated point depths and noise: a jump edge filter and an
' raging filter [24]. Sometimes these false measurements

. W
A target leaf is selected and the robot moves the cameraaroe indicative of possible model misinterpretation or obje
a closer, fronto-parallel view of it. The validity of the ¢gat ; P . Interp 00l
i . clusion and, therefore, their detection and 3D locdbmat
and the graspability are re-evaluated (see Section V-A and. . ; . .
the scene may provide valuable information for computing

B). If the leaf is considered to be suitable for being sampl e next-best-view that can help to disambiguate or imorove
based on these criteria, the probing tool is placed onto togclu d)(; d leaf \\//Iis\iltzl)ilit and osepestirr:ation I[gzus] Improvi
leaf following a two step path (see Section V-C). If the targe y P '

is considered to be non-suitable for probing, another targe

leaf (from the general view) is selected and the procedure is IV. DEPTH SEGMENTATION
repeated. In this section we describe an algorithm for segmenting the
sparse and noisy depth data measured by the ToF camera int
I1l. 3D IMAGE ACQUISITION surface patches in order to extract task relevant imagemsgi

Depth measurements are acquired by a ToF camera (5ee leaves. We assume that plant leaves are usually srpiees
Fig. 1A-B). This type of sensor has the main advantage by a single surface in 3D space. While this assumption may
providing registered depth and infrared-intensity imagés not be generally valid, we however assume that it holds intmos
scene at a high frame-rate. ToF cameras use the well-knogases. Due to the many occlusions present in grown plants anc
time-of-flight principle to compute depth. The camera emithe variability of leaves in terms of size, orientation, 3
modulated infra-red light in order to measure the travgllinshape, the application of appearance models directly to the
time between the known emitted waves and the ones reflecbedige data with the purpose of leaf segmentation would be
back over the objects in the scene. extremely challenging, also since partial shape model$imig

ToF cameras have two main drawbacks: low resolution (elgave to be utilized.
200x 200 pixels for a PMD CamCube 3.0 camera) and noisy Removing noise and invalid points in the depth data using
depth measurements due to systematic and non-systemgitecjump-edge filter provides a sparse depth map. We segmen
errors [22]. On the one hand, low resolution can be a btge data by using the infrared-intensity image of the depth
problem for large environment applications, but it has mahs sensor as an auxiliary image. Unlike depth, which is measure
a negative impact when the camera is used at close rangesising the ToF principle, the corresponding infrared-istgn
it is our case. On the other hand, noisy depth measurementage provides complete (dense) information with littléseo
due to non-systematic errors get amplified by working im comparison with color or respective gray-level imagés, t
such a short range. Mainly the ones due to multiple liglmfrared intensity images are more amenable to segmen{atio
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since plant-type characteristic color textures are notgre neighbors if the respective boundary points are less than

here. The segments are then selected and merged basedspn= 1 cm apart. The segments define the notfesf the

the available depth information, which can be sparse. segment grapliV, e). An edgee exists between two segments
The algorithm proceeds as follows. First, the infraredf they are neighbors according to the condition given above

intensity image is segmented with a standard algorithm at

different resolutions. Details can be found in [26]. This ig. Segment dissimilarity

necessary since we dq not know beforehand at Wh'c.h "CSwe define a dissimilarity measueg between two segments
olution good regions will appear. Those segments which fit

. . s; ands; by estimating how well the surface model of segment
the depth data best, according to a parametric surface mogezescribes the depth data of segmentnd vice versa. Let

: : %
(see Section IV-A), are selected, and a new segmentatlonfpsbe the surface model of segmest and f; the surface

constructed. This procedure has been described in detail _ -
[20], and will thus not be repeated here. From this intermiedi ni%del of segment;. Then, we compute the fitting errors

segmentation and the respective estimated parametraces:f E;/;=1/n; Z [fi(z,y) — z(z,y))* (2)
a graph is build, where the nodes represent segments ansl edge pEsi

represent the pairwise similarity of the segments surfaceg,q

as described in Section IV-B. Then, to remove remaining

over-segmentations present in the intermediate segrimmtat Ejyi=1/n; Y _[fi(z,y) — z(z,9)* 3)
a graph-based merging (clustering) procedure is employed PEs;

which allows us to handle the non-local character of surfa%erez(x7y) is the measured depth &t,y), f;(z,y) and
properties (see Section IV-C and IV-D). An overview of the:, ;. ) are the estimated depth value using surface models at
algorithm is provided in Figure 3. (z,y), andn; andn; are the number of points in segmeint
The method requires currently abost 28 s to segment anq;, respectively. Note that the surface parameters have beer
an image and to fit surface models using Matlab and nogstimated before, hence no surface fitting has to be pertbrme

optimized code. at this step. Then smaller error is selected, yieldipg

A. Flttlng of quadratiC surface models D. Graph_based merging of Segments

For modelling the 3D surfaces of image regions, we use aThe pairwise dissimilarities between segments are used to
quadratic function, which allows (among others) the madeli sort the graph edges;; in order of increasing dissimilarity.
of planar, spherical, and cylindrical shapes. Surfacels mitre  For this purpose, we define a laietnumerating the edges in
involved curvatures could also be managed within the samggcending order. The total number of edges.idVe further
approach, but are not required for the application at hangkfine a merging thresholfherge Which in our case should be
Moreover, we use quadratic functions that allow computinghosen in the range betweérand5 cn? to be in proportion
depthz explicitly for the z-y coordinates in the form of = o the expected range of target fitting errors in the given
f(x,y). This way, surfaces are described by five paramete§genario. The surface models of all graph nodes or segments
a, b, ¢, d, ande, where the depth: can be expressed as aare also stored in a list, because they may be updated durinc
function of andy throughz =az® + by2 + cx + dy + e. the procedure.

For a given segment; we perform a minimization of the  Then the algorithm proceeds as follows.

mean squared distance (1) We select the first edge of the ordered list labéled 1.
2

£ mode UN;(Z] %m) @) (2) The two segments linked by the edge labeledre
merged if the edge dissimilarity;(!) < dmerge In this
case, a new regios,,; is created and the respective
surface modelf; ; is found. The surface models of
regions; ands; are replaced by the new surface model
fiu;. A flag is set indicating whether the surface model
of a segment has been updated or not. If however
eq(l) 2 dmerge NOthing needs to be done.

of measured depth points ., from the estimated model depth
zj = fimode(Z;,Yy;), Where f; model iS the data-model function
and N is the number of measured depth points in the area
of segments;. The optimization is performed with a Nelder-
Mead simplex search algorithm provided in MATLAB.

B. Segment graph

A nearest-neighbor graph is constructed from the imag@) We select the next edge of the ordered list labeled
segments. For each image segment, the boundary points are [ = [+ 1. If one of the segments linked by the respective
extracted and the local neighborhood within a radius pk of edge has been updated previously and thus flagged, the
each point is searched for points belonging to other segnent edge dissimilarity between the segments is recomputed
that lie within a predefined absolute depth distance. For using the current surface models.
computing the depth distance, the fitted depth derived fer th
respective segment point is used, i£(z:,v;) — fi(zj,y;)|, (4) Step 2-3 are repeated untit= n.
where i and j denote neighboring pixels belonging to dif- Working consecutively along the ordered list and updating
ferent segments, respectively. Two segments are condidettee surface models along the way allows us to avoid testing
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for all possible merging combinations, which may easilydlea
to a combinatorial explosion. This strategy gives prefeeen
to merges of segments with large similarity. The method
is related to Kruskal's algorithm for finding the minimum
spanning tree of a graph [27], with the main difference th
certain graph edges have to be updated after each merge.

V. EXTRACTION OF GRASPING POINTS

We assume that the procedure described above deliv
segments that correspond to leaves of the plant. This assul
tion may not always hold, but it is a good enough workin
hypothesis as we will demonstrate below.

The goal of this work is to identify and model leaves fron
ToF data in order to find suitable grasping points and approa
vectors for probing. We use the following strategy. First,
target segment is selected from the processed data obtai
from a far (general) view of the plant. Using the surface redrm Level 0 Level 1 Level 2
and 3D position of the target, we move the robot arm with tt

Image acquisition

Infrared-intensity

segmentation

C
mounted ToF camera to a closer position to the target and ali %
the viewing direction of the camera with its surface norma @
At this close position, a new image is acquired, which we u: §
to confirm or reselect our target. If a suitable leaf target §
found, a grasping point is identified and an approach to tl g
leaf is planned. @

For probing a leaf, two main requirements have to be m
by the grasping point for the task to be executable: -
(i) The grasping point should lie within the part of the lea § c
that points away from the stem of the plant. This way S’-f:’
the risk of collisions with the stem and other leaf part & §
can be reduced. We further want to approach the le §§
from the side to maximize the touched leaf area. &8

(i) The grasping point should not be occluded and or ol
structed by other leaves (or objects) in the vicinity of th
points.

To fulfill requirement (i), a leaf-specific contour needs t
be fitted to the leaf segment boundary in order to map le:
specific grasping points along the segment boundary (s
Section V-A). The contour fitting error here gives us a measu

Graph-based
clustering

Final segments Fitted depth +

of validity of the selected points. The grasping points fror g% segment boundaries
(i) are further tested for their graspability using crigefii) v S
(see Section V-B). Both the contour fitting error and th £ R | X
graspability measure are important for evaluating whether © 3 |
planned grasp is executable. 5o ‘ N

The contour fitting and grasp point identification require ‘é @ 8
about? s for a single segment using Matlab and non-optimize £ v ’
code. S .g Segment validity +

S a identified grasp point

A. Contour fitting for grasping-point identification Fig. 3. Schematic of the leaf-extraction algorithm. ToF datepth and

We extract the outer 2D bounda@g of segment consist- infrared intensity) is acquired and the infrared-intensitage is segmented at
. f t of int Bef C b ' d different resolutions (level 0-2). Surface models are fittethe segments and
Ing or a set of poin (z,y,z}. BeforeC; can be compared yhose segments along the segmentation hierarchy that fit e deta best
with the model boundary, we need to rotate the boundary in 32 selected. From the selected segments a segment graplstisictad and a
to a predefined orientation, that aligns its surface nornit wgfaﬁh'bgsed Seg"},emdmef%n? procedure iz employed. F_i”fﬂ BEQU!HOlafS
the z-axis. This way, perspective distortions can be remov& "tted ©© predefined model contours and grasping pointsetermined.
at least partly, leading to a point sgt, y},., where we ignore
variations in thez-coordinate, since we are only interested in

the projection of the leaf boundary onto they plane.
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For each plant type, we have extracted the leaf boundar
which is characteristic for the specific plant. We smooth the §> @
boundary points with a Gaussian function. The resultingesl

provide a set of weighted boundary poitits y, w},,, defining

our model boundary”,,,.

Compared to the model boundafy,, that is characteristic () Dieffembachia (B) Potus (c) Anturium
for a specific leaf,C; might be translated, rotated, or scaled
in 2D. These three transformations provide four parametersy. 4. Model contours for different plants used in our ekpents with
i.e., a translation vectofz;,y;), a rotation anglef, and associated grasping points. Dieffembachia was used forriexgets (A-C),
scaling factoro.. Applying these transformations G; leads Potus for experiment D, and Anturium for experiment E. Modeitoars have
to a transformed sef of pOiHIBZ,y,Z}trans The distance of been extracted from single selected leaves.
the transformed boundary to a model boundary for given
transformation parameters is defined as

D(Ci,Cn) = ni— Y. > wkd(z; —zx)d(y; —yx)/ns  thetool, which is only two centimeters wide. For this appioa
PrECH P;E€C; to be successful, the probing tool needs to be aligned wih th
n Z Z wed[8(z; — 1) + 6(y; — yi)]/nm orientation of the Iegf. For this purpose, the average serfa
normal of the leaf is computed. Furthermore, the probing
(4) tool needs first to be placed at an intermediate goal position
at a certain distance of the grasping point. We compute the
with nm = 32, cc,, we @ndn; = 32, o 1, whered(a) = 1 intermediate goal position by first defining an approacharect
if @ = 0 and zero otherwise, ang, = (zx,yr) and p; = for the grasp according @, = x,—x., wherex. is the center
(z;,y;). This distance measure decreases the more pointspgint of the leaf. The approach vector is normalized and used
the segment contour are matched to the model contour :tg:ther with the grasping point to compute the intermediat

PLECM P;€C;

increases the more points of the model contour are unmatc | positionxgoa = x4 + 10a,, at 10 centimeters distance
We find the parameters of the transformations that provigeym the edge point towards the outside of the leaf.

a best match to the model contour by minimizing the distancee further define a probing point at which the tool should
D(Cs,Cry) using a Nelder-Mead simplex search algorithmye finaly placedxproping = X, — 2a,. The probing point is

provided in Matlab. Once the segment contour has been fitigdated at 2 centimeters distance from the edge point taward
to the model contour, we can identify grasping points. Wge inside of the leaf.

assume that predefined grasping points are provided tagethe

with the leaf contour model, as illustrated in Figure 4. Facle Vi
model grasping point, we find the point on the segment contour ) . .
that has the smallest distance to the model grasping point] "€ experimental setup includes a PMD CamCube Time-
Together with the resulting grasping poiRg = (x4, g g ), of-Flight camera and a PointGrey Flea camera rigidly atdch
we also provide the validity measure of the fit. to the last link of a Barrett WAM arm (Fig. 1). The PointGrey

Flea camera is however not used in the experiments here. As
B. Graspability of identified grasping points can be observeq., the cameras are displacgd from the robo
) _ i ; _ . end-effector position to leave room for a cutting tool we dnav
We consider a grasping point (which by definition here I'eéesigned to take samples of some selected leaves.

on the boundary of the segment) to be graspable, if therecare N\ye have opted for a configuration where the cutting tool
obstrpcting objects, 'i.e. other leaves, in its d?rect.\i’.[yirand if is outside the field of view of the camera. This implies that,
the given boundary is a true leaf boundary, i.e., it is NOBe8U «,jng the robot motion from the close view of the leaf to the
by an occlusion. We define a graspability measure by Coum'B%cement of the cutting tool, the leaf is not in the camera
(negatively) the points in a circular area (in 2D) around thg, |y of view, and the motion is then performed in open loop.
grasping point that belong to another segment and are m’Caﬁ‘?]plicitly we are assuming that the leaf will not move and

within a prede]_‘ined t.hreshold distande(here,d = 10 cm) that the robot has enough precision along this small motion.
from the grasping point, or have a depth valuemaller than — tp¢ 1pot and plant initial relative configuration assubes t

. EXPERIMENTAL SETUP

zg, yielding the plant’s region of interest is reachable by the robotisiroy
9T, Yo, 2 _ OO(d—|x—x.)+O(z, — 2 f[oo.l. In the same way that plant position _is. guaranteed to be
(%999, %) 123 5[ (d=| o) + 6Lz )]5 inside the field of view of the camera’s initial pose. In the
X1 =dlsi(zg,y9) —si(z. Il B) glose view, the camera is place in a frontal configurationOat 4

where©(a) = 1 if a > 0 and zero otherwise, ang(z,y) centimeters of the localized leaf.
and s;(z4,y,) are the segment labels of poinfs,y) and
(xg4,y4), respectively. The radius of the circular area around VIIl. BASIC VERIFICATION OF THE METHOD

the grasping point is chosen equaldo The presented robotic leaf-probing strategy assumes that

) N ) ) for successful sampling of plant leaves it is advantageous t
C. Intermediate goal position and probing point move first to a closer and fronto-parallel viewing positioithw
To probe the leaf, the probing tool needs to be placed suaspect to the leaf surface. To support this claim, we verify
that the leaf can slide during the approach into the cavity tifat (i) surface normals of leaves can indeed be accurately
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shape in the previous experiment). The computed valiciies

0 O ‘ ' ' ‘ ' displayed in Fig. 5 and show the same trend as the validities
0.8 ° 1 obtained for the artificial leaf. The experiments demonstra
o 0 that the method is capable of extracting the target leafittesp

o]

o
~1

different viewing conditions and without having to change

0.6l | the parameters. A close view for probing is desirable since
2z © it increases the amount of data that can be gathered about ¢
20.5 m—o 1 leaf (the resolution), which is immediately evident and sloe
- oz | not need to be demonstrated.

) o (o} Combining the data for the artificial and the real leaf
0.3t o o 1 showed that the validity follows roughly a linear relatibigs
‘ By finding the mean distance of the measured points to the
0-21 m/o q N fitted line, we obtained an approximate error measure of
0.1 ‘ ‘ : . ‘ o the computed validity values of about0.1. However, this
0 10 20 30 40 50 60 70

measure has been computed for leaves that are mostly planal

Angle [deg] K
Bended or curled leaves might show larger errors.

Fig. 5. A. Validity of the leaf as a function of the measured lesing
angle of the surface normal with theaxis (camera viewing direction) for VIII
the artificial leaf. B. The same for a real leaf. The validity sw@was the :
correlation between the measured and transformed 2D confauisegment
and a 2D model-leaf contour.

L EAF PROBING

After having verified the basic assumptions of our approach,
we test the method on different plants and for different
viewpoints. Each experiment proceeds in the same way:;, First
the plant is examined from a far (general) viewing positiébn o
estimated with the given method, and (ii) that moving to ghe robot arm. The ToF data is processed and a target leaf is
closer, fronto-parallel view of a leaf allows better ve@fion selected. Second, using the target's pose, a new robotqosit
of suitable leaves for probing and thus also a better determy planned and the robot is moved to get a close view of the
nation of grasping points. target. Third, the ToF data from the new view is processed

To test assumption (i), we used a planar artificial leadnd the target is confirmed if it is of sufficient validity and
For this purpose, the shape of a real leaf (Dieffembachig)aspability ¢ > —10). Only then the reaching movement
was taken and cut from a carton. The shape was also ugdomputed and the grasp is executed. Throughout all the
as a model leaf for this particular experiment. The artificirobing experiments, the same set of parameters is used ir
leaf was attached to a beam and rotated around its centett® algorithms withdmerge = 1 cm?. Note that the maximum
attain different angles of its surface normal with the viegvi validities obtained in these experiments are smaller timan i
direction of the PMD camera. The leaf was rotated in steps tife benchmark experiments, since here the model-leaf gonto
5 deg, starting a0 deg, and a depth and an infrared-intensitynight not perfectly describe the selected leaf due to nhtura
image was acquired at each step. Using our method, the leafiations in the shape appearance of the leaves.
was segmented and the surface normal was computed by fittingn Figure 6, the results of the analysis of the ToF data for
a plane to the 3D points of the segment. The enclosing angiiee experiments (A-E) obtained for the far viewing position
of the measured surface normal with thexis in the camera are shown. In general, depth segmentation delivered suffi
coordinate system was calculated. Fitting of a line to th@ daciently good results for identifying targets of intereskcEpt
revealed an approximate measurement error of ahOutdeg, for experiment C (Fig. 6C), for which segmentation failed,
which demonstrates that a sufficiently accurate estimation targets of sufficient validity could always be found. Theues
the surface normal can be obtained with the system. of the validity and graspability measure are summarized in

To verify assumption (ii), we used the model-leaf contoufable I. Targets selected during the experiments are ldbele
to calculate the validity of the extracted segments durlmg twith a unique number in the figures and the table. The
previous experiment. The validity measures the correfaticomputed grasping points are indicated with a star-shaped
between the measured 2D contour of a segment and a @pnbol in the figures.
model-leaf contour (see Section V). We observed that theBased on the selected target, a close view on the target
validity decreases with increasing angle, i.e., the furthe can be planned using its 3D pose. After moving to the close
move away from the fronto-parallel position, the more diffic position, the newly acquired data is analyzed. As can be seen
it becomes to recognize the leaf due to view-dependent shap&igure 7, segmentation improves in the close view congare
distortions and other visibility impairments. This alsoplies to the general view, and in all cases except experiment C,
that the grasping point cannot be accurately determinetl pasget leaves can be confirmed indicated by a sufficienthyelar
some angle, because the model-leaf contour together wwalidity (v > 0.3). However, in experiment E, the validity
the associated grasping point will fit the segment boundaslgcreased by).14, which is nevertheless still in the error
only very poorly. We further acquired depth and infrarednargin of the validity computation. The validity measure
intensity images from various viewing angles of a real leafan be impaired by many factors, e.g., shape differences
(the very leaf that had also been used to extract the model-lef the real leaf compared to the model leaf, non-optimal
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P 0
Intensity (PMD) Depth (PMD) Segmentation Segment validity
+ targets with grasp

Fig. 6. Segmentation and target selection results for To& dedjuired from a far viewing position relative to the plamt five different experiments (A-E).
Depth is color coded with increasing depth coded from redloe §3rd and 5th column). The grasping points of selected abdléd target segments are
marked with a red star. The validity measures the correlatetwéen the measured and transformed 2D contour of a segment2ibdredel-leaf contour.

solutions encountered by the fitting procedure, segmemtati The close view in experiment C provides more information

errors distorting the boundaries. on the plant than the far view. Now several leaves can be
Since the contour models are just a rough approximatialistinguished, reflected in the larger validity of the segtae

and the validity estimation is afflicted with some error (se@s a consequence, a better target (labeled 7) with higher

Section VII), validities are expected to increase from the fvalidity can be selected for the grasp.

view to the close view, only if the change in the viewing angle Furthermore, moving from a far-view to a close-view allows

is large (> 30 deg). Graspabilities close to zero indicate that eollecting more data about a segment and bringing the camera

grasp is executable, however, some noise in the segmantativa fronto-parallel position with respect to the leaf. Irblial,

or data can cause the graspability value to deviate slidifttty  the enclosing angle of the surface normals with the camera

zero, e.g., experiment D. viewing angles of the leaf for the far and the close view are
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4
-
Intensity (PMD) Depth (PMD) Segmentation Fitted surfaces Segment validity
Close view
B

Fig. 7. Segmentation and target selection results for Tok defjuired from a close viewing position relative to the pfan the five different experiments
(A-E). Depth is color coded with increasing depth coded frem to blue (2rd and 4th column). The grasp points of seleatedabeled target segments are
marked with a red star. The results for the close view of tatgate shown in Fig. 3.

reported, showing that surface normals have been re-dstimavith the grasp point (hexagram), the center point of theetiarg
after going to the new view and are sufficiently aligned witkcircle), the probing point (diamond), the intermediatealgo
the z-axis for the close view. In experiment C however theosition (square), the surface normal (black line), and the
viewing direction of the camera could not be aligned welpproach vector connecting all these points (green linsndJ
with the surface normal of the leaf in the close view, becausigis information the intermediate goal position of the rotan
two leaves were merged in the far view and thus no surfabe calculated.
normal of a singular leaf could be isolated at the beginning.
The grasps were then executed by first going to the interme-

The target segments and their respective grasping poiats diate goal position and then advancing to the probing positi
now used to compute the approach for probing the leaf. Images of the probing for the experiments are presented in
Figure 8, the 3D point cloud of target 2 is presented togethEigure 9A-E, demonstrating the successful execution of the
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40

Xincm

Fig. 8. Target point cloud and approach points. The 3D paiftbe selected
target segment 2 of experiment A (see Figs. 6-7A) are showrthtegevith

the associated center point (circle), probing point (diat)pgrasping point
(hexagram), the intermediate goal position (square), tfaseinormal (black

line), and the approach vector (green line), which intassead these points.

Distances are given in centimeters.

Fig. 9. A-E. Color images documenting the successful execufagrasps.
The probing tool could be accurately placed on the leaf anise-shaped
piece of the leaf could be cut. F. A leaf after a sample has balemtwith
the cutting tool.

Limited circulation. For review only

TABLE |
VALIDITY, GRASPABILITY, AND ENCLOSING ANGLE @ IN DEG OF THE
SURFACE NORMAL WITH THE CAMERA VIEWING DIRECTION FOR THE FAR
VIEW AND THE CLOSE VIEW OF EXPERIMENTSA-E IN COMPARISON.

l Example [ Vview 1 [ Uview 2 [ Yuiew 1 [ Yuiew 2 [ Qview 1 [ Quiew 2 l
A (target 1) 0.51 0.48 -31 0 6.9 4.7
A (target 2) 0.44 0.46 0 0 5.7 6.5
B (target 3) 0.55 0.51 0 0 18.5 7.3
C (target 4/7)| 0.16 0.5 0 0 15.6 17.0
D (target 5) 0.5 0.54 0 -5 1.2 2.6
E (target 6) 0.47 0.33 -29 0 26.8 6.0

IX. CONCLUSIONS

We presented a method for modeling, monitoring, and sam-
pling plant leaves using infrared-intensity images andtllep
maps acquired with a PMD camera. Since quadratic surface
models are used to guide the segmentation of the infrared-
intensity image, sparse or noisy depth data can be usedhwhic
often poses a problem to approaches working in the depth
space directly. Then, segments that are candidates to beinc
leaves are ranked and a closer view of the most promising is
taken. In this way, for example, two leaves that were iritial
merged into a single segment due to insufficient resolution i
the far view, could be separated and modeled from the close
view. Grasping points could be extracted with high accuracy
and disc samples of leaves were successfully cut.

The problem of leaf segmentation has been addressed before
by Quanet al. (2006), who proposed an image-based plant
modeling system based on structure from motion, but which
requires user interaction in the segmentation procedure to
delineate some leaves [10]. In another related work, leaves
were segmented from combined color images and stereo depth
and subsequently classified using the normalized centroid
contour distance [9]. Different from these approaches, we
extract leaves from ToF data and infrared-intensity images
Segmentation is fully automatic and based on a novel depth-
segmentation algorithm which can be applied to sparse or
noisy depth data and cope with curved surfaces. Another
difference is that leaf models are fitted explicitly whickoals
localizing grasping points.

The proposed system for automated plant probing is related
to vision-based robotic systems for fruit and vegetabl&ipip,
which have been proposed in the past for the automation of
harvesting tasks [6]. Commonly these systems first process

task. Once the cutting tool is correctly placed, it can bedus@nd segment the data in order to identify and represent the

to take a small sample of the leaf by cutting out a small disirget. Based on this representation, a robot actioncuéing
In Figure 9F an image of a leave after sampling is shown. OF 9rasping, is executed. Often the image processing task is

The accurate placement of the probing tool indicates t

eased by fixing the environment in a specific manner. For

hé{ample, in a fruit-detachment system developed by Feng

surfaces have been correctly estimated by the approach. H‘.e(ZOOB) strawberries were grown on a uniformly colored

successful execution can be partly attributed to a preeiat |

surface to simplify image segmentation [7]. In our system th

estimation, i.e., surface normal and grasping points, Whigp ironment is less constrained, and the proposed computer
could be obtained using the data acquired from the close Vigyi,n, system is thus more complex. Furthermore, a new

position.

Movies of the experiments can be
http://www.iri.upc.edu/people/galenya/pub/LeafPrapi

robotic application, i.e., the automatic sampling of lesawdth

found a& specific cutting tool, was introduced and explored. To the

authors’ knowledge, this is the first time that an activeornsi
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approach using ToF depth has been applied to robotized plant Y. Song, R. Wilson, R. Edmondson and N. Parsons: "Surfdodelling

measuring.

The method is based on several assumptions: (i) the bounﬂg]
aries of leaves are visible in the infrared-intensity ima@j¢
the leaf surfaces can be modelled by a basic quadratic mcti
o . [13]
(i) leaves of a specific plant type can be described by a
common 2D contour, (iv) leaves are large enough to allow
analyzing them with a ToF camera, and (v) the leaves are stati
during probing. These assumptions may be violated unjer
certain conditions, but nevertheless we expect the methbd t
applicable to many different types of plants given a cofebl [15]
environment.

In conclusion, we tackled a quite complex task that required
the extraction of task-relevant plant parameters from tplalf®!
images using a multi-stage algorithm, as well as the difficul
problem of the actual execution of the robot motion towards7]
the plant. The automation of plant probing has potentially a
wide range of applications both in the agricultural indystr;g
where certain, currently manual, tasks have to be executed
repetitively for many plants, usually of the same type, and
in botanic experimentation, e.g., for phenotyping, whexa | 1,
sample discs are widely used to analyze plant development in

order to determine the factors affecting growth. [20]
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