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Abstract

We are interested in the optimal control of sewage networks. It is of high public interest to minimize
the overflow of sewage onto the streets and to the natural environment that may occur during periods
of high rain. The assumption of linear flow in a discrete time setting has proven to be adequate for
the practical control of larger systems. However, the possibility of overflow introduces a nonlinear and
nondifferentiable element to the formulation, by means of a maximum of linear terms. This particular
challenge can be addressed by smoothing methods that result in a nonlinear program (NLP) or by
logical constraints that result in a mixed integer linear program (MILP). We discuss both approaches
and present a novel tailored branch-and-bound algorithm that outperforms competing methods from
the literature for a set of realistic rain scenarios.

1 Introduction
Combined sewer networks are present in many large cities all over the world. These networks
carry both wastewater and storm water together. During low to moderate rain events, this
water is carried to wastewater treatment plants, where it is treated before being released to
the receiving environment (usually a river or the sea). However, during heavy-rain events the
network capacity can be easily overloaded, causing urban surface flooding as well as untreated
water discharges to the environment, known as combined sewer overflows (CSO).

To avoid these unwanted discharges, retention tanks are usually built along the network to
store the water during the peak rain intensity periods and later release it at lower flow rates.
Since these infrastructures are clearly expensive and difficult to locate in urban areas, its efficient
operation has become a topic of major interest.

Due to the network structure as well as the uncertain distribution of the rain inflows, global
real-time control through network monitoring and rain intensity forecasts is regarded as the best
control option (Schütze et al., 2004). This approach has been studied in Gelormino and Ricker
(1994); Marinaki and Papageorgiou (1998, 2001, 2005); Pleau et al. (2005); Cembrano et al.
(2004); Puig et al. (2009); Ocampo-Martinez and Puig (2010); Ocampo-Martinez (2011) among
others.

In this work, a network model is presented to be used in an optimal control strategy to
minimize unwanted sewage discharges. Having in mind that a real-time control approach would
require to solve the optimal control problem at every time step (in a model predictive control
strategy), the main contribution of this paper focuses on discussing four different formulations
and solving procedures for the obtained optimization problems in order to determine the best
option in terms of solving time.

The paper is organized as follows. In Section 2, after a short review of the physical model, we
present a generic modeling approach for the catchment flow and overflow in sewage networks and
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also specify our choices for the flow system, which result in a linear system for the network flows
and a piecewise linear equations system for the overflows. In Section 3, we present four ways
to handle the piecewise linear equation system: firstly, we use a nonlinear formulation, which
smooths the nondifferentiable kinks. Secondly, we reformulate the system using the mixed logical
dynamical (MLD) formulation, which results in an MILP. Thirdly, we present the constraint
branching algorithm, which is a tailored branch-and-bound algorithm based on a linear relaxation
of the piecewise linear equations system and then branches on these constraints rather than
variables. The implementations of the two latter approaches are described in Section 4 and their
computational results are compared. Finally, we consider the general disjunctive programming
(GDP) approach, which is a formal generalization of the MLD approach and which can be
resolved in a second way. Finally, we draw the main conclusions and give an outlook in Section 5.

2 Sewer network modeling
The main difference among the aforementioned studies is the mathematical model that is used
to describe the network dynamics. Sewer networks are usually non-pressurized ones, i.e., water
flows only due to the effect of gravity. According to Marinaki and Papageorgiou (1998) and
Schütze et al. (2002), the preferred physical model in sewer network simulation software for
open-channel flow is based on the one-dimensional Saint-Venant equations (see Section 2.1) or
one of its simplified forms (mainly the diffusive wave equations).

Although some works in the control of irrigation canals field deal with the control of canal
reaches described by the Saint-Venant equations (Coron et al. (1999); Leugering and Schmidt
(2002); de Halleux et al. (2003); Coron et al. (2007), among others), they provide mostly theo-
retical results whose application would be limited to simple network topologies. On the other
hand, the linearized Saint-Venant equations are the base of many other works within the irri-
gation canals field, where usually one single straight canal with several hydraulic structures is
considered (Litrico and Fromion (2009); Malaterre and Baume (1998) and the references therein).
For real-time optimization-based control of sewer networks, the size and topological complexity
of the networks have required the development of faster simplified models for optimal control
purposes (Rauch et al., 2002).

Simplified models must be able to capture the most notable features of the dynamics at
computationally acceptable efforts, compatible with the real-time computation of the control
strategies. In an optimal control context, the simplified model equations are numerically solved
inside each optimizer iteration (shooting approach), or appear directly as constraints of an opti-
mization problem (collocation approach). In both cases, the problem’s features are transferred
to the discretized optimization problem (e.g., number of variables, convexity, linearity, presence
of integer/Boolean variables). The discretization/integration of the Saint-Venant equations for
the complete sewage network would lead to an optimization problem not solvable in a real-time
control framework, if even solvable at all. Although the Saint-Venant equations do not appear
directly in the optimization problems, some strategies run simulations using the Saint-Venant
model each time-step to update the simplified model (Darsono and Labadie, 2007).

To run the models, both for simulation and control, it is assumed that a short-term prediction
of the rain intensity is available at all points of the network.

2.1 Physical model
The commonly used physical model for water motion in sewer networks is based on the 1D Saint-
Venant equations with constant cross-sectional area and constant bed slope for each channel
(Marinaki and Papageorgiou, 2005; Schütze et al., 2002; Ocampo-Martinez, 2011; Rauch et al.,
2002). These equations are hyperbolic nonlinear partial differential equations (PDEs) relating
the flow and water level in an open channel/sewer:

∂tA(x, t) + ∂xQ(x, t) = 0,

∂tQ(x, t) + ∂x

(
Q2(x, t)

A(x, t)

)
+ g A(x, t) ∂xY (x, t) = g A(x, t) (Sb(x)− Sf (x, t)) ,

where

• x is the longitudinal coordinate [m],
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• t is the time [s],

• Q(x, t) is the flow [m
3

s ],

• A(x, t) is the cross-sectional area of the flow [m2],

• Y (x, t) is the water level [m],

• Sb is the bed slope [dimensionless],

• Sf (x, t) is the friction slope [dimensionless], e.g. approximated by the Manning formula
(Chow, 1959; Chaudhry, 2008; Litrico and Fromion, 2009):

Sf =
Q2n2

A2R4/3
,

with n denoting the Manning coefficient (depending on the channel physical properties)
and R the hydraulic radius,

• g the gravitational acceleration [ms2 ].

The equations are applied to each sewer and coupled by means of internal and boundary con-
ditions defined in joints, sewer geometry changes and hydraulic structures. Typical hydraulic
structures are overflow points, weirs, gates, and reservoirs. Equations for hydraulic structures
relate the flows and/or water levels up- and downstream of the structure. These connecting equa-
tions imply that the dynamics of the network need to be solved as a single system, and cannot
be solved independently for each sewer. Therefore, the computations become very demanding
for big networks with complex topologies.

2.2 Simplified network model
The model presented in the following is based on the so-called virtual tank model. This model was
first developed by Gelormino and Ricker (1994) to be used as a control model for optimization-
based control of large-scale sewer networks. It is a conceptual model that does not deal with flows
in the individual network sewers but it splits the network into catchment areas and approximates
the flows between these areas. The volume contained in each catchment area is modeled like the
volume in a tank, which gives the model its name. According to Ocampo-Martinez (2011), a
virtual tank is defined as follows:

“At any given time, let the virtual tank be a storage element that represents the total
volume of sewage inside the sewer mains associated with a determined sub-catchment
of a given sewer network. The sewage volume is computed via the mass balance of
the stored volume, the inflows and the outflows related to the sewage mains, and the
equivalent inflow associated with rainwater.”

Recently, the virtual tank model has been the basis for several studies to verify its usefulness
as a control model (Cembrano et al., 2004; Puig et al., 2009; Ocampo-Martinez and Puig, 2010;
Ocampo-Martinez, 2011). They use closed-loop simulations against a commercial simulator
based on the Saint-Venant equations to obtain performance results of the controllers based on
the virtual tank model. The virtual tank model is also the control model behind the development
of the sewer network control tool CORAL (Spanish for Optimal Control of Sewer Networks) (Puig
et al., 2009). A novel way to deal with CSO as well as surface flooding based on the work of
Ocampo-Martinez (2011) is also included in the present study.

From the control point of view, the virtual tank model is designed to be used as an upper
layer global controller. The flows computed by the optimal control problem based on the model
are used as setpoints for local PID controllers at the network gates that regulate the gate position
as a function of the measured outflow.

In the virtual tank model approach, sewer networks consist of several elements, which are
described in the following. For water storage, there are water retention tanks built by the network
operator and so-called virtual tanks, each of which representing a set of sewage collectors for a
specific zone of the city. These tanks are taken together in the set T – their main difference
is that for tanks usually the in- and outflow can be controlled, whereas for virtual tanks there
are not necessarily controllable flows. There is a treatment plant to clean the sewage, where,
optimally, all the sewage should be processed. Then, there are sewers to connect the different
tanks and virtual tanks, which can be partly controlled with pumps and valves. In some sewers,
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there are redirection gates to manipulate and redirect the flow. Other sewers are connected by
simple junctions. Both these structures are treated as tanks with maximum volume of 0 and
where all inflow is directly forwarded as outflow. These sewage networks can be displayed as
directed graphs. A conceptual example of such a network is displayed in Figure 1.
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Figure 1: A small example network with two virtual tanks v1, v2 and one retention tank r1.
Flow paths that appear due to overflow are represented as dashed connections.

During normal operation, the network can easily transport the sewage towards the treatment
plant. However, in the presence of heavy rain, it may happen that there exists no viable flow
path for the network to process all the incoming water. In these scenarios, overflow happens –
flow paths appear, which were not present before and depend on the system state and inputs.
The system states are the volumes vi in each tank and virtual tank, i ∈ T . We also need to
account the flows qi,j through the sewers as dependent variables. However, some of the flows
may be directly controlled with valves or pumps, (i, j) ∈ C, while others remain uncontrolled,
(i, j) ∈ U .

For notational simplicity, we introduce the accumulated inflow Qin
i (tj) for each node i ∈ T

at time step j. This also takes into account the inputs into the system – rain as well as normal
sewage – given by wi(tj):

Qin
i (tj) = wi(tj) +

∑
k∈T :

(k,i)∈U∪C

qk,i(tj).

For each tank i of the system, there is only one regular outflow Qout
i – controllable or not. For

the uncontrolled outflows of the tanks due to gravity, we use the following assumption: according
to the virtual tank model (Puig et al., 2009) we assume the uncontrolled outflows to be linear
in the amount of water:

Qout
i (tj) = βi vi(tj), (1)

where the parameter βi is obtained from historical sensor data, or to be calibrated online in a
real-time control approach.
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A more precise formulation would consider the water pressure in both nodes adjacent to the
sewer as well as the friction along it. However, this formulation employs nonlinearities in the
model and its contribution is neglectable in our setting. Thus, it shall not be considered in this
work. The outflows that completely exit the system are the desired flow into the treatment plant
and undesired overflows into the surrounding area polluting the environment.

The system is governed by the mass conservation law for each node i:

v̇i(t) = Qin
i (t)−Qout

i (t),

with the cumulative inflow Qin
i (t) and the outflow Qout

i (t).
This system is discretized with an explicit Euler method on an equidistant time grid with

step length ∆t and nt time intervals to obtain a discrete-time linear flow system

vi(tj+1) = vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)

)
, i ∈ T, j = 1, . . . , nt − 1, (2)

where tj = j∆t represents the j-th time step. For abbreviation, we introduce the set D of
discretization indices

D := {1, . . . , nt − 1} .
All the controlled flows are limited due to physical constraints such as sewer sizes and pump

capacities. We assume that the volumes of the real retention tanks are limited as well and they
cannot overflow since they are often placed underground and not connected to the surface. Their
inflows are hence always controlled to prevent overflow, which physically could happen. In real
applications, an overflow emergency mechanism is always present in case there is a malfunction
in the controlled devices, but we should not deal with this special situations in this paper.

2.3 Overflow modeling
As mentioned before, overflow happens if the volume obtained by the flow system exceeds the
maximum capacity vmax

i of the node i. Joints of different sewers are treated as tanks with
maximum capacity vmax

i = 0. In case of the flows being in the physical limits, no overflow
happens, but if they exceed the physical limits, all the excess amount is considered as overflow.
Overflows in each virtual tank and sewer joint can be redirected to other virtual tanks, i.e., to
another sewer catchment, or to the receiving environment (usually a river or the sea). Only in
the latter case, the overflow volume leaves the network permanently.

As soon as an overflow zi(t) appears, the corresponding node’s mass conservation equation
changes to

v̇i(t) = Qin
i (t)−Qout

i (t)− zi(t). (3)

All the overflow from one node i flows to the same target node j. For ease of notation, define
the set Z as the set of pairs of tank indices for which an overflow path exists from tank i to tank
j. The accumulated inflow is adapted to include inflows due to overflow

Qin
i (tj) = wi(tj) +

∑
k∈T :

(k,i)∈U∪C

qk,i(tj) +
∑
k∈T :

(k,i)∈Z

zk(tj).

The overflow zi can be modeled with logical decisions

IF vmax
i ≤ vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
THEN zi(tj) =

1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
ELSE zi(tj) = 0,

(4)

where the THEN expression together with the discretized version of (3), i.e.,

vi(tj+1) = vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)− zi(tj)

)
, i ∈ T, j ∈ D, (5)

also sets vi(tj+1) = vmax
i . This approach is further explained in Section 3.2.
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Another modeling approach uses a disjunction as later described in Section 3.4

[
λi(tj) = 0

zi(tj) = 0

]
∨


λi(tj) = 1

vmax
i ≤ vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
zi(tj) =

1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
 ,

i ∈ T, j ∈ D. (6)

Finally, the overflow can be modeled directly with the maximum function

zi(tj) :=
1

∆t
max

{
0, vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

}
,

i ∈ T, j ∈ D. (7)

Then, the constraints are piecewise affine equations and thus nonlinear and nondifferentiable.
Therefore, each system directly containing these constraints becomes not only nonlinear but also
nonconvex and nondifferentiable. One such constraint is displayed in Figure 2.
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Figure 2: The overflow function z(x) = max{0, x − 1} with maximum capacity vmax = 1 and
water volume change x. It is nonlinear, nonconvex and nondifferentiable in the kink at x = 1.

Overflows in joints (junctions and redirection gates) are modeled in an analogous way by
considering a joint as a tank with zero capacity, and hence constant volume of 0 (also v̇i(·) = 0).
In this case, overflows occur when the inflow to the joint exceeds the maximum outflow. Due to
notational simplicity, we omit this part of the formulation for the remainder of this paper since
there are no additional insights gained. All formulations directly carry over to these slightly
changed conditions. Here, we briefly show how to adapt the logical formulation:

IF Qin
i (tj) ≥ Qmax

i

THEN zi(tj) = Qin
i (tj)−Qmax

i

ELSE zi(tj) = 0,

where Qmax
i is the maximum capacity of the sewers leaving joint i.

The objective of the network operators is to minimize all overflows, because they have two
negative impacts: inside the city they disturb the people living there and outside the city,
they pollute the environment. However, different weights ωi > 0 can be associated to different
overflow points depending on their geographic location. Therefore, the management objective
can be formulated as follows:

min
∑

j∈D,i∈T
ωi zi(tj). (8)
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3 Reformulations and methods
In an optimal control setting, control actions are obtained as the result of an optimization prob-
lem aimed to minimize the value of an objective function that describes the system performance.
The model’s dynamics either appear as constraints of this optimization problem or need to be in-
tegrated within each optimizer iteration. The formulation of the optimization problem together
with the used solving algorithm is of capital importance in terms of the time needed to solve the
problem and the quality of the obtained solution.

Going a step further from the optimal control approach, a predictive control strategy solves
an optimal control problem at each time step taking advantage of new sensor information of the
system and new predictions of the perturbations. Thus, it is of great interest to develop fast
solving algorithms that guarantee that the solution is obtained within the available time. This
would be the goal of the application to the real world.

This section covers four approaches to handle the given overflow formulation and obtain
optimization models that can either be solved by standard algorithms or the algorithm needed
is directly specified. The first approach is based on replacing the nondifferentiable overflow
equations by differentiable approximations. We obtain an NLP, which can be locally solved
by a derivative-based algorithm. The other three approaches are based on the fact that the
nonlinearities and nondifferentiabilities are induced by the piecewise linear overflow equation.
Piecewise linear models can be formulated to produce linear optimization problems with binary
variables and they can then be solved with MILP algorithms. The difference between the last
three approaches is that the first and third ones make explicit use of the binary variables to
obtain a problem, which can be solved by standard MILP solvers, while the second one makes
use of the problem properties to come up with a constraint branching strategy that encodes the
logic decisions.

3.1 Nonlinear smoothing
Constraints (7) can be reformulated using smoothing for the nondifferentiabilites. We use hy-
perbolic smoothing to connect the two arms of the maximum function with a portion of a circle
of radius r. The circle center is at (m1, r) with

m1 := (1−
√

2)r + vmax
i .

The resulting overflow formulation is

zri (x(tj)) =


0, if xi(tj) ≤ m1,

r −
√
r2 − (xi(tj)−m1)2, if xi(tj) ∈

(
m1,m1 + r√

2

)
,

xi(tj)− vmax
i , if xi(tj) ≥ m1 + r√

2
,

with
xi(tj) :=

1

∆t
vi(tj) +Qin

i (tj)−Qout
i (tj).

We obtain the continuously differentiable function zri (·) ∈ C1(R), which is sufficiently differ-
entiable for the usual nonlinear solving methods, i.e., active set and interior point based on
accumulated first derivative approximations for the Hessian. The change from the previous
formulation is displayed in Figure 3.

3.2 Mixed Logical Dynamical system
The MLD system formulation can be used to combine the inherent logic of the overflows with
the dynamical control problem. Bemporad and Morari (1999) describe how to use the logical
formulation (4) to obtain an MILP with binary variables to model the logical decisions. They
employ binary variables λ to capture the logics of the system and provide a set of inequalities to
combine the new binary variables with dynamic structure of the continuous states. Under some
assumptions, MLD systems have been shown to be equivalent to other system modeling formats
including linear complementarity systems, extended linear complementarity systems, piecewise
affine systems, and max-min-plus-scaling systems (Heemels et al., 2001).
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Figure 3: The smoothed function with maximum capacity vmax
i = 1, ∆t = 1 and radius r = 0.5.

Due to smoothing, the nondifferentiable kink is replaced by a differentiable approximation.

As an example, let us consider the following equivalence condition of a binary variable λ and
a linear function f with the connection of the two being

[λ = 1]↔ [f(x) ≥ 0].

This condition is equivalent to the following linear inqualities:

f(x) ≥ m (1− λ) ,

f(x) ≤ (M + ε)λ− ε,

where

m := min
x∈D

f(x),

M := max
x∈D

f(x),

and ε is a small tolerance parameter beyond which the constraint is considered to be violated.
If we assume f to be a linear function and variables x to belong to a bounded domain D, m
and M can be computed or at least under- and overestimated, respectively, which is enough for
the equivalence between the logic statement and the set of inequalities to hold. As usual with
Big-M-formulations, the reformulation computationally works better, the smaller the entries of
M and the larger the entries of m, as long as they remain valid bounds (Williams, 1999).

In the case of overflow modeling, we use the following logical statements. We define binary
variables λi(tj) ∈ {0, 1}, which model whether there is overflow of node i at time step j. This
results in the following conditional system:

[λi(tj) = 1]↔ [vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i ≥ 0] (9)

and
IF λi(tj) = 1

THEN zi(tj) = vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

ELSE zi(tj) = 0

(10)

together with the flow equation (5).
IFF-THEN-formulations (9) are put into inequalities with a tolerance parameter ε and bounds

mi and Mi, which can be computed using the bounds of the involved variables

vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i ≥ mi (1− δi(tj))
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i ≤ (Mi + ε) δi(tj)− ε.

The IF-THEN-ELSE-formulations (10) are reformulated with

zi(tj) = λi(tj)
(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
,

8



which is, for λi(tj) ∈ {0, 1}, equivalent to the linear system

zi(tj) ≤Miλi(tj),

zi(tj) ≥ miλi(tj),

zi(tj) ≤ vi(tj) + ∆t
(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i −mi (1− λi(tj)) ,
zi(tj) ≥ vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i −Mi (1− λi(tj)) ,

with the same mi and Mi used above.
The reformulation can be automatically done in MATLAB

TM
with the Hybrid System DE-

scription Language (HYSDEL, see Torrisi and Bemporad (2004)), which is now part of the
Multi-Parametric Toolbox (MPT, see Kvasnica et al. (2004)). However, HYSDEL does not deal
with systems including disturbances, that in our case appear as rain inflow to the network. To
solve this problem, rain inflow variables are initially regarded as controlled variables and later the
resulting matrices of the MLD format produced by HYSDEL are split to separate the controlled
flows from the rain inflow disturbances. As a drawback to this workaround artificial bounds
wmax

i on the rain flow variables have to be added.
If we used the nonlinear pressure formulation for the outflow instead of the linearized version,

this approach would produce a mixed-integer nonlinear program (MINLP). These problems are
usually very difficult to solve – especially considering the problem size, which arises from the
time discretization together with the network size.

3.3 Constraint branching algorithm
We use the specific problem structure induced by the formulation of overflow to create a branch-
and-bound algorithm. It branches on decisions without adding the corresponding variables
explicitly to the problem. In contrast to the previously described MLD method, we do not have
to add artificial variable bounds and tolerance parameters, which have an impact on the behavior
of the algorithm since they slightly disturb the model.

The maximum equation formulation from Section 2.3

zi(tj) :=
1

∆t
max{0, vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i }

can be relaxed to the linear inequalities

zi(tj) ≥ 0, (11)

zi(tj) ≥
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
. (12)

Thereby, we obtain a linear programming (LP) problem as the relaxed problem. The meaning
of the relaxation is that the controller can choose, during each time step for each node, how much
overflow there is – even if in this situation no overflow would actually occur in reality. It can
have a positive impact to artificially generate an overflow because it may prevent overflow at
another part of the system, which may have worse weights ωi or may propagate further overflow.
However, since overflows zi(tj) are to be minimized, for optimal solutions often one of the
inequalities (11) and (12) holds with equality.

If the solution of the relaxed problem fulfills for all pairs of inequalities (11) and (12) one of
both with equality, then it is already a solution of the original problem. If this is not the case
for all overflows, the algorithm has to enforce this behavior. Branching is done on the decision
which one of the two inequalities shall be fulfilled with equality for all children in the branching
tree. Instead of dichotomy branching on variable values and adding the constraints x ≤ bx̄c or
x ≥ dx̄e for a fractional variable x̄, we add for one branch the constraint

zi(tj) = 0, (13)

and for the second branch the constraint

zi(tj) =
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
, (14)
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if the relaxed solution z̄ fulfilled both with ">". This is done until for each overflow, either (13)
or (14) holds, which is then a solution of the original problem. This property is enforced through
the branching procedure.

We use the following problem formulation OF(A,B) for subproblems at the nodes. We use
the sets A and B of index pairs to describe where the overflow has already been fixed for this
node:

min
∑

j∈D,i∈T
ωi zi(tj) (OF(A,B))

s.t. flow equations and network limits,

zi(tj) ≥
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
, j ∈ D, i ∈ T,

zi(tj) ≥ 0, j ∈ D, i ∈ T,

zi(tj) =
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
, (i, j) ∈ A,

zi(tj) = 0, (i, j) ∈ B.

Each node of the branching tree contains its own version of those two sets to describe the
fixed constraints and the general algorithm is outlined in Algorithm 1. This is a simple branching
framework, which can easily be upgraded to contain a bounding procedure to obtain a branch-
and-bound algorithm. We also experimented with the strategy to get the constraint on which to
branch next. The best results were obtained with the intuitive strategy of choosing the earliest
overflows.

Algorithm 1: Constraint branching algorithm
Data: Network structure, time discretization, rain inputs.
Result: Optimal solution, i.e. best solution in the solution pool.

Create queue of active tree nodes N and add the empty root node ({}, {}) to N .
while N is not empty do

Choose node n with corresonding fixed constraints (An, Bn) by search strategy and
remove n from N .
Solve problem OF(An, Bn) and obtain solution variables (z, v, q).
if solution is feasible then

if ∀(i, j) /∈ An ∪Bn :
zi(tj) = 0 or

zi(tj) =
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
then

Add n’s solution (z, v, q) to the pool of solutions.

else
Find a pair (i, j) such that
zi(tj) > 0 and

zi(tj) >
1

∆t

(
vi(tj) + ∆t

(
Qin

i (tj)−Qout
i (tj)

)
− vmax

i

)
Add two new child nodes to N , which have the following fixed constraints:
• (An ∪ {(i, j)}, Bn): There is overflow at node i at time step j.

• (An, Bn ∪ {(i, j)}): There is no overflow at node i at time step j.

The presented approach is similar to standard branching, with the difference that we branch
on the constraints instead of on the variables. It can be applied to other problems as well.
One has to have piecewise continuously differentiable equations and that the relaxation of the
equations to inequalities provides a convex (preferably linear) problem. It helps if the violation
of the equations is punished in the relaxation – even more so if this is an innate property of the
problem. This approach is very dependent on the exact problem structure and to our knowledge
has not yet been explored.

10



Notice that there exists a different kind of constraint branching, as e.g., Ryan-Foster branch-
ing for SOS1-constraints (Forrest and Tomlin, 2007), which partitions the feasible set due to
special constraint structures.

3.4 General Disjunctive Programming
Instead of the two preceding approaches, overflows can also be reformulated with the general
disjunctive programming (GDP) framework from Grossmann and Ruiz (2012). The authors use
general disjunctions in a first step to model reality and then propose different ways to handle
these disjunctions. Using this type of formulation and with Mi and the auxiliary formulation

xi(tj) =
1

∆t
vi(tj) +Qin

i (tj)−Qout
i (tj)

as above, and with upper bounds Mi on the new states xi, we obtain the problem

min
∑

j∈D,i∈T
ωi(tj)zi(tj) (15)

s.t. flow equations and network limits,
Yi,j

zi(tj) = xi(tj)−
1

∆t
vmax
i

xi(tj) ≥
1

∆t
vmax
i

 ∨


¬Yi,j
zi(tj) = 0

xi(tj) ≤
1

∆t
vmax
i

 , j ∈ D, i ∈ T,

Yi,j ∈ {true, false} ,
0 ≤ xi(tj) ≤Mi.

To obtain an MILP in standard form from this formulation, we can either use a Big-M
reformulation, e.g. the MLD formulation of Section 3.2, or a convex hull reformulation. The
Big-M formulation usually produces weak bounds, whereas the relaxation of the convex hull
formulation provides tighter bounds. However, the enhancement effect of the tighter bounds
can diminish due to the higher effort needed because of the state duplication. Since the MLD
approach of Section 3.2 already provides a Big-M formulation, only the convex hull approach is
examined in the following.

For the convex hull reformulation, one needs to duplicate the x-variables for each branch of
the disjunction and to introduce the binary variables λ as convex multipliers to combine those
different branches. The λ-variables model the decision which branch is taken: the one with
overflow (λ = 1) or the one without (λ = 0). Using this reformulation we obtain the following
MILP:

min
∑

j∈D,i∈T
ωi(tj)zi(tj) (GDP)

s.t. flow equations and network limits,

xi(tj) = x1
i (tj) + x2

i (tj),

zi(tj) = x1
i (tj)−

1

∆t
vmax
i λi(tj),

x1
i (tj) ∈ λi(tj)

[
1

∆t
vmax
i ,Mi

]
, j ∈ D, i ∈ T,

x2
i (tj) ∈ (1− λi(tj))

[
0,

1

∆t
vmax
i

]
,

λi(tj) ∈ {0, 1}.

The difference between the convex hull reformulation, which is a general constraint branching
framework, and the constraint branching Algorithm 1 presented in Section 3.3 lies in the different
relaxations. The relaxation of the hull reformulation by letting λi(tj) ∈ [0, 1] is tighter than the
LP relaxation proposed in Section 3.3, which can be seen in Figure 4. However, firstly, as in the
MLD formulation, tight bounds Mi are needed to provide a good formulation. For the overflow
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problem, these bounds are dependent on the rain scenario and hence need to be recalculated for
each instance individually to be accurate. Secondly, the relaxation is only tighter in the upper
part of the feasible region, which leads to higher overflow values and is not desired since z is to
be minimized.
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Figure 4: On the left hand side, the LP relaxation from Section 3.3 is drawn, whereas on the
right hand side, the projection of the hull formulation’s relaxation from (GDP) is drawn. The left
dashed line represents the scaled maximum capacity 1

∆tv
max
i and the right dashed line represents

the bound M on the maximum inflow. The arrow represents the objective.

4 Computational results
We used different versions of the approaches presented in the previous sections to compare their
performance for the minimization of the overflow of a particular sewage network.

4.1 Test network description
We used a small scale sewage network that is a part of the Barcelona sewer network and for this
network data has been provided to build the virtual tank model by the company responsible
for the management of the network, CLABSA (Clavegueram de Barcelona S.A.). This network
consists of one real tank, 11 virtual tanks and 4 redirection gates, as shown in Figure 5.

For the rain data we used 22 different real rain scenarios to compare the algorithms. This
data has also been provided by CLABSA and consists of a selection of rain events occurred in
the period between 1996 and 1999, ranging from 4 to 12 hours each. These rain events are
representative of the different distribution of the rain intensity both in space and time. Since
heavy rain events occur only sporadically, to obtain a larger set of test scenarios, some have been
artificially increased by a factor of 2.

The flow wi

[
m3

s

]
entering the network at virtual tank i is computed from pluviometer data

using a conceptual rainfall-runoff model, which is also based on the virtual tank concept, together
with a sewage forecast for the catchment area. The rain inflow is obtained by multiplying the
rain intensity I

[mm
s

]
with the catchment area Ai

[
m2
]
and scaling with a dimensionless ground

absorption coefficient φi (calibrated online) to account for infiltration losses (Puig et al., 2009)

wi(t) = φiAi Ii(t).

A discussion about the impact of rain forecast on the control performance of the virtual tank
model can be found in Cembrano et al. (2002). There, four types of rain predictions for the
optimal control problem are tested and compared: perfect prediction, constant prediction (equal
to the last measured one), worst-case prediction (increasing or constant intensity, depending on
the tendency) and best-case prediction (constant for five minutes and zero afterwards). Taking
into account that the predictions are updated at every iteration of the model predictive control
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Figure 5: Partial Barcelona sewer network with 12 tanks.

strategy, the reported results show that the constant-rain prediction provides only slightly poorer
results than the perfect prediction.

The resulting problem dimensions for the different formulations are displayed in Figure 6.
The difference between the instances is the number of time steps of the discretization, i.e.,
nt ∈ [40, 186]. The MLD model is always bigger than the model used by the constraint branching
algorithm as it needs to add integer variables and additional constraints to model the logical
decisions. The GDP model requires even more variables than the MLD model, but a little less
constraints to formulate the behavior. The number of constraints needed for the constraint
branching algorithm is the number of constraints in the root node relaxation. The constraints,
which are added in the process of branching, transform inequalities into equations corresponding
to their activation. The smoothed, nonlinear formulation has the same number of inequalities
as the constraint branching formulation since the constraint branching formulation realizes one
part of the maximum term with simple bounds.

4.2 Implementation of the optimization problems
The hyperbolic smoothing approach from Section 3.1 with a nonlinear local algorithm gives
results which are worse than the results from the other approaches. Since the formulation is
nonconvex, the results are not necessarily optimal in two senses: firstly, the reformulation at
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Figure 6: Problem sizes for the different algorithms on 22 rain scenarios for the sewage network
displayed in figure 5.

the kink of the overflow function is not exact and secondly, one would need to use a nonlinear
global algorithm to guarantee that the found optimal solution is the true optimal solution, since
it is not a convex reformulation. Therefore, purely local algorithms are generally not sufficient
to correctly solve the problem.

Nonetheless, we tried to obtain some results for local algorithms since they usually are the
subprocedures called in global algorithms. We tested the interior point method IPOPT v3.11
with the HSL linear solver ma57. The starting point was the totally uncontrolled network, i.e.,
all controls and states were set to 0. The solutions differ slightly from the optimal solution
obtained by the other approaches due to the smoothing, as shown in Figure 9. However, the
solutions were quite close to the global solutions. The deviation is due to the smoothing with
r ∼ 10−6 maxi∈T {vmax

i }.
For the MLD approach of Section 3.2, we used the HYSDEL package v1.2.8 (Torrisi and

Bemporad, 2004) in MATLAB
TM

v7.7.0 to describe the problem and obtain an MILP. Then, the
resulting MILPs are solved with CPLEX

TM
v12.1.0. The tolerance parameter ε, used to transform

strict inequalities into non-strict ones, has been set to ε = 10−3, which is enough taking into
account the variables scale. Additionally, we had to provide artificial upper bounds wmax

i for
the rain inputs to allow the transformation of the problem, since they need to be modeled as
controlled variables in the MLD framework and then later fixed to the correct perturbation
values.

For the constraint branching algorithm, we used two different implementations. The first
one – a proof of concept – is a very basic implementation of a branch-and-bound algorithm
based on the C++ Standard Template Library (STL) priority queue for the active nodes of the
branching tree with best-first-search (BFS). The resulting LPs are solved with CPLEX. However,
the algorithm does neither use parallelization for the treatment of nodes nor does it use clever
warm-starting as the solution remains feasible in the dual sense. The second implementation
uses CPLEX’s branch-and-bound framework via callback-routines to use those features. This
framework also provides a more sophisticated search strategy for the branching tree, which leads
to more LP iterations but also provides a good solution faster.

We reduced the GDP model (GDP) by eliminating the x2-variables from the model. The
needed bounds for the additional x1-variables were set very coarsely and securely by setting
Mi = vmax

i + W , where W is the total rain input. The resulting MILPs were solved with
CPLEX.

All the problems were solved with CPLEX’s standard settings.

4.3 Computational results
The computational results were obtained on a machine with an Intel dual core CPU with 2.66GHz
and 8GB RAM. They are displayed in Figures 7–9.
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In the figures, it can generally be seen that the problem difficulty does not necessarily coincide
to the problem size. The difficulty is more dependent on the amount of overflow happening in
the optimal solution in combination with the problem size.

IPOPT solves all instances but one, although the nonlinear model is nonconvex. Only in-
stance 1 could not be solved to an acceptable level and got stuck in a point of local infeasibility.
The objective values are always a little worse (but less than 1% worse) than the objective values
of the other algorithms even though the solution is almost identical. This is originated in the
smoothing technique used.

Comparing the iteration numbers, c.f. Figure 7, the GDP approach is clearly superior to
the other approaches solving most problems in the root node, i.e., 17 of the 22 scenarios. Both
constraint branching algorithms compare favorably with the MLD approach with regard to the
iteration numbers. They also solve about half the problems in the root node, whereas the MLD
approach does not solve any problem in the root. This indicates that the GDP algorithm and the
constraint branching algorithm provide much better scalability to larger networks than the MLD
approach. Notice that the MLD and GDP approaches use binary variables in the models and can
hence use cutting planes, e.g. Mixed-Integer Rounding (MIR)-cuts, to tighten the feasible region,
whereas the constraint branching formulation only indirectly introduces those binary variables.
For these models, the iteration numbers are the numbers of nodes solved in the branch-and-
bound framework. The nonlinear model’s iterations are Newton-type iterations of the interior
point method IPOPT. The comparison of iterations for the nonlinear solver in comparison to
branch-and-bound-based algorithms does not make much sense. However, we can observe that
the effort needed is more stable for the nonlinear approach than for the branch-and-bound-based
algorithms.

With regard to the computational times, the iteration results do not directly carry over,
but additionally the problems’ dimensions as well as the implementations have to be taken
into account. First, we compare both constraint branching schemes. The more sophisticated
approach is about one order of magnitude faster than the simple scheme, which is due to hot-
starting and parallelization on two cores. Yet, it needs more iterations, which also comes from
the parallelization and from the different search strategy, which incorporates diving to provide a
fast near-optimal solution. The simple realization is quite slow and sometimes needs even more
time than the MLD realization, which has to solve larger problems. The more sophisticated
implementation overcomes this and is almost always the fastest procedure. The GDP approach
is slower than the constraint branching algorithm since each iteration (especially the root node)
is more costly. One part of this higher effort is due to the larger problem dimensions, but the
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time spent in heuristics and cutting plane procedures to tighten the bounds also increase the
effort per node. The constraint branching algorithm cannot apply these procedures due to no
incorporated binary variables. For IPOPT, the overall computational times are 2–3 orders of
magnitude worse than the computational times of the other approaches. Even for these small
test instances, the algorithm comes much closer to the overall time limit of 5 minutes – and for
instance 1, it takes more than 5 minutes to arrive at the local minimizer of feasibility.

Overall, we can state that the GDP approach takes a little longer than the constraint branch-
ing algorithm but the bounds produced by the procedure are tighter. Additionally, the obtained
MILP formulation allows the usage of standard algorithms, which can tighten the formulation
even further with cutting planes. Therefore, 17 of the 22 test instances were already solved in
the root node, in comparison to 12 for Algorithm 1, and the number of iterations were in all but
1 instance the smallest for the GDP approach.

5 Conclusions
We presented a piecewise linear model for overflows in sewage water networks. This model
is used in an optimal control approach to minimize overflows in a test network. The optimal
control problem is reformulated in four ways to produce equivalent optimization problems, which
have been compared computationally. Resulting from these different formulations, we provided
several implementations that solve the given instances in the desired five minute time window.
The considered problems optimize the controls for the network with rain and water forecasts of
almost two days taken into account.

The hyperbolic smoothing approach from Section 3.1 did not provide the desired results. It
converged in all but one instance to the global optimum but it needed much more time to find
the optimum than the other algorithms.

The GDP approach has some advantages in comparison to the other approaches: It is an
easily applied standard modeling approach with no additional thought process involved. It
provides much tighter bounds than the constraint branching algorithm and the MLD approach.
This probably makes it scale better toward bigger problems even though the computational times
are worse than those of the constraint branching algorithm.

Overall, the GDP’s perspective formulation seems to be very well suited for disjunctions of
small size – in this case, each disjunction has only two disjuncts. It preserves the linearity of the
constraints in the disjunctions, which makes the approach especially suited for linear models.
The MLD’s Big-M formulation compares unfavorably. Although, it preserves linearity and is
as easily implemented, the bounds provided by the relaxation are much worse and hence the
resulting algorithm performs much worse. The tailored branch-and-bound algorithms provide
an alternative but need to exploit the special problem structure to be able to compete with the
generally applicable GDP approach with perspective functions. It is no new discovery but still a
useful reminder though that a problem specific tailored branch-and-bound algorithm can provide
very good results and can outperform the standard approaches, which is especially needed in
real-time applications. Additionally, its implementation usually provides deeper insight into the
problem and its structures.

There remains the open question of the application into a moving horizon framework. For the
test instances, the complete problem could be solved within the time limit but for larger instances,
this might not be the case anymore. When the horizon shifts, the contorl of the past problem’s
first time step is applied and shifted out of the horizon. The old time steps 1, . . . ,m − 1 are
shifted to become the new problem’s time steps 0, . . . ,m−2, and a new time stepm−1 is created
with new forecast data. It is certainly possible to start in the old solution for the remaining time
steps and to enumerate all possible branches for the newly created time step. This gives a good
initial solution if the new forecast data does not deviate too much from the old forecast data and
if the model correctly represents the real system and not only an approximation. It remains open
whether it is possible to re-use some of the branching information from the previous runs. The
application of model predictive control techniques to optimal control problems in Diehl (2002);
Kirches (2011) can be taken as a vantage point for future research.

Even though the computational times of IPOPT are much worse than those of the other
algorithms, the starting point plays an important role. While we chose an all-0 starting point,
in a moving horizon framework, the algorithm could start much closer to the optimum. This
would probably speed-up its convergence by a large amount. This question should be studied
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when the whole process is transferred to a MPC framework, where the solutions of the past time
steps are used to initialize the new starting point.

All of the presented approaches generally remain applicable, if the linear gravity driven flow
is replaced with a pressure dependent equation, which also considers friction, to augment the
model. However, the MLD and GDP approaches would produce MINLPs. These are often
very hard to solve and the state-of-the-art software is not comparably reliable and fast as, e.g.,
CPLEX in the MILP case. On the other hand, the constraint branching approach would give
a branching framework with nonlinear subproblems that is already a tailored solution to an
MINLP and that seems at first glance at least as solvable.
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