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Abstract— A multi-layer model predictive control (MPC)
scheme with temporal multi-level coordination for regional wa-
ter networks is proposed. First, a multi-layer control structure
resulting from a functional decomposition of water network is
briefly presented. Inside each layer, a MPC based controller
is used. Between related layers, a temporal multi-level coordi-
nation mechanism is used to generate control strategies which
consider objectives and time scales of both layers. The proposed
approach will be applied to the Catalunya Regional Water
Network. The paper presents the results based on an aggregate
model of this network.

I. INTRODUCTION

From a functional perspective, a regional water network
can be structurally organized into three layers [1]:

• Supply layer, which is the upper layer, composed by
water sources, large reservoirs and also natural aquifers.

• Transportation layer, the middle layer, links water treat-
ment with reservoirs distributed all over the city.

• Distribution layer, the lower layer used for meeting
consumer demands.

Each of the layers of a regional water network must be
operated at different time scale because of the different
dynamics they present according to their specified objectives.
In general, these layers are often separately operated and the
ecological effect, also sustainable usages of water has seldom
been included [1]–[3]. The coordinated operation of different
layers in a regional network is one of the main motivations
for the research in this paper.

MPC has been proven to be one of the most effective
control strategies for the global optimal operational control
of large-scale water networks [1], [4], [5].

The main contribution of this paper is proposing a tempo-
ral multi-layer hierarchical MPC scheme for regional water
networks. The proposed strategy will coordinate the MPC
controllers for the supply and transportation layers by means
of a temporal hierarchical sequence of optimizations and
constraints going from the upper to the lower layer.

The paper is organized as follows: Section II introduces
the control oriented modelling methodology proposed for
regional water networks. In Section III, MPC, multi-layer
MPC and temporal multi-level coordination techniques are
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outlined. In Section IV, the formulation of MPC and tem-
poral multi-level coordination is presented. In Section V,
the considered case study based on the Catalunya Regional
Water Network is described. In Section VI, the application
results of the proposed modelling and controlling approach
to Catalunya Regional Water Network are outlined. Finally,
in Section VII, the main conclusions are presented.

II. CONTROL ORIENTED MODELLING
METHODOLOGY

A water system generally contains tanks, a network of
links(pipes and open-flow channels) and a number of de-
mands. Valves and/or pumping stations are elements that
allow to manipulate the water flow according to a specific
policy and to supply water requested by the network users.

A. Tanks and Reservoirs

The mass balance expression relating the stored volume v,
the manipulated inflows qjin and outflows qhout (including the
demand flows as outflows) for the i-th tank can be written
as:

vi(k + 1) = vi(k) + ∆t

∑
j

qjin(k)−
∑
h

qhout(k)

 (1)

where ∆t is the sampling time and k denotes the discrete-
time instant. The physical constraint related to the range of
admissible water in the i-th tank is expressed as

vi ≤ vi(k) ≤ vi, for all k (2)

where vi and vi denote minimum and maximum storage.

B. Actuators

The manipulated flows through actuators represent manip-
ulated variables, denoted as qu. Both have lower and upper
limits, which are taken as system constraints. As in (2), they
are expressed as

qui ≤ qui(k) ≤ qui, for all k (3)

where qui and qui denote minimum and maximum flow.

C. Nodes

These elements correspond to the network points where
water flows are merged or split. Thus, the nodes represent
mass balance relations, being modelled as equality con-
straints related to inflows and outflows. Expression of the
mass conservation in these elements can be written as∑

j

qjin(k) =
∑
h

qhout(k) (4)



D. River Reaches

A single canal reach can be approximated by using the
IDZ model in literature [6] and [7] as follows:

Ydns(s) = G1(s)Qups(s) +G2(s)Qdns(s) (5)

where Ydns(s) is water level at the control point, and
Qups(s), Qdns(s) are the upstream and downstream flows,
respectively. Moreover, G1(s) = e−τds/(Ads) and G2(s) =
−1/(Ads) with τd being the downstream transport delay and
Ad the downstream backwater area.

Taking into account the linearized relation between Qdns
and Ydns, the following relation can be established:

Qdns(s) = βYdns(s) (6)

where β is a constant. Combining (5) and (6), the following
first order plus time delay (FOPTD) model is obtained

G(s) =
Qdns(s)

Qups(s)
=
Ke−τds

Ts+ 1
(7)

with K = 1 and T = Ad/β. This model can be represented
in discrete-time, using a sampling time ∆t, as follows:

Gd(z) =
Qdns(z)

Qups(z)
=
b0z
−d

z − a1
(8)

where d = round(τd)/Ts, b0 = 1 − a1 and a1 = e−
Ts
T .

Alternatively, it can be written as a difference equation as

qdns(k + 1) = a1qdns(k) + b0qups(k − d) (9)

E. Demand and Irrigation Sectors

Demand and irrigation sectors (simplified as water de-
mand) represent water demands made by network users. That
are considered as measured disturbances of the system at
a given time instant. The demand can be anticipated by
a forecasting algorithm [8] which is integrated and run in
parallel with MPC closed-loop architecture.

III. TEMPORAL MULTI-LAYER MPC SCHEME
A. Model Predictive Control

The standard MPC problem based on the linear discrete-
time prediction model is considered as described in [9]:

x(k + 1) = Ax(k) +Bu(k) (10a)
y(k) = Cx(k) (10b)

where x(k) ∈ Rnx is state vector and u(k) ∈ Rnu is
vector of command variables, while y(k) ∈ Rny is vector
of the measured output. Following the formalism provided
by [9], the cost function is assumed to be quadratic and
the constraints are in the form of linear inequalities, which
constitute the following basic optimization problem (BOP):

min
(u(0|k),··· ,u(Hp−1|k))

J(k) (11a)

s.t. x(i+ 1|k) = Ax(i|k) +Bu(i|k), i = 1, · · · , Hp

x(0|k) = xk (11b)
xmin ≤ x(i|k) ≤ xmax, i = 1, · · · , Hp

umin ≤ u(i|k) ≤ umax, i = 0, · · · , Hp − 1

As described above J is a performance index, representing
operational goals of the system, Hp is the prediction horizon,
x(0) is the initial condition of the state vector, xmin and
xmax are minimal and maximal capacities of tanks, while
umin and umax are known vectors defining the saturation
constraints on inputs variables. MPC Problem (11) can be
recast as a Quadratic Programming (QP) problem, whose
solution:

U∗(k) , [u∗(0|k) · · ·u∗(Hp − 1|k)]T ∈ RHpm×1 (12)

is a sequence of optimal control inputs that generates an
admissible state sequence. At each sampling time k, MPC
Problem (11) is solved for the given measured/estimated
current state x(k). Only the first optimal move u∗(0|k) of
the optimal sequence U∗(k) is applied to the process:

uMPC(k) = u∗(0|k) (13)

the remaining optimal moves are discarded and the optimiza-
tion is repeated at time k + 1.

B. Multi-layer Model Predictive Control
This paper proposes a temporal multi-layer MPC scheme

for the control of regional water networks [10].
The general principle of temporal multi-layer MPC is that

decision of a higher layer have a wider temporal extent than
the one of a lower layer. At the same time, because of the
limited capacity, the higher level decision units process more
aggregated information than the lower ones. In this paper, a
two-level structure related to the supply and transportation
layers of a water network is proposed as shown in Fig. 1.

Fig. 1: Temporal hierarchy Multi-layer MPC

The water systems corresponding to these two layers
and operated according to different goals and time scales.
However, both layers use MPC to compute control strategies
which can be characterized by the pair (Hp, Ts), where Hp

is a the time horizon, Ts is the sampling time.

C. Temporal Multi-layer Coordination Techniques
As shown in Fig. 1, the way to represent interaction

between the upper (daily model for the supply layer) and
lower (hourly model for the transportation layer) layers relies
on two elements:
• Measured disturbance (Ms): which handles the related

aggregated demands at the transportation layer in ev-
ery horizon time as communication information to the
supply layer.



• Target constraints(Td): which expresses management
policies at the supply layer to the transportation layer
in the form of control constraints.

1) Measured Disturbance: In the topology of the supply
layer, the whole transportation layer is simplified as one
aggregated demand. Measured state in every optimization
process for supply layer is the sum of the related demand in
every sampling time of supply layer (here is 24 hours)

Ms(k) =

24∑
i=1

dt(k, i) (14)

where dt(k, i) is demand vector at the transportation layer
corresponding to the k-th day.

Thus, Ms(k) should be considered as the demand for the
supply layer

ds(k) = Ms(k) (15)

2) Target Constraints: The goal for the temporal coor-
dination algorithm is transferring management policies from
the upper (supply) to the lower (transportation) layer. In order
to achieve this coordination, the following constraint is added
to the the lower layer MPC

24∑
k=1

u(i, k) ≤ Td(i) (16)

where u(k) are the shared controls between supply and
transportation layers.

This constraint is introduced in order to enforce that the
amount of water decided to be transferred from the supply to
the transportation layer by the upper layer MPC is respected
by the lower layer MPC. Without such a constraint the lower
layer MPC would decide the amount of water ignoring the
upper layer MPC policy.

The coordination working structure is shown at Fig. 2:

Fig. 2: Upper and Lower layer optimizations of multi-layer MPC

IV. FORMULATION OF THE TEMPORAL
MULTI-LAYER MPC SCHEME

A. State Space Model for Supply Layer

The state space model of supply layer has two kinds of
states and managed variables. First kind of state variables
represent reservoirs and the managed variable corresponds
to actuator flows:

x(k + 1) = Ax(k) +B u(k) +Bp [d(k)− ε(k)], k ∈ Z
(17)

where x(k) are state variables representing tank/reservoir
volumes, u(k) are the control actions which correspond to
actuator flows, d(k) is disturbance corresponds to demands
and ε(k) are the slack variables for violated demands.

At this function, ε(k) is introduced to control the amount
of demand which has not been satisfied.

The second kind of states and managed variable represent
river flows in a river reach model with delays. For simplicity
and brevity of the explanation, consider river reach model (9)
as a transport delay [11]:

qouti = qini(k − τd) (18)

where τd represents delay values. For time delays associated
with flows within the network, the following auxiliary state
equations are introduced:

xj ,1 (k + 1) = qj(k) (19)

xj ,i+1 (k + 1) = xj ,i (k), i = 1, · · · , τd (20)

where xj ,i (k) are state variables represent flows, qj(k) mean
flows, which are considered as part of managed variables and
τd is the number of delays.

More details on how this approach can be extended to the
case that river reach model (9) is not just considered as a
delay can be found in [11].

After integrating (19) and (20) with (17), we have a new
augmented state space representation

x̃(k + 1) = Ã x̃(k) + B̃ ũ(k) + B̃p [d(k)− ε(k)], k ∈ Z
(21)

where

x̃(k) =

[
x(k)
xj ,i (k)

]
, ũ(k) =

[
u(k)
qj(k)

]
and x̃(k) ∈ Rñx , ũ(k) ∈ Rñu .

According to (2) and (3), all the variables are subject to
the following inequality constraints:

x̃min ≤ x̃(k) ≤ x̃max (22)

ũmin ≤ ũ(k) ≤ ũmax (23)

εmin ≤ ε(k) ≤ εmax (24)

where x̃min and x̃max are physical limitations of the reser-
voirs, while ũmin and ũmax are physical limitations of the
river flows. The range of εmin lies between zero and the
related demand.

As described at Section II, balance at every node should
be satisfied, where E, Ed, Ex̃ are matrices obtained from
topology of the water network:

E ũ+ Ed d− Ed ε+ Ex̃ x̃ = 0

During the consumption process, water storage in reser-
voirs should be kept above a given level (named as water
safety level) which is used as emergency supply for drought



periods. Any situation below the emergency level should be
penalized using soft constraints:

x̃ ≥ x̃r − εx̃ (25)

εx̃ ≥ 0 (26)

where x̃r is the water safety level and εx̃ is the slack value
corresponding to x̃r .

The state space model of the transportation layer is simpler
since the states corresponds to the tank volumes and the
manipulated variables are the flows in pumps and valves.
This leads to a standard state space representation (10) for
the transportation layer. More details can be found in [1].

B. Operational Goals

1) Operational Goals for Supply Layer: The supply net-
work is operated with a 30-day horizon, using daily time
control interval. The main operational goals to be achieved
in the supply network are:
• Operational safety (Jsafety): Maintain appropriate wa-

ter storage levels in dams for emergency-handling.
• Demand management (Jdemand): Fully satisfy urban de-

mands while satisfy irrigation demands with slackness.
• Balance management (Jbalance): Keep rivers or reser-

voirs consumed in a fair and balanced way in order to
escape water deficits in the long run.

• Minimizing waste (Jmwaste): Minimize unnecessary
water release from reservoirs which does not meet any
demand and is eventually wasted.

• Environment conservation (Jecological): Maintain water
levels and ecological flows of rivers, which included in
Jsafety during the calculation.

Above mentioned goals lead to the following function:

J = Jsafety + Jdemand + Jmwaste + Jbalance

= εx̃(k)>Wx̃εx̃(k) + ε(k)>Wfε(k)

+ (ũi...j(k)− ũs(k))>Ww̃(ũi...j(k)− ũs(k))

+ (
(

0 . . . 1
xi′max

. . . −1
xj′max

. . . 0
)
x̃(k))

>
Wm̃

× (
(

0 . . . 1
xi′max

. . . −1
xj′max

. . . 0
)
x̃(k))

(27)

where

εx̃(k) = x̃(k)− x̃r
ũ = Θ∆ũ+ Πũ(k − 1)

∆ũ(k) = ũ(k)− ũ(k − 1)

and Wx̃, Wf , Ww̃, Wx̃, Wm̃ are the related weights accord-
ing to the priority policies established by network managers
[9].

2) Operational Goals for Transportation Layer: The
transportation network is operated with a 24-hour horizon,
at hourly time interval. The main operational goals to be
achieved in the transportation network are:
• Cost reduction (Jcost): Minimize water cost during

water supplying process.

• Operational safety (Jsafety): Maintain appropriate wa-
ter storage levels in dams and reservoirs of the network
for emergency-handling.

• Control actions smoothness (Jsmoothness): Smooth flow
set-point variations for sustainable process operation.

Above mentioned goals lead to the following function:

J = Jsafety + Jsmothness + Jcost

= εx̃(k)>Wx̃εx̃(k) + ∆ũ(k)>Wũ∆ũ(k)

+Wa(a1 + a2(k))ũ(k)

(28)

where

εx̃(k) = x̃(k)− x̃r
ũ = Θ∆ũ+ Πũ(k − 1)

∆ũ(k) = ũ(k)− ũ(k − 1)

and Wx̃, Wũ, Wa are also related weights.
The vectors a1 and a2 contain the cost of water treatment

and pumping, respectively.

C. Formulation of the optimization problem

The objective functions (27) and (28) of the MPC problem
can be formulated in the following way:

J = zTΦz + φT z + c (29)

where
z = [∆ũ εx̃ ε]T (30)

and c is a constant value.
This allows to determine optimal control actions at each

instant k by solving a quadratic optimization problem by
means of quadratic programming (QP) algorithm in form as:

min
z
z>Φx+ φ>z

A1z ≤ b1
A2z = b2

D. Formulation of Temporal Coordination Problem

As explained in Section III, the goal for the temporal
coordination algorithm is transferring management policies
from the upper (supply) to the lower (transportation) layer.
In order to achieve this coordination, the constraint (16) is
added to the the lower layer MPC.

Constraints generated after taking into account the follow-
ing algorithm:
• after the application of n hourly control actions us(k)

corresponding to the i-th day, the total remaining water

for this day will be: Td(i)−
n∑
k=1

u(k)

• when limiting the control actions in the prediction
horizon L, there is a part of control actions u(k) that
corresponds to hours of the current day i that should
be limited by Td(i), while the other part corresponds to
hours of the next day i + 1 that should be limited by
Td(i+ 1).

• the generated constraints are added as additional con-
straints of the BOP problem associated to the lower
layer MPC.



V. CASE STUDY: CATALUNYA REGIONAL WATER
NETWORK

A. Description
The Catalunya Regional Water Network provide the water

supplies of the metropolitan area of Barcelona where most
of the population of Catalunya region is concentrated. The
Catalunya Regional Water Network supplies water mainly
from two rivers (Llobregat and Ter).
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Fig. 3: Aggregate diagram of Catalunya Regional Water Network.

In Fig. 3, an aggregate model of Catalunya Regional
Water Network is provided. According to the definition
of functional decomposition, the Catalunya Regional Water
Network can be separated into three layers. The supply layer,
composed by rivers Llobregat, Ter and all the connected
elements, lies on the two sides of Fig. 3. The transportation
layer, composed by metropolitan areas and also treatment,
desalination plants inside them, is in the center of Fig. 3.
The distribution layer, which is not described at this network
lies inside of each demand at the transportation layer. The
hydrological regime of Catalonia, is characterized by the
irregularity of its rainfall pattern, which, as is typical of the
Mediterranean climate, varies greatly between years. This
makes the region especially vulnerable to drought episodes,
which are expected to increase due to climate change. This is

a big motivation for developing the multi-layer MPC scheme
proposed in this paper that provides a better management of
the water resources.

B. Control Objectives

The control objectives of Catalunya Regional Water Net-
work, which are addressed at different layers, are presented
in Section IV.

In the Catalunya Regional Water Network, there exists
more than one source for some demands. Because of different
prices, the demand could ask as much as possible water
from the cheaper river, which could lead to overdrawn
and unbalanced problem. This paper applies controls that
manage water usages at rivers proportionally with the storage
capacity of their dams.

VI. RESULTS

A. Supply Layer

Table I provides detailed results and also comparison of
water usages of the two rivers before and after balancing
management achieved with the proposed multi-layer MPC
scheme. In the table, S means outside sources flow into
rivers, FD means fixed demands which can not choose water
source while VD is the demand which can receive water from
more than one river. BD is the water volume that has been
consumed from each of the reservoirs and PB is proportion
of BD. PR is the proportion of storage capacities of the
two reservoirs. The similar values for PB and PR is what
the balance management wants to reach. And SA is water
supply ability in days of the whole water network before
meeting deficit problems at the hypothesis of no rain and
no water flow in from outside. The comparison proves that,
after using balance management, the proportion of water
usage from two rivers (58.93%) is much more proportional
to their storage capacities (53.48%). And what is more, the
Catalunya Regional Water Network can supply water 65 days
longer than in the case without balance management, which
is a benefit for the sustainable usage of water resource in the
long term perspective.

TABLE I: Balancing comparison (all values in e.u.)

Sc. With Balancing Management
Es. S FD VD BD PR PB SA
L. 3008 2981 724 697 58.93% 53.48% 242 DaysT. 3532 3518 1196 1182
Sc. Without Balancing Management
Es. S FD VD BD PR PB SA
L. 3008 2981 7.6 -19.4 -1.02% 53.48% 177 DaysT. 3532 3518 1914 1900

B. Transportation Layer

Fig. 4 shows in the same plot the pump flow compared to
its electricity fee. From this figure, it can be noticed that the
pump sends more water to the reservoir at the lower price
period and less or no water at the higher price period, which
is consistency with the economical objective.



Fig. 4: Pump flow with electricity price

C. Coordination

Fig. 5 shows the amount of water consumed by the trans-
portation layer from different rivers for satisfying the same
demands before and after coordination, respectively. The two
figures prove that average levels of water consumptions from
two rivers are much closer after balance management.

Fig. 5: Flows of two rivers before and after temporal

Table II provides results in detail and compares them
in economical cost over four days using three different
control techniques: current control, which is the traditional
control method without MPC, MPC with temporal multi-
level coordination and MPC without coordination.

TABLE II: Closed-loop performance results (all values in e.u.)

Curr. MPC with C. MPC
Wat. Ele. Tot. Wat. Ele. Tot. Wat. Ele. Tot.

240 100 340 213 44 257 141 40 181
239 106 345 237 47 284 170 39 209
246 94 340 238 48 286 171 41 212
264 110 374 253 66 319 168 42 210

-5% -50% -18% -34% -61% -42%

Table II shows that, MPC technique with temporal coordi-
nation is better than the current control but a little worse than
MPC technique without coordination at the point of econom-
ical cost, especially regarding water source cost. It is because
after introducing coordination techniques, demands at the
transportation layer could consume more water from the
expensive river in order to keep usage balance. From a long
time perspective, sustainable usage and ecological protection
of rivers have been achieved at the price of certain limited
cost. Besides that, even from an economical perspective, the

MPC with coordination techniques is more desirable than
MPC without coordination because after coordination, the
Catalunya Regional Water Network can supply water 65 days
longer compared to the case without balance management as
Table I shows, which saves much economical expenses by
solving the deficit problem.

VII. CONCLUSIONS

In this paper, a multi-layer MPC scheme with multi-level
coordination for regional water supply systems is proposed.
The need of coordination derives from the fact that different
networks in the water supply and transportation systems
are operated according to different management goals, with
different time horizon. While the management of the supply
network is mainly concerned with long term safe-yield
and ecological issues, the transportation layer must achieve
economic goals in the short term, while meeting demands
and operational constraints. The use of the modelling and
coordination techniques proposed in this paper allows ob-
taining short-term strategies which can effectively consider
long-term objectives as well.
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