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Abstract. The hide-and-seek game has many interesting aspects for
studying cognitive functions in robots and the interactions between mo-
bile robots and humans. Some MOMDP (Mixed Observable Markovian
Decision Processes) models and a heuristic-based method are proposed
and evaluated as an automated seeker. MOMDPs are used because the
hider’s position is not always known (partially observable), and the seeker’s
position is fully observable. The MOMDP model is used in an off-line
method for which two reward functions are tried. Because the time com-
plexity of this model grows exponentially with the number of (partially
observable) states, an on-line hierarchical MOMDP model was proposed
to handle bigger maps. To reduce the states in the on-line method a
robot centered segmentation is used. In addition to extensive simula-
tions, games with a human hider and a real mobile robot as a seeker
have been done in a simple urban environment.
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1 Introduction

Small differences of the hide-and-seek game can be found in the interactions be-
tween humans, or robots and humans, in urban spaces, as for example looking
for a person in a crowded urban environment. In 2005 Johansson and Balkenius
[1] suggested that the game of hide-and-seek is an ideal domain for studying
cognitive functions in robots and it is a basic mechanism for human robot inter-
action in mobile robotics, because hide-and-seek requires the robot to navigate,
search, interact on and predict actions of the opponent. In this work we focus
on the prediction of the opponent’s actions. This could be used to find persons;
furthermore hide-and-seek could be seen as a simplification of search-and-rescue.

The hide-and-seek game is an interactive game in which the two players
interact indirectly, one trying to catch while the other is trying to flee (the seeker
is a robot and the hider is a person in our case). Players of the game can follow
several strategies to win the game, depending on their role. The robot’s strategy
could be simply pre-programmed, but a more intelligent approach would be to
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decide a strategy which can be applied in multiple situations. In this game,
as in real life, there are uncertainties of the location of the other player. The
later is a reason why we chose MOMDPs (Mixed Observability Markov Decision
Processes) [2, 3], a variant of Partially Observable Markov Decision Processes
(POMDPs) [4, 5]. POMDPs have been successfully applied to various robotic
tasks [6, 7], but unfortunately, computing an optimal policy exactly is generally
intractable [8] because the size of the belief space grows exponentially with the
number of states. POMDPs have been also used in [2, 3, 9] to play the game tag,
a variant of hide-and-seek.

In our MOMDP approach of the hide-and-seek game the robot and the per-
son move at the same time from one position to another (given by the (x, y)
coordinates of the grid cells where they are located). The robot updates a be-
lief (a probabilistic state estimate) and chooses an action (a robot movement)
to maximize the expected future reward, meanwhile the person chooses also an
action following its own strategy to win the game.

MOMDPs are POMDPs in which the partly and fully observable state vari-
ables are separated. In our game we assume that the robot’s position is fully
observable, and the hider position is not always visible (partially observable).
This results in a compact lower-dimensional representation of its belief space.

In this work, we analyze and apply an off-line and on-line MOMDP model
as proposed in [10]. This off-line model works very well for maps with a small
number of grid cells, but it becomes intractable (PSPACE-hard, [8]) for a large
number of grid cells. For this reason we proposed an on-line MOMDP model [10]
that computes a locally near-optimal policy at every step, which in principle can
be applied to large maps. The on-line method is a hierarchical model of two
levels, where the top level MOMDP has a reduced number of states. The state
reduction is obtained through a segmentation process of the map. The bottom
level contains a fine resolution of the map in which the beliefs are computed.
Finding a policy however is done with the top level MOMDP. The on-line method
can also be applied to navigation problems, or other like problems where a
high resolution map is used. Finally an automated heuristic seeker is tested for
comparison.

All seeker methods have been tested in simulation and in real life experiments
using a real robot (Tibi and Dabo [11, 12]) against a human hider in a simple
urban environment (see Figure 3).

2 Definition of the Hide-and-Seek Game

Our version of the hide-and-seek game is defined as follows. There are two play-
ers, a seeker and a hider, who play on a grid of n×m cells. The grid contains: a
special free cell called the base, other free cells on which the players can move,
and obstacle cells that are not accessible by the players and also limit their mu-
tual visibility. In the initial state of the game, the seeker is placed on the base
and the hider can be placed on any free cell not visible from the base.
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The game is run for a maximum of H time steps. At each time step, both
the seeker and the hider can stay in the same cell or move to a free neighbor cell
in an 8-connectivity neighborhood (i.e. a maximum of 9 actions for each player).
The seeker wins if it approaches the hider sufficiently (we use a distance of 1 cell)
and ”catches” it. The hider wins if it reaches the base before being caught by
the seeker. And the result is a tie when no player has won within the maximum
predefined time H or if both reach the base at the same time. Orientation angles
are not considered for the players, they are both supposed to have 360◦ visibility
at each time step, only limited by the obstacles. Hence, the visibility for each
player is calculated with a ray-tracing algorithm in simulation or with a range
laser in the real world.

The MOMDPs presented in the next two sections model the game from the
point of view of the seeker, this is, we want to learn a policy for the seeker
assuming that the hider follows a certain unknown strategy. It is also assumed
that the seeker’s state is fully observable for itself (no local uncertainty), whereas
the hider’s state is partially observable, in the sense that the hider’s position is
identified if the hider is visible from the seeker’s position and otherwise it is
unknown for the seeker.

In our simulations, two virtual robots are involved: an automated seeker
applying the MOMDP learnt policy or using a heuristic is confronted with a
random or a ”smart” (heuristically driven) hider. In our real-world experiments,
a physical robot (Dabo) has the role of the seeker and plays against a human
opponent in the role of the hider.

3 Off-line MOMDP Model for Hide-and-Seek

The hide-and-seek game can be cast as an off-line MOMDP model [2, 3], where
the state is composed by the grid cell positions of both players. This means that
the number of states is the square of the number of grid cells of the 2D map
where the game is going to be played. The number of grid cells depends on the
resolution that we want to consider in the game (e.g., a grid cell of 1× 1 m2 in a
2D map of 10× 10 m2 implies 10 000 MOMPD states). Formally, the hide-and-
seek game is modelled as:

〈X ,Y,A,OX ,OY , TX , TY , ZX , ZY , R, γ〉 (1)

where:

– X : the fully-observable state variable that contains the seeker’s position x =
(xseeker, yseeker);

– Y: the partially-observable state variable containing the hider’s position y =
(xhider, yhider);

– A: the 9 actions of the seeker: north, northwest, west, ..., halt. Each of the
actions represents a movement of one grid cell at maximum per time step,
except for the action halt which represents staying at the same state;
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– OX : OX = X , since ox = x for all states of the seeker, note that this is added
for completeness and in reality x is used directly instead of ox;

– OY : OY = Y ∪ {unknown}, which is the union of the set of hider positions
and a special observation value unknown, which represents the cases when
the hider is not visible to the seeker;

– TX , TX (x, y, a, x′) = p(x′|x, y, a): the transition probabilities of the seeker’s
state given an action. In our case the actions are deterministic for the seeker’s
position: given the current position x, action a, and the map it brings the
seeker directly to a new state x′, independently of the current position of
the hider y. Therefore these probabilities will always be 1 or 0, taking into
account that the result of an infeasible action is defined as staying on the
same cell. For example, when the seeker has a wall in the north of it and
it chooses the action north, the action cannot be done and therefore it will
result in not modifying the seeker’s state. Also reaching the final state will
result in staying in the same state;

– TY : the transition probabilities of the hider’s state given a seeker’s action and
locations of the seeker and hider, TY(x, y, a, x′, y′) = p(y′|x, y, a, x′). These
probabilities are not as evident as the previous ones since the action of the
hider is not known. There are two suggested solutions: the first is to spread
the probabilities of the movement of the hider uniformly, the second option
is to use historical data of human players. Both options are discussed in
detail in [13], but since the results with historical data were not significantly
better, we chose for the easier option of using uniform probabilities. Also
here the probability will be 1 if a final state has been reached;

– ZX : the observation probabilities ZX (x′, y′, a, ox) = p(ox|x′, y′, a) will be 1
if ox = x′ and 0 otherwise, like OX this is put here for completeness;

– ZY : the observation probabilities ZY(x′, y′, a, ox, oy) = p(oy|x′, y′, a, ox) de-
pend on the locations of the seeker and hider and the map. The probability
will be 1 if oy = y′ and y′ is visible from x′, or if oy =unknown and y′ is not
visible from x′, otherwise the probability will be 0;

– R: two reward functions have been tested (see below);
– γ: the discount factor.

Two different reward functions R are described next; these give rise to two
different off-line MOMDP models, from which a near-optimal policy can be learnt
off-line [2, 3]. These functions are:

– Simple reward: non-zero values only for final states (positive for x = y and
negative for y =base, x 6= y).

– Triangle reward: this reward makes use of the three important distances in
the game: the distance between the seeker and the hider (dsh), the distance
between the hider and the base (dhb) and between the seeker and the base
and (dsb). The reward is shown in Equation (2), where D is a maximum
distance constant depending on the map size. In order to compute the three
distances one may use the simple Euclidean distance or the length of the
shortest path that depends on the map [13]. We have used the last one for
our experiments.
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R(s, h, b) =

{
D − dsh, if dhb > dsb

−dsh, otherwise
(2)

While the triangle reward is much more informative than the simple reward,
its computational cost is also slightly higher. Note that the simple reward can be
computed extremely fast at each step without the need of memorising its values
for each state. On the other hand, for the triangle reward, either its values are
precalculated for each state (higher memory cost) or the computation time is
increased considerably if calculated at each step.

Finally we have to define the initial belief bY,0: if the hider is visible then the
belief of that state is 1.0, otherwise the belief is uniformly distributed over the
not visible states.

4 On-line MOMDP Model for the Hide-and-Seek Game

The issue with the off-line method is that it takes a relatively long time to
generate a policy (from 2 hours for maps of 12 × 12 up to more than 40 hours
for maps of 20× 20). Furthermore the time and memory complexity grows with
the number of states due to the curse of history and dimensionality [14].

We present a hierarchical model, as shown in Figure 1(a), in which the lower
level is an MOMDP as defined in the previous section. The big difference is
that this MOMDP is not used to calculate the policy, but instead the top level
MOMDP with less states is used. The state reduction of the top level MOMDP
is obtained by grouping a spatially adjacent group of positions in the bottom
level map. In the top MOMDP, the transition and observation probabilities, and
the initial belief will be calculated from those in the bottom MOMDP. The top
MOMDP will be solved on-line and directly thereafter used to choose the best
action to do. Furthermore the bottom level is used to keep track of the belief.
The actions are common to both levels.

4.1 Bottom-level MOMDP

The bottom level is a full MOMDP (as (1)) defined in the same way as described
in Section 3, however no policy is computed at this level. Only the beliefs of all
the states at this level, are computed before generating the top-level MOMDP.
The belief is initialized as in the off-line version, and when an action a has been
executed (whereby the seeker’s position changed from x to x′) and an observation
(ox and oy) has been obtained, the bottom-level belief bY is updated:

b′Y(y′) = ηp(ox|x′, y′, a)p(oy|x′, y′, a, ox)

×
∑
y∈Y

p(x′|x, y, a)p(y′, x, y, a, x′)bY(y) (3)

where η = 1/p(o|b, a) is a normalization factor.
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4.2 Top-level MOMDP

To reduce the number of states a segmentation function ψ is used that groups
adjacent map cells. This segmentation is used to generate the new top state vari-
ables YT . Where each value of yT will be associated with a spatially adjacent set
of values of y. Formally, the function ψ(yT ) gives the set of bottom-level adja-
cent states which are covered by each of the top level state yT . When reducing
the number of partially observable states Y, the belief space is reduced. Also
the fully observable state variable X could be reduced in the same way, but this
did not give significant better results nor did it increase the speed in finding the
policy.

The problem of finding a proper function ψ can be posed as a segmentation
based on the map itself, the location of the players, the reward obtained in each
state and/or the belief of each state.

The segmentation can be done by applying some known image segmentation
algorithm such as k-means [15] where a fixed set of k clusters is defined in
the ”intensity value” domain. In any case, the number of segmentation regions
obtained should be limited to assure a small number of states.

Robot Centered Segmentation We propose a method that centers on the
robot and divides the space based on the eight directions seen from the robot
and the distance. Figure 1 shows the robot centered segmentation in which the
robot is at location 0, and the segmentation is done from that point in the
eight directions and based on a fixed distance to the center. The focus of this
segmentation is the direction and not the exact location; which is sufficient
because a new robot centered top MOMDP model is generated for each step.
Since the hider and base positions are of vital importance for the game, they are
added as a separate superstate if known; these superstates will represent only
one cell in the bottom level.

Top MOMDP The top-level MOMDP can be defined as follows:

〈XT ,YT ,AT ,OX ,T ,OY,T , TX ,T , TY,T , ZX ,T , ZY,T , RT , γ〉 (4)

where some of the top MOMDP components will be equal to those of the
bottom level MOMDP:

– XT = X ;

– AT = A, the actions keep referring to the lower level actions, in the top level
however the transition probability is adapted to abstract top level states;

– OX ,T = OX ;

– OY,T = OY , these observations do not change, but their probabilities ZY,T
do change;

– ZX ,T = ZX .
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(a) Layered segmentation (b) Robot centered segmen-
tation

Fig. 1. The hierarchical method with two layers is shown in (a), where the top layer has
less states due to segmentation of the lower level map. The robot centered segmentation
(b) centers on the robot’s location (0 in the figure) and from there on creates segments
based on the direction and distance.

Therefore, the Top MOMDP reduces to the following tuple:

〈X ,YT ,A,OX ,OY , TX ,T , TY,T , ZX , ZY,T , RT , γ〉 (5)

where the transition and observation probabilities and rewards are averaged
from the bottom level:

p(x′|x, yT , a) =
1

|ψ(yT )|
∑

y∈ψ(yT )

p(x′|x, y, a) (6)

p(y′T | x, yT , a, x′) =
1

|ψ(yT )|
∑

y′∈ψ(y′T )

∑
y∈ψ(yT )

p(y′|x, y, a, x′) (7)

Note that in our implementation we have not made the seeker’s action (x)
dependent on the hider’s position (y), therefore equation (6) will not change in
our case, but has been put here for completeness.

To speed up the process of finding a good policy the final state is defined to
stay in the same state independent of the action a: p(xf |xf , yT,f , a) = 1.0 and
p(yT,f |xf , yT,f , a, xf ) = 1.0 where (xf , yT,f ) is a final state. The final state is
defined as either yT,f being on the base, or if xf ∈ ψ(yT,f ), i.e. the seeker is in
the same superstate as the hider.

The observation probability is simply averaged:

p(oy|x′, y′T , a) =
1

|ψ(y′T )|
∑

y′∈ψ(y′T )

p(oy|x′, y′, a) (8)

The top reward function RT (x, yT , a) could have been defined averaging the
rewards of the bottom level, however it was found that using only rewards in
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the final states converged much quicker in a good policy. A reward of 1 is given
when the seeker is in the hider’s superstate (x ∈ ψ(yT )), and −1 if the hider is
at the base.

Before a policy is learned, the bottom level belief is compressed to the top
level:

bY,0,T (yT ) =
∑

y∈ψ(yT )

bY(y) (9)

Note that besides the Y component, also the X and O components can be
segmented; however experiments [10] showed that this did not give better results
nor faster convergence.

4.3 The On-line Algorithm

The algorithm for solving the on-line two-level MOMDP is based on [16] and uses
SARSOP to generate a policy [9, 2]. SARSOP is a state-of-the-art off-line solver
for POMDPs, but can be used on-line by simply alternating a planning and an
execution phase [17]. Algorithm 1 shows how the on-line method is implemented.
First the bottom belief is initialized based on the seeker position (x) and the
belief of the hider position (bY ), which will make the belief 1.0 on its visible
position, otherwise it will be uniformly distributed over all non-visible cells.
From now on the algorithm is run until a final condition is reached: some player
wins or the time has passed. The segmented hider states are calculated in line 3;
here we apply the robot centered segmentation (Figure 1). In line 4 the belief
is compressed up using formula (9), where after the top level MOMDP MT

is generated from the bottom level MOMDP M and the segmented states ST
using the formulas presented in the previous subsection. In line 6 the policy
PT is learned and applied to get the best action. When the action is done an
observation of the seeker’s own position and the hider’s position is done in line 9,
which is used to update the bottom level belief.

Algorithm 1 On-line two-level MOMDP planner.

1: (bY , x)← initBelief(M)
2: while not finished game do
3: ST ← segmentStates(M,x)
4: bY,T ← compressBelief(M,ST , bY , x)
5: MT ← generateTopLevel(M,ST )
6: PT ← solveTopLevel(MT , bY,T , x)
7: a← getBestAction(MT , PT , bY,T , x)
8: doAction(a)
9: (bY , x)← doObservation()

10: (bY , x)← updateBelief(bY , x, oy)
11: end while
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5 Smart Seeker

Using the previously defined reward (2) an automated heuristic seeker has been
made, called the Smart Seeker. This seeker calculates a score for each action it
can take and then chooses the action with the maximum score. At maximum
9 actions are possible (one step or staying at the same position) for both the
seeker and hider. One action gets the seeker to a position, which can be used to
calculate R; but at the same time the hider can make a move, which we take
into account by averaging the score over these moves:

w(s′, h, b) =
∑

h′∈moves(h)

R(s′, h′, b)/|moves(h)| (10)

When the hider is not visible to the seeker the only thing we know is that
the hider is at a not visible position; therefore the score w is calculated for every
possible hider’s position and then averaged.

6 Simulations and Experiments

In this section the set-up of the simulations and the real world experiments are
explained.

6.1 Maps

In order to do the simulations and real-world experiments, we created a dis-
cretized 2D grid map of the environment, where the players can move in one of
the 8 directions.

For both the simulations and the real-world experiments we built a small
square in between two buildings with a size of 7 m × 9 m. The size of the grid
cells is 1 m which implies a grid size of 7 × 9 cells. Two obstacles with a length
of three cells (3 m) have been placed on different positions as well as the base.
We used the two maps which can be seen in Figure 2, and for simulations we
used the same maps but with a higher resolution: 9 × 12.

6.2 Simulations

We have first run a series of simulations playing against a random hider, which
moves completely randomly, and a smart hider. The latter uses the triangle rule
and uses the following equation to score each possible action: w = D − dhb +
0.4dsh + noise where D = rows × cols, dhb the distance between the hider and
the base, and dsh the distance between the seeker and the hider. The noise has a
maximum value of 2 and is reduced as soon as the distance is less than 3, because
when a hider is either close to the seeker or to the base, it should respectively
always flee or go to the base directly.

We have used the hierarchical and the off-line MOMDP models. To generate
the policies we used the Approximate POMDP Planning Software 1 [2]. The

1 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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(a) Map 1 (b) Map 2

Fig. 2. The maps used in the simulated and real experiments. Black cells are obstacles,
the dark gray cell is the base.

simulations where done on a stand alone PC with 8 GB of RAM and an Intel
CoreTMi5 CPU 760 @ 2.80 GHz with 4 cores and Ubuntu 12.04 as OS.

We set up a maximum time (measured in time steps) to play the game which
is computed based on the size of the map: 2(rows + cols), that means 32 time
steps for our simulations. The win condition for the robot has been adapted to
its size. The robot wins if it is within one cell distance of the hider.

6.3 Real-World Experiments

The robot Dabo of the URUS project [11, 12] has been used to play the hide-
and-seek game. Dabo has two on-board computers (Intel Core 2 Quad CPU @
2.66 and 3.00 GHz with 4 GB RAM) that manage all the running processes
and sensor signals, and a laptop is used for external monitoring. The systems
run Ubuntu 12.04 and use a middle ware called ROS, a software developmental
environment for robot system integration that provides a useful and large set of
libraries and tools.

A map was created by the robot by scanning the environment using the
robot range-lasers. For the game, the Dabo robot used the front and back range-
lasers to know its position and to detect persons and obstacles [11, 12]. The
robot movements were given by the seeker algorithm that uses the MOMDP
models. To detect persons we used a classifier developed in the IRI based on the
range-laser information.

Since the seeker, the Dabo robot, has been designed to work in a limited
controlled environment, and because these experiments were a first step in the
real-world, we had to impose some constraints in the hide-and-seek game. First of
all, the robot and the person were only allowed to do one action at the same time
step in one of the eight directions (or no motion) and they could move at most
one grid cell. The grid cells were marked with tape on the floor such that it was
clear to the person. The human hider started at any grid location. After this, the
robot scanned the environment to detect any person in the neighborhood and to
detect its own position using the localization algorithm. These two measurements
were used as observations in the MOMDP model. Since the model only allowed
discrete movements of one cell distance, the observations were checked before
feeding them into the model. The people detector sometimes detected persons
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outside the limits of the field or on the obstacles, therefore these detections were
filtered out. The observations were entered into the model which gave the action.
Next the person is told to do its next movement and at the same time the robot
was commanded to go to its next position. Then another scan was done, and
this was continued until one player won or the time passed.

6.4 Results

Simulations More than 5000 simulated games were done with the different
models against the two automated hiders (random and smart). The results of
the games are shown in Table 1 and Table 2. It shows that the off-line model with
the triangle reward works best (p < 0.001; Fishers exact test, two-sided, this has
been used to check all the win statistics). Only on the small map (7 × 9) the
on-line method was found to work better than the off-line method (p < 0.05),
and both the on-line method and off-line method were found to work better than
the heuristic method (p < 0.05).

Comparing the automated hiders we see that more games were won against
the random hider (97%) than against the smart hider (95.3%; p < 0.001). No
significant difference was found in winning for the two map configurations (Fig-
ure 2), nor for their sizes.

Table 1. The win percentages for the four seeker methods against the two automated
hiders. The last column shows the total number of simulated games done.

Map Hider Seeker Win Lose Tie Total

1 random off-line – simple 99.8% 0.2% 0.0% 483
off-line – triangle 100.0% 0.0% 0.0% 481
on-line 99.6% 0.0% 0.4% 245
smart 92.8% 0.0% 7.2% 360

smart off-line – simple 90.9% 9.1% 0.0% 243
off-line – triangle 100.0% 0.0% 0.0% 243
on-line 93.5% 6.3% 0.3% 400
smart 97.3% 0.0% 2.7% 366

2 random off-line – simple 99.7% 0.3% 0.0% 380
off-line – triangle 99.7% 0.0% 0.3% 380
on-line 99.0% 0.5% 0.5% 194
smart 89.2% 0.0% 10.8% 360

smart off-line – simple 91.1% 8.9% 0.0% 192
off-line – triangle 99.5% 0.0% 0.5% 187
on-line 95.5% 4.3% 0.5% 400
smart 95.0% 0.0% 5.0% 361

Total 96.9% 0.9% 2.2% 4475

In Table 2 win statistics are shown per map size and seeker type. It also shows
the average number of actions and average duration per step for the won games.
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Note that passing 32 actions resulted in a tie. The off-line MOMDP model used
least steps when winning (p < 0.001; Wilcoxon ranksum). When the off-line
method used the triangle reward it required more steps to win than using the
simple reward. It was found that the seeker needed more steps on map 1 than
on map 2 (p < 0.001; Wilcoxon ranksum), which might be because map 1 is
symmetric and map 2 is not. For the on-line method the average time per step is
highest (see last column of Table 2), because the MOMDP model is calculated
and a policy is learned at each time step; and lowest for the heuristic method
(p < 0.001; Wilcoxon ranksum test, 2-sided).

Table 2. The win percentages per map size and seeker type. The one before last column
shows the average ± standard deviation number of actions for won games, and the last
column shows the average ± standard deviation duration of one action for won games.

Map Size Seeker Win Lose Tie Total Win Actions Win Dur.(s)/Act.

7 × 9 off-line – simple 96.6% 3.4% 0.0% 760 5.25 ± 2.49 0.19 ± 0.09
off-line – triangle 99.7% 0.0% 0.3% 756 6.83 ± 4.3 0.17 ± 0.1
on-line 97.6% 2.0% 0.5% 656 9.07 ± 6.09 2.39 ± 0.24
smart 92.9% 0.0% 7.1% 1012 10.67 ± 7.31 0.13 ± 0.09

9 × 12 off-line – simple 97.2% 2.8% 0.0% 538 7.26 ± 3.61 0.17 ± 0.09
off-line – triangle 100.0% 0.0% 0.0% 535 9.22 ± 5.57 0.15 ± 0.09
on-line 94.5% 5.1% 0.3% 583 11.71 ± 7.42 6.70 ± 0.37
smart 95.2% 0.0% 4.8% 435 12.77 ± 8.94 0.13 ± 0.09

The duration of the calculation of the off-line policies are shown in Table 3.
Although the off-line method with triangle reward works better than the on-
line method, we can also see from Table 3 that the calculation of an off-line
policy with triangle reward takes relatively much more time. The on-line method
requires us to calculate a policy at every time step, which for the 9 × 12 on
average were 6.7 s, and on average it took 13 steps to win (see Table 2), which
results in approximately 87 s to complete a game. This is quite less than the
calculation of the off-line policy for the triangle reward.

Real-World Experiments With the real robot a total of 44 games were played
against 15 adults from which 12 games were won by the hider and 32 by the
seeker, see Table 4 for the detailed results. From the 32 games won by the seeker,
9 games ended in a situation where the hider reached the base, but at the same
time was caught by the seeker. No game ended due to reaching the maximum
number of time steps, 32. The average number of actions for won and lost games
is shown in the last columns of Table 4,

There is no significant difference in the game results for map 1 and map 2, but
the games are won in significantly less steps on map 1 (p < 0.001; Mann-Whitney
test).
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Table 3. The time it took to calculate the policies off-line for the different maps and
with the triangle and simple reward.

Map Size Map Reward Time (s)

7 × 9 1 simple 4.5
triangle 23.2

2 simple 5.2
triangle 71.5

9 × 12 1 simple 29.9
triangle 480.0

2 simple 36.8
triangle 260.0

Like in the simulations (Table 2) using the off-line MOMDP with the tri-
angle reward resulted in significantly more won games than the on-line hierar-
chical method. The low win percentages shown for the on-line method could be
explained by a special strategies used by the human players.

Table 4. The results of the real world experiments against de different seekers. The
win column shows the percentage of games in which the seeker won even when the
hider reached the base; ∗tie shows the games in which the hider reached the base, but
the seeker caught it. The last two columns show the average number of actions it took
the seeker to win or lose the game respectively.

Map Seeker Win (Tie∗) Lose Total Win Act. Lose Act.

1 off-line – simple rew. 64.3% (7.1%) 35.7% 14 4.4 7.2
off-line – triangle rew. 100.0% (25.0%) 0% 8 8.3 -
on-line 40.0% (0%) 60.0% 5 6.5 12.7
smart 100.0% (25.0%) 0% 4 14.5 -

2 off-line – simple rew. 100.0% (50.0%) 0% 2 26 -
off-line – triangle rew. 100.0% (75.0%) 0% 4 10 -
on-line 25.0% (0%) 75.0% 4 19 17
smart 66.7% (33.3%) 33.3% 3 10 15

Three games are shown in Figure 3 which show the map and the laser collision
detections which represent obstacles and walls. The light yellow area represents
the game field. On top of the map the obstacles are drawn as black rectangles
and the base as a dashed square. For both the seeker and hider, steps are shown
with arrows and lines; S0 is the seeker start place, which is always the base, and
H0 the hider’s start place.

The first image (Figure 3(a)) shows a game played on map 1 in which the
model used the simple reward. It can be seen that the robot followed the hider
around the obstacle and with this the hider won. The second map (Figure 3(b))
shows map 1, but this time the robot used the triangle reward. It can be seen
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that the robot tried to find the hider at some hidden place, and when it could not
see it (but it did have knowledge about the hider’s position through the belief)
it returned to protect the base. This game ended in a tie because both the hider
and the seeker arrived at the base at the same time. The last map (Figure 3(c))
shows a game where the hider tries to get the seeker to follow him but when the
distance to the base is too far, the seeker returns and finally catches the hider
before reaching the base.

7 Conclusions

In this paper we analyzed four methods to play the hide-and-seek game, from
which three were based on an MOMDP model and one on a heuristic method.
These have been extensively tested in simulation, and initial experiments have
been performed with a mobile robot playing against a human hider in a sim-
ple real world urban environment. The simulated experiments showed that all
methods performed really well, and the best method was the off-line MOMDP
model with the triangle reward.

The on-line hierarchical method was previously proposed to reduce the num-
ber of partially observable states, and thereby tackling the curse of dimensional-
ity. Even though the very good results of the on-line method in simulation, this
was not reflected in experiments done in the real world. This can be explained
by the strategy used by the hiders. In the simulations the random hider moved
randomly and therefore was relatively easy to catch since it did not consider the
game objectives. The smart hider on the other hand did take into account the
rules of the game and therefore was more predictable. For the human players it
was found that some of them did not take the optimal path, but used a strategy
in which they “mislead” the robot by leading it around an obstacle and thereby
won.

Although relatively few experiments were done, they gave us important in-
sights in the functionality of the automated seeker methods used by a real mobile
robot in the real world playing (interacting and predicting) against humans. In
this first step towards the real world, limitations were set to have similar condi-
tions as in the simulations, but our next steps are to overcome these limitations
by incorporating sensing uncertainties and working in bigger real world environ-
ments.
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