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Abstract. In this article we propose a method for cooperatively build-
ing a scene map between a human and a robot by using a spatial re-
lational model employed by the robot to interpret human descriptions
of the scene. The description will consist in a set of spatial relations be-
tween the objects in the scene. The scene map will contain the position of
these objects. For this end we propose a model based on the generation
of scalar �elds of applicability for each of the available relations.
The method can be summarized as follows. In �rst place a person will
come into the room and describe the scene to the robot, including in
the description semantic information about the objects which the robot
can't get from its sensors. From the description the robot will form the
�scene mental map�. In second place the robot will sense the scene with a
2D range laser building the �scene sensed map�. The objects positions in
the mental map will be used to guide the sensing process. In a third step
the robot will fuse the two maps, linking the semantic information about
the described objects to the corresponding sensed ones. The resulting
map is called the �scene enriched map�.

1 Introduction

In many everyday life tasks and situations we make use of spatial relations for
resolving references (eg. �The scissors are in the left drawer�), explaining a wished
objects layout (eg. �put the plant close to the left corner�) or focusing someone's
attention into a certain region (eg. �look behind the table�). In our work a person
will use this kind of relational language for describing a scene to a robot in order
to help it in the mapping of the scene and to improve the map itself. The scene
will consist in a set of objects distributed inside a room which dimensions are
known by the robot.

We �nd three possible situations which can occur in this kind of collaborative
mapping process: (1) the person and the robot are together while mapping the
scene, (2) the robot �rst senses the scene and afterward the person describes it,
(3) the person describes the scene and afterward the robot senses it.

In our work we will face the third situation. The person will �rst describe the
whole scene using the aforementioned spatial relations. From the description the
robot will build a map of the scene, composed of a representation of the objects
located at their respective positions. This �mental map� has two purposes in the



scene mapping process. In �rst place, it will be used for guiding the robot sensing
process. That is, after interpreting the description the robot will go into the room
and seek the described objects in the positions they have in the mental map. In
second place, during the description the person may add semantic information
about the objects which the robot could need for ful�lling its duties. For example,
a post-delivering robot who has to leave a letter at Mike's desk should know who
is the owner of each desk in its map. As the described objects are matched with
their corresponding sensed objects, this semantic information can be trespassed
to the latter.

In the rest of the article we will distinguish between four di�erent scene
maps. (1) The �human mental map�, the map the person forms in his mind from
viewing the scene. (2) The �robot mental map�, the map the robot builds from
interpreting the human description of the scene. (3) The �robot sensed map�, the
map the robot builds from sensing the scene. (4) The �enriched map�, built from
the fusion of the robot sensed and mental maps. We call this last map enriched
because it mixes the accuracy of the robot sensors with the semantic information
provided by the person in his description.

We would like to remark that the generation of the �robot mental map� can
facilitate by itself the human robot interaction in many di�erent cooperative
tasks apart from mapping an scene. Reorganizing the objects in a room, de�ning
an strategy for searching an object or exploring an area. For all of these tasks
the robot has to interpret the �mental map� the person has in mind and to verify
it using its own sensors.

The contributions of the present work are: (1) A model for interpreting spatial
relations. (2) A method built upon the former to let the robot to map a scene
in collaboration with a human. In the rest of the article we will, present the
related work, the relational model, the method and the results of the experiments
conducted for testing it.

2 Related Work

There are numerous attempts of interpreting qualitative spatial relations. In [1]
Moratz et Al. de�ne a computational model for the projective spatial relations
similar in spirit to the one developed here. In their work each relation de�nes a
canonical direction and depending on the position of the referenced object with
respect to this direction the relation became true or false. In their experiments
they tried to understand how people express spatial knowledge by asking the
subjects to tell the robot to go towards one of the objects in the scene (ie. to
uniquely determine that object from the others in the scene). The drawback of
their work is that the conditions for a spatial relation to be ful�lled are boolean
which is against the intrinsic vagueness of these relations.

In [2] Stopp et Al. use a computational model of the topological (near) and
projective (front, behind, left, right, above, bellow) relations for accessing to a
robotic arm through natural language. Their model [3], as the one presented
in here, is based on the concept of the continuous decay of the applicability of



the spatial relations as we separate from an ideal condition which de�nes the
relation.

In the same direction, Kelleher et Al. [4] introduce the fact, also contemplated
here, that the applicability of the projective relations decay with the distance
to the referent object. They also state that the �size� of the generated �elds is
proportional to the size of the referent object.

As far as we know, all the previous works related with the interpretation
of qualitative spatial relations face the case of single relations between objects
which positions are deterministically known, therefore not considering possible
uncertainties. Just in [3] Gapp de�nes the way to perform single compositions
between relations. In the work presented here however, is required to interpret
the description of a whole scene without the support of any perceptual informa-
tion, ie. to �imagine� the whole scene. This requirement led to the development
of a general framework for composing spatial relations, estimating probability
distributions for objects which positions are known just by spatial relations with
other objects and the interpretation of spatial relations between these �imagined
objects�. Regarding this last point, in [5] Mavridis et Al. let a robot to imagine
objects on top of a table at positions expressed by spatial relations, but they are
more focused in the maintenance of a 3D representation of the environment from
the robot sensors and in the interpretation of spatial relations between sensed
objects. In their work the variety of spatial relations is very limited. Also they
can't be composed neither be expressed between imagined objects.

Regarding the existing approximations for building maps from relational de-
scriptions, they result quite simplistic, or lets say, the accuracy of the map nei-
ther the interpretation of the spatial relations itself weren't the main objective
of the research. In [6] Coyne et Al., develop a model for interpreting narratives
(ie. for generating a 3D representation from them), but they are more focused
in the aesthetics of the representation and in the natural language processing.
Though their work contemplates an extensive vocabulary including many spatial
relations, the model for the latter seems to be too deterministic. That is, the
spatial relations seems to de�ne �xed distances between the objects no matter
the context (though they don't provide any details at all about this model).

The process of building a map from a description presents several similar-
ities with the well known in robotics SLAM problem [7,8], though it presents
important di�erences which forbid to undertake it using the same approaches.
In the former a person uses a set of qualitative spatial relations for expressing
to the robot the positions of the objects in a scene and his own. Since the point
of view from which the spatial relations are referred in�uences their interpre-
tation, the robot must infer the position of the objects and the person's at the
same time. Up to here the similarities. The person's position is expressed also
through relations with other objects introduced in the description, that is, there
is no explicit odometry information. This makes a distinction with most of the
situations faced in robotics, for example [9]. More than that, as it will be seen,
the objects probability distributions extracted from the spatial relations are far
from being gaussians, which makes inapplicable any EKF Slam algorithm. As



a) b)

LM

left

front right

behind

left

behind

right

front

LM

Fig. 1. Canonical directions for the projective relations in the intrinsic (a) and extrinsic
(b) cases.

said above, the approach taken here for building the �mental maps� will be to
extract probability distributions for the positions of the referenced objects in the
given spatial relations and to reduce the uncertainty by directly composing the
relations given for each object.

Finally, as it's been said, the mental map built from the description is used
by the robot to guide the sensing process, ie. to direct its sensors to the positions
where according to this map the actual objects more probably are. In the same
direction, [10] Aydemir et Al. use background knowledge and the interpretation
of spatial relations to perform indirect object searching. For example, if the
robot has to look for a cup in its environment and it knows that cups are usually
on top of tables; it looks �rst for a table, computes the region determined by
the expression �on the table� and looks for the cup inside that region. Their
model though, just contemplates two spatial relations: in, on. Logically they
don't consider compositions and the spatial relations can't be directly used by
a person for communicating spatial knowledge.

3 Relational Description Model

In this section we specify the model used by the robot to interpret the scene
descriptions. The approximation taken for this interpretation is based of the
generation of scalar �Fields of Applicability� (FOAs from now) for each of them.
These scalar �elds represent the distribution of the applicability of a certain
spatial relation in every point of space. The characteristics of each FOA will
depend on the spatial relation which it represents and on the pose and geometry
of the objects involved in the relation (eg. the table in �on the left of the table�).

3.1 Preliminary Concepts

In any grounded spatial relation there are several objects implied, each of them
ful�lling a di�erent function. Before going with the generation of the FOAs is
important to de�ne them.



In our syntax, the Point of View (POV) is the object which states the po-
sition from which the relation is expressed (usually corresponding to the person
referring the relation). The Landmark (LM) will be the object used as referent
(eg. the table in �the chair on the right of the table�). Finally, we will desig-
nate the Trajector (TR) as the referenced object (eg. the chair in the previous
sentence). The FOAs will be generated using the POV and the LM. The ap-
plicability of a potential TR for a relation will be measured by evaluating the
corresponding �eld on its center of gravity.

We will consider two types of relations, being the FOAs generated by each
type closely related: topological and projective. The topological relations (�near�,
�far� and �close to� in our model) are proportional to the distance between the
LM and the TR. The projective ones (�left�, �right�, �front�, �behind�) de�ne a
canonical direction. In this case the applicability will decay with the angular
deviation of the vector

−−−−−→
LM,TR from that direction.

The next idea we must take in consideration is that there are more than one
possible frame of reference in which a relation can be interpreted [11]. In the
intrinsic case the frame is de�ned exclusively by the LM orientation (Fig 1a).
The front direction is determined by its physical or semantic characteristics (eg.
the side in the direction of motion in a mobile object).

In the extrinsic case, the frame is de�ned by the positions of the POV and
the LM (Fig 1b), being the front direction the one going from the LM to the
POV.

In the performed experiments all the employed objects are cylindrical, thus
they don't have an intrinsic front. In other case the in�uence of each frame of
reference should be decided. Generally is accepted that in case of competition,
the intrinsic frame dominates [12], though the concrete �weight� of each frame
is not a decided matter.

3.2 Fields Of Applicability

Their values goes from 0 to 1, being the applicability for a relation null if 0 and
maximum if 1.

As the purpose of the FOAs is to specify objects positions in a 2D map, they
will be de�ned in the euclidean plane. In the expressions where the POV, LM or
TR appears, it must be understood that they refer to their projections on the
XY plane.

Proximity �eld. This �eld doesn't semantically correspond to any of the
mentioned relations, but it will form part of the rest of the FOAs expressions. It
expresses the concept of proximity between two objects and obviously decreases
with the distance between them.

The reason for using the �proximity� instead of directly the distance between
objects is that the former encompasses contextual factors which must be taken
into account for the correct interpretation of the spatial relations. These are: (1)
the size of the involved objects and (2) the size of the scene itself. For example,
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Fig. 2. Parametrization of the topological relations as a function of the proximity

the relation �near the house� clearly implies a larger area than �near the pen�.
By de�ning the �near� FOA in terms of the �proximity� instead of the distance
this circumstance can be implicitly considered. In the same way, a correct inter-
pretation of �near the house� must lead to a larger region if the considered scene
is the whole city than if it's reduced just to the house neighborhood.

The former intuitive concepts are considered in the proximity expression as
two constant factors which a�ect the proximity rate of decay with the distance
(dmax, an). In turn, this decay is modeled as a linear function:

proximity(LM,P ) =

{
1−

(
d

dmax

)
/an ,

d
dmax

≤ an
0 , d

dmax
> an

an = a
amax

where 'P' is a point of the plane, 'd' the euclidean distance between 'P' and
the closest point of the LM and 'a' the area of the LM. 'an', the normalized
area, expresses the fact that the proximity must decay slower for larger LMs [4].
It's de�ned as the area of the LM divided by the area of the larger object in the
scene ('amax').

'dmax' corresponds to the maximum distance in the scene. This factor ex-
presses that the same distance must correspond to larger proximity values in
larger scenes.

Projective relations. The values for the FOAs generated from these relations
will decay with two factors. (1) the angle α between the vector

−−−−→
LM,P and the

canonical direction. (2) the distance with the LM. The latter assertion is sup-
ported by Kelleher et Al. [4], but intuitively projective relations �loose� de�nition



with the distance. As a extreme case, if a chair is 20 Kms far from a table it
would never be said to be on the left of it, independently of the angle they form.

The canonical direction for each relation in the extrinsic and intrinsic cases
are the ones in the Fig 1 [11]. Once set the canonical direction, the expression
of the �eld for all the projective relations is:

projective(POV,LM,P ) =

{[
1− α

αmax

]
·proximity(LM,P ) , α < αmax

0 , α > αmax

where αmax = 90o. As it was argued in the former subsection, the proximity
was used instead of the distance between P and the LM. The decreasement with
the angular deviation has been modeled as a linear function of the angle α.

Topological relations. The topological relations have been modeled as lineal
parametrizations of the proximity, in accordance with the interval of distances for
which each of them is conceptually acceptable (�close to� for very short distances,
�near� for mid-length distances and �far� for points very separated from the LM).

The parametrizations used in the model are the ones represented in Fig 2.
They were �tted in order to improve the interpretation of the descriptions in the
performed experiments.

3.3 Virtual Objects

When the person describes the scene, the robot just knows about the position of
the objects from the relations made in the description. For taking this circum-
stance into account we introduce the concept of virtual objects in contrast with
the sensed ones, ie., the ones acquired from the sensors.

The position of these objects, created from the description, is de�ned by the
spatial relations in which they are the TR. For example, in �there is a chair in
front of me� the position of the chair is de�ned by �in front of me�.

As the FOAs represent the distribution of a spatial relation applicability, it's
natural to express the uncertainty in a virtual object position in function of the
FOAs corresponding to the relations in which it was TR.

Concretely, we de�ne the probability density function for the center of gravity
of a virtual object 'TR' of being located at the point 'P' if its position was
speci�ed by the spatial relation 'rel' as:

fTR(P |POV = Q,LM = R) = 1
nrel(POV,LM,P )

n =
´
P
rel(POV,LM,P )dP

being 'rel(POV,LM,P)' the FOA corresponding to the spatial relation 'rel' and
'P,Q,R' points of space.

Three things must be noted in the former expression. (1) there is a conditional
dependence with the positions of the the POV and LM. This is natural, as
those positions appear in the expression of the FOAs. (2) The integral in the
normalization of the FOAs should be evaluated over the region corresponding



to the interior of the room, representing that the probability for a virtual object
of being inside the room in which the description is performed must be 1. (3)
It's normalized and it just can take non-negative values, hence ful�lling the
conditions for being a density function.

If the POV or the LM are also virtual objects, we will need to extract the
marginal distribution for the TR position by making use of the law of total
probability:

fTR(P ) =
1

n

¨
Q,R

rel(POV,LM,P )fPOV (Q)fLM (R)dRdQ

The former expression should be autonomously evaluated by the robot for
any relation, POV and LM when interpreting a description. As a practical
workaround, we opted for discretizing the probability distribution for the vir-
tual objects position. In this way, fX(P ) turns into p(X = P ) and the integral
into a double summation.

The discretization was made by evaluating the FOAs over a grid covering the
scene region (ie. the interior of the room).

The resulting expression for the marginal distribution is:

p(TR = P ) = 1
n

∑
Q

∑
R rel(POV,LM,P )p(POV = Q)p(LM = R)

n =
∑
P rel(POV,LM,P )

where 'P,Q,R' are points of the grid.
In the worst case (POV and LM virtual), when processing a spatial relation

the FOA must be evaluated for each grid point being the POV and the LM also
at any grid point. This makes the algorithm to be O(n3) with the number of
grid points.

As an approximated solution to the former marginal distribution expression,
we can take the assumption that the POV and the LM are located at their mean
positions according to their own distributions. That is, to assume that all the
terms in the summation in the marginal distribution expression are zero but the
one in which p(POV = PPOV ) and p(LM = PLM ), where PPOV and PLM are
the mean positions for the POV and the LM.

With this approximation the algorithm for processing a spatial relation turns
to be O(n) with the number of grid points. In the experiments the exact and
the approximate solutions were tested in order to decide if the �rst one deserves
its higher time complexity.

Regarding how theoretically appropriate is taking the former assumption,
it's partially supported by the �gricean principle� which states that when an
utterance is given from a speaker to a listener both of them expect the contex-
tually most typical interpretation of the utterance [13]. In our case this principle
can be translated as that the speaker will give a reference expecting the listener
to �imagine� the objects in their more typical positions, ie. in the ones corre-
sponding to the maximums of applicability for the relations which de�ned their
positions.



Finally, we have to consider that the spatial relations included in the model
just give information about the relative positions between the implied objects,
ie. they say nothing about their size or orientation. In our model this implies
that as all the information about the virtual objects comes from the description
there will be a complete uncertainty in these magnitudes.

In the expression of the �proximity� �eld it appears the distance to the LM
and its area. These parameters obviously depend on the concrete geometry of the
LM which in turn depends on the orientation and size (jointly with the position
and the type). Thereby, some assumptions must be taken. These will be that the
virtual objects are of a �standard size� (see the architecture subsection) for the
computation of the area and that they are point objects for the computation of
the distance.

3.4 Composition Model

In a description, more than one relation can be provided for the same virtual
object in order to better specify its position. That is, they can be referred more
than one relation with the same TR. Therefore it's needed to determine how this
spatial information will be composed.

Two relations with the same TR can be given with two purposes: (1) to
delimit the region in which it can be located. This case corresponds to an in-
tersection between the regions in which each of the relations is applicable. In
logical terms it will be a conjunction (eg. �the ball is on the right on the table
and close to the wall�). (2) to enlarge the region in which it can be located. This
case corresponds to a union or disjunction (eg. �The ball is on the right of the
table or on its left�).

We will suppose that when two relations are referred for the same TR the
intention is to concrete its position. Hence, in this case it will be performed a
conjunction. In contrast, when the LM in a relation is ambiguous (eg. �near the
wall� if there are more than one wall), a constructive composition (disjunction)
will be performed for that relation being the LM each of the possible candidates
(eg. each of the walls in the former example).

Regarding how these two compositions are performed, it can be remembered
from the last paragraph that from a spatial relation in which the TR is a virtual
object, it can be deduced a probability density function for its position (fTR(P )).
When two relations are given for the same TR we will have two di�erent densities:

f1TR(P ) =
1
n

˜
Q,R

rel1(POV1, LM1, P )fPOV1
(R)fLM1

(Q)dRdQ

f2TR(P ) =
1
n

˜
Q,R

rel2(POV2, LM2, P )fPOV2
(R)fLM2

(Q)dRdQ

An intersection (or conjunction) will correspond to the joint probability den-
sity function, and a union (or disjunction) to the union of the two density func-
tions.

Before concreting the expressions for the composition a re�ection must be
done about the independence of the composed densities. Each of them represents
the probability for the same virtual object of being located at a certain point



Fig. 3. Probabilities distributions for and object a) �behind the table�, b) �far from
the table� and c) and the conjunction of the two previous ones. Red color corresponds
to the maximum value in the distribution and blue to the minimum. The table is the
hollow rectangle and the POV the �lled polygon.

of space given a di�erent spatial relation. Or more precisely, they represent the
probability for the relations which de�ne the respective densities of being ful�lled
when the object is located at a certain point. With the latter interpretation,
and remembering the expressions of the FOAs, it can be stated that the fact of
ful�lling one of the relations doesn't directly conditions the ful�lling of the other.
Although there can be an indirect dependence. For example, the statement �the
chair is on the left of the table� indirectly conditions the veracity of the statement
�the chair is on the right of the table�, but in terms of the de�nitions of the FOAs
which represent both relations, there is no dependence.

Basing in the former argument, we will suppose the density functions corre-
sponding to di�erent spatial relations to be independent. This statement leads
to the following expressions for the composition of two relations:

f1TR(P )
⋂
f2TR(P ) = f1TR(P )·f2TR(P );

f1TR(P )
⋃
f2TR(P ) = f1TR(P ) + f2TR(P )− f1TR(P )

⋂
f2TR(P );

In the discrete case (ie. discrete probability distributions) the expressions for
the the composition are analogous to the latter. In Fig 3 is shown the distribution
for a TR which is �behind the table� and �far from the table� (ie. the �nal
distribution is the intersection of the former ones).

4 Collaborative scene mapping

In this section we overview the method used for building the scene maps de-
scribed in the introduction and the architecture of the implemented system.
The presented collaboration procedure tries to exploit the inherent capacities
of each of the parts: the robot and the human. The robot can contribute with
the accuracy of its sensors and its computational capacities for processing and
composing information. On the other hand, the human have a unique facility in
the segmentation and classi�cation of objects. He also may possesses background
knowledge and information about particularities or functionality of the objects
in the environment to map.



In �rst place the person describes the scene using the contemplated set of
spatial relations and the robot forms a mental map of it by interpreting those
relations according to the presented model. This mental map provides informa-
tion about the type of the objects in the scene and the region where they are
most probably located. When sensing the scene, this information is used for
sense guidance. That is, the robot looks for the actual objects in the regions cor-
responding to the covariance ellipses of the virtual objects in the mental map.
Also, as it's been said, after sensing the scene the robot tries to match these vir-
tual objects with the sensed ones, linking the semantic information associated
to the former to the latter.

4.1 Architecture

The system has three main components: (1) a spatial relations library which,
given a relation, a POV and a LM (sensed or virtual), evaluates the correspond-
ing FOA over a 2D grid following the model described in the previous section.
(2) A simple parser which translates the descriptions given by the human. (3) A
Geometric Scene Description component (GSD), which keeps a list of the scene
objects and actualize the information about them when new relations are pro-
cessed. The objects can be added to the GSD in two ways, being perceived by
the robot sensors (sensed objects) or introducing them in the description (virtual
objects).

Each object in the list is an instance of a type of object (eg. chairs) which has
associated a 3D mesh used by the spatial relations library in the computation
of the FOAs. Each instance has a pose, a covariance, an a scale. The scale is
set as the proportion between the dimensions of the actual object and the 3D
mesh corresponding to its type. The virtual objects will be considered to be of
a �standard size�, ie. for them the scale will be set to one.

The virtual objects in the GSD have also a grid corresponding to their posi-
tion probability distribution. From this distribution is extracted a mean position
and a covariance matrix used in the matching of the robot mental and sensed
maps.

4.2 Robot mental map: processing the descriptions

In the �rst part of the mapping process the person describes the spatial layout
of the scene without the robot being there. The idea is that as he provides
relations for the same TR he will be imposing additional constraints over its
position which will reduce its covariance.

In order to ensure a correct interpretation of the description, the person must
follow some rules. These are:

1. Before making any movements he must specify them by describing his target
position in the same way as he would do with any other object, ie. using the
same spatial relations (eg. �I move in front of the second table�). This ensures
a correct position for the POV in the interpretation of the relations.



2. He must specify his intrinsic orientation when providing relations in which
he is the LM (eg. �The table is on my left�). He will do that by telling where
is he looking when referring the relation (eg. �If I look to the back wall, the
table is on my left�). This ensures a correct de�nition of the intrinsic frame
in these cases.

3. The objects involved in a spatial relation must be unequivocally speci�ed.
That is done by naming them with its type and the ordinal number cor-
responding to their order of appearance in the description (eg. �the second
chair is on the right of the �rst table�).

The robot mental map is formed by all the virtual objects in the GSD after
processing the whole description.

4.3 Enriched map: scene check and map re�nement

In the next step the robot senses the scene by using its 2D range laser. For this
task the robot is supposed to be able to detect and classify the objects present
in the scene (at least the ones introduced in the description) and to localize itself
inside the scene (ie. in a map of an empty room with the known dimensions).

As it's been said, in order to ease this process the robot uses the formerly
computed mental map for guiding the sensing. This is performed by following the
next method: after coming into the room, the robot places itself in the middle of
it and direct the laser to the regions corresponding to those in the mental map
where the virtual objects are more probably located. That is, to those regions
corresponding to the covariance regions of the virtual objects.

The sensed map will be formed by all the sensed objects in the GSD after
the sensing process.

After sensing the scene, the robot performs the matching of the virtual ob-
jects with the sensed ones. To achieve an assignment (called objects fusion) the
system looks for three requirements:

1. The sensed and virtual object are of the same type.
2. The probability for the virtual object of being at the sensed object position

is greater than a certain threshold (according to its �nal probability distribu-
tion). For the experiments this threshold was set to the half of the maximum
in the probability distribution.

3. For each relation in the description in which the virtual object acts as LM,
there is a sensed object of the TR type with an applicability greater than a
threshold when the relation is evaluated using the candidate sensed object
as LM. This threshold was set to 0.5. This second check helps to prevent
wrong fusions in complex scenes (when there are several objects of the same
type).

If the three requisites ful�ll the sensed object is taken as a candidate for the
fusion. From all the candidates is chosen the one closest to the mean position
of the virtual object. Once a fusion is accomplished, the semantic information
associated with the virtual object is added to the sensed one and the former is



Fig. 4. a) Robot �Tibi� sensing the second scene. b) 2D view of the virtual map showed
in the picture (c) contrasted with the ground truth (blue objects). c) Mental and sensed
maps for the second scene used in the experiments. The sensed objects are the gray ones.
The virtual ones has the color the person told in the description. They are visualized
the covariance ellipses for the virtual objects.

deleted from the GSD. The �nal position for the object is the one corresponding
to the sensed object.

If after trying to fuse all the virtual objects there are still any of them in the
GSD the robot infers that the sensed scene doesn't correspond to the described
one. As at the time being there is no mechanism to detect wrong fusions, if
one virtual object is fused with a sensed object not corresponding to it, that
will probably prevent the correct fusion of the rest of the objects. Anyways this
never happened in the performed experiments.

The objects in the GSD after the fusion forms the enriched map. In our
experiments we symbolize the semantic information given by the person with
the color of the objects (as the robot is using a range laser which provides no
color information). That is, with the �name� of the color of the objects as the
person perceives them (eg. �red�). In the maps an RGB value is associated with
each color just for visualization purposes.

5 Experiments

The conducted experiments were focused on testing the accuracy of the robot
mental maps and the e�ciency when matching them with the sensed ones. For
that mean, we placed a set of objects inside a room and asked ten people among
the researchers of the institute to describe the scene using the relations speci�ed
in section 3 and following the rules in subsection 4.2. The only information the
robot had about the scene were the dimensions of the room, that there was a
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Fig. 5. Mean distances from the virtual objects to the ground truth in the ten descrip-
tions processed for the scene2.

door and the location of the latter. The initial position of the person describing
the scene was supposed to be �close to the door�.

From each description the robot built a map by generating and composing
each relation and afterward came into the scene, sensed it and performed the
matching. The objects could be of three types: post, bin or pipe. Two scenes were
tested. A simple one with one object of each type (scene1). A more complex one
with several objects of each type (scene2).

As an example of the provided descriptions, next is shown the one from which
was computed the most accurate mental map of the second scene (description 7
in Fig 5).The built mental map is shown in Fig 4.

�There is a red post in front of me. The post is near me. There is a white

pipe behind the post. The pipe is close to the post. There is a black bin on my

left. The bin is close to the left wall. There is a black bin on my left. The second

bin is close to the left wall. The second bin is close to the �rst bin. The second

bin is on the right of the �rst bin. There is a black bin close to the back wall.

The third bin is close to the left wall. There is a white pipe near me. If I look to

the third bin the second pipe is in front of me. There is a red post near the back

wall. The second post is near the left wall. If I look to the third bin the second

post is in front of me. The third bin is behind the second post.�

The descriptions were processed using exact and approximate solutions when
generating FOAs from virtual POV or LM (subsection 3.3).

The results were evaluated according to three parameters:

1. Mean distance from the objects in the robot mental map to the ground truth
for all the objects in all descriptions (�distance� in table 1).

2. Mean covariance in the virtual objects position, expressed as the length of
the radius of a circumference of the same area as the covariance ellipse,
r =

√
area/π (�covariance�).

3. The percentage of times that the robot succeed to match the robot mental
and sensed maps (�matches�).



distance (m) covariance (m) matches (%)

approximate approach
scene1 0.9± 0.2 0.6± 0.1 90
scene2 0.6± 0.2 0.6± 0.1 80

exact approach
scene1 0.9± 0.2 0.73± 0.09 100
scene2 0.6± 0.1 0.73± 0.08 90

Table 1. Mean distances, mean covariances and percentage of success in the match-
ing of the virtual and sensed maps for the two scenes using the two approaches for
generating the FOAs.

The results achieved are summarized in Table 1. There is no data about the
performance in the sensing process as the robot achieved to detect all the objects
in every case. This success is no doubt due to the simplicity of the geometry of
the chosen object. This choice was made in order to isolate the assessment of
mental map and fusion processes from possible errors in the object detection.

The �rst thing we realized after conducting the experiments is that not all the
people have the same �descriptive skills� (or the same understanding of space).
As it can be seen in Fig 5 the results are very description dependent, going the
mean distances from 0.29 m to 1.43 m (though almost all of them stay in the
interval 0.4 - 1.0).

For using the mental map as a tool by itself the interesting numbers are
those corresponding to the mean distances and covariances. But for using it as
an intermediate step in the mapping process (as done in this article), the most
relevant data is the percentage of matches. The accuracy of the mental map is
important for guiding the sense and fusing the objects. But if after all the robot
achieve to match the two maps, the �nal object positions will be the sensed ones.
In this sense, the success percentage is around 90 %.

Regarding the options in the FOAs generation, the mean distances to the
ground truth were the same when using the exact and approximate solutions
in the generation of FOAs from virtual objects. Though the former option tend
to generate larger covariances, which helps to improve the matches percentage.
On the other hand, the larger covariances could lead to wrong fusions. But this
didn't happen in the conducted experiments.

6 Conclusions

We have presented a model which let a robot to build the map of a scene in
collaboration with a person. To that end, the person must describe to the robot
the layout of objects in the scene using qualitative spatial relations being able to
include semantic information about the objects in the description. An extension
of the model which let to express more precise information about distances and
orientations would no doubt improve the accuracy of this map. Although we
plan to research in that direction in the future, in the present work we preferred
to limit ourselves to a more ordinary language which people usually use when
expressing spatial knowledge.



The mental map built from the description provides information about the
type of the objects in the scene and the region where they are most probably
located. For the time being just the position is used for guiding the sensors. An
interesting expansion for a future work would be to study the joint use of the
type and position information to improve the segmentation process. Also taking
into account possible occlusions in the sense guidance would make the method
more robust.

Finally, the mental and sensed maps are fused, being trespassed the semantic
information in the virtual objects to the sensed ones.
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