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Approaching Dual Quaternions

From Matrix Algebra
Federico Thomas, Member, IEEE

Abstract—Dual quaternions give a neat and succinct way
to encapsulate both translations and rotations into a unified
representation that can easily be concatenated and interpolated.
Unfortunately, the combination of quaternions and dual numbers
seem quite abstract and somewhat arbitrary when approached
for the first time. Actually, the use of quaternions or dual num-
bers separately are already seen as a break in mainstream robot
kinematics, which is based on homogeneous transformations. This
paper shows how dual quaternions arise in a natural way when
approximating 3D homogeneous transformations by 4D rotation
matrices. This results in a seamless presentation of rigid-body
transformations based on matrices and dual quaternions which
permits building intuition about the use of quaternions and their
generalizations.

Index Terms—Spatial kinematics, quaternions, biquaternions,
double quaternions, dual quaternions, Cayley factorization.

I. INTRODUCTION

IN 1843, Hamilton defined quaternions as quadruples of the

form a + bi + cj + dk, where i2 = j2 = k2 = ijk = −1,

when seeking a new kind of number that would extend the

idea of complex numbers [1].

Quaternions were developed independently of their needs

for any particular application. The main use of quaternions

in the nineteenth century consisted in expressing physical

theories in the notation of quaternions. In this context, during

the end of the nineteenth century, researchers working on

electromagnetic theory debated about the choice of quaternion

or vector notation in their formulations. This generated a fierce

dispute from about 1880 to 1900, reaching its climax in a

series of letters in the journal Nature [2]. Then, quaternions

disappeared from view, and their value discredited, having

been replaced by the simpler algebra of matrices and vectors.

Later on, in the mid-twentieth century, the development of

computing machinery made necessary a re-examination of

quaternions from the standpoint of their utility in computer

simulations. The need for efficient simulations of aircraft and

missile motions was responsible to a large extent for sparking

the renewed interest in quaternions [3]. It was rapidly realized

that quaternion algebra yields more efficient algorithms than

matrix algebra for applications involving rigid-body transfor-

mations. Nowadays, quaternions play a fundamental role in

the representation of spatial rotations and a chapter devoted

to them can be found in nearly every advanced textbook
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on Computer Vision, Robot Kinematics and Dynamics, or

Computer Graphics.

Surprisingly, despite their long life, the use of quaternions in

engineering is not free from confusions which mainly concern:

1) The order of quaternion multiplication. Quaternions are

sometimes multiplied in the opposite order than rotation

matrices, as in [4]. The origin of this can be found in

the way vector coordinates are represented. For example,

in [5], a celebrated book on Computer Graphics, point

coordinates are represented by row vectors instead of

column vectors, as is the common practice in Robotics.

Then, transformation matrices post-multiply a point

vector to produce a new point vector. When using

quaternions, instead of homogeneous transformations,

the same composition rules are adopted. The result can

be confusing for anyone approaching quaternions for the

first time. For more details on this matter, see [6].

2) The way quaternions operate on vectors. Quaternions

have been used to rotate vectors in three dimensions

by essentially sandwiching a vector in three dimensions

between a unit quaternion and its conjugate [7, Chap. 17]

[8]. Nevertheless, strictly speaking, quaternions cannot

operate on vectors. The word vector was introduced by

Hamilton to denote the imaginary part of the quaternion

which is different from today’s meaning [9].

3) The nature of the quaternion imaginary units [6], [8].

Hamilton himself contributed to this confusion as he

always identified the quaternion units with quadrantal

rotations, as he called the rotations by π/2 [10, p. 64,

art. 71]. Nevertheless, they represent rotations by π [9].

All these confusions are seriously affecting the progress of

quaternions in engineering because, as a result, they are used

in recipes for manipulating sequences of rotations without

a precise understanding of their meaning. The situation just

worsens when working with dual quaternions, an extension of

ordinary quaternions that permits encapsulating rotations and

translations in a unified representation. Thus, it is not strange

that many practitioners are still averse to using them despite

their undeniable value.

This paper shows how quaternions do naturally emerge

from 4D rotation matrices and how dual quaternions are then

derived when approximating 3D homogeneous transformations

by 4D rotations. As a consequence, all common misun-

derstandings concerning quaternions are cleared up because

the derived expressions may be interpreted both as matrix

expressions and as quaternions.
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A. Quaternions and rotations in R
3 and R

4

Soon after Hamilton introduced quaternions, he tried to

use them to represent rotations in R
3 in the same way as

complex numbers can be used to represent rotations in R
2.

Nevertheless, it seems that he was not aware of Rodrigues’

work and his use of quaternions as a description of rotations

was wrong. He believed that the expression for a rotated

vector was linear in the quaternion rather than quadratic. This

passage of the history of quaternions is actually a matter of

controversy (see [9], [11], [12] for details). It is Cayley whom

we must thank for the correct development of quaternions as a

representation of rotations and for establishing the connection

with the results published by Rodrigues three years before the

discovery of quaternions [13]. Cayley is also credited to be

the first to discover that quaternions could also be used to

represent rotations in R
4 [14]. Cayley’s results can be used

to prove that any rotation in R
4 is a product of rotations

in a pair of orthogonal two-dimensional subspaces [15]. This

factorization, known as Cayley’s factoring of 4D rotations,

was also proved using matrix algebra by Van Elfrinkhof in

1897 in a paper [16] rescued from oblivion by Mebius in [17].

Cayley’s factorization plays a central role in what follows as it

provides a bridge between homogeneous transformations and

quaternions that remained unnoticed in the past.

B. Quaternions and their generalizations

In 1882, Clifford introduced the idea of a biquaternion in

three papers: “Preliminary sketch of biquaternions”, “Notes

on biquaternions”, and “Further note on biquaternions” [18]

(see [19] for a review and summary of this work). Clifford

adopted the word biquaternion, previously used by Hamilton

to refer to a quaternion with complex coefficients, to denote a

combination of two quaternions algebraically combined via a

new symbol, ω, defined to have the property ω2 = 0, so that

a biquaternion has the form q1 + ωq2, where q1 and q2 are

both ordinary quaternions. The use of the term biquaternion

is confusing. As observed in [19], even Clifford contributed

to this confusion by using the symbol ω in several different

contexts. For example, in his paper “Preliminary sketch of

biquaternions paper”, it is also used with the multiplication

rule ω2 = 1. Nowadays, in the area of robot kinematics,

biquaternions of the form q1 + εq2, where ε2 = 0, are called

dual quaternions, while those of the form q1 + eq2, where

e2 = 1, are called double quaternions. This denomination

derives from the fact that the symbols ε and e designate the

dual and the double units, respectively [20]. Thus, we have

three imaginary units which can be equal either to the complex

unit i (i2 = −1), to the dual unit ε (ε2 = 0), or to the double

unit e (e2 = 1). These units define the basis of the so-called

hypercomplex numbers [21].

The double quaternion q1 + eq2 can be reformulated by

introducing the symbols ξ = 1+e
2

and η = 1−e
2

[18], [22].

Then, q1 + eq2 = ξ(q1 + q2) + η(q1 − q2). Since ξ2 = ξ,

η2 = η and ξη = 0, the terms (q1 + q2) and (q1 − q2)
operate independently in the double quaternion product which

has been found quite convenient when manipulating kinematic

equations expressed in terms of double quaternions [23]. A

third possible representation for double quaternions consists

in having two quaternions expressed in different bases of

imaginary units whose product is commutative. This also leads

to couples of quaternions that operate independently when

multiplied. Nowadays, the algebras of ordinary, double, and

dual quaternions are grouped under the umbrella of Clifford

algebras, also known as geometric algebras (see [24, Chap. 9]

or [25] for an introduction).

While double quaternions have been found direct applica-

tion to represent 4D rotations, dual quaternions found ap-

plication to encapsulate both translation and rotation into a

unified representation. Then, if 3D spatial displacements are

approximated by 4D rotations, a beautiful connection between

double and dual quaternions can be established.

Yang and Freudenstein introduced the use of dual quater-

nions for the analysis of spatial mechanisms [26]. Since

then, dual quaternions have been used by several authors in

the kinematic analysis and synthesis of mechanisms, and in

computer graphics (see, for instance, the works of McCarthy

[27], Angeles [28], and Perez-Gracia [29]).

C. Quaternions and matrix algebra

Matrix algebra was developed beginning about 1858 by

Cayley and Sylvester. Soon it was realized that matrices

could be used to represent the imaginary units used in the

definition of quaternions. Actually, a set of 4 × 4 matrices,

sometimes called Dirac-Eddington-Conway matrices, with real

values can realize every algebraic requirement of quaternions.

Alternatively, a set of 2 × 2 matrices, usually called Pauli

matrices, with complex values can play the same role (see [30,

pp. 143-144] for details). Therefore, there are sets of matrices

which all produce valid matrix representations of quaternions.

The choice of one set over other has been driven by esthetic

preferences, but we will show how Cayley’s factorization

leads to a matrix representation that attenuates this sense of

arbitrariness.

While in most textbooks the matrix representation of quater-

nions is considered as an advanced topic, if ever mentioned,

in this paper matrix algebra is used as the doorway to quater-

nions. This would probably be the usual practice if matrix

algebra had been developed before quaternions.

D. Organization of the paper

This paper is organized as follows. Section II reviews the

connection between 4D rotations and double quaternions in

terms of matrix algebra. Section III presents a digression, that

can be skipped on a first reading, in which the expressive

power of matrix algebra is explored to derive different systems

of hypercomplex numbers associated with 4D rotations. In

Section IV, the results presented in Section II are specialized

to the 3D case. Section V deals with the problem of ap-

proximating 3D transformations in homogeneous coordinates

by 4D rotations. The results obtained in Section IV and

Section V constitute the basic building blocks of the proposed

twofold matrix-quaternion formalism for the representation

of rigid-body transformations. The reinterpretation of kine-

matic equations expressed as products of transformations in
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homogeneous coordinates using this formalism is treated in

Section VI. Section VII presents some examples and, finally,

we conclude in Section VIII with a summary of the main

points.

II. 4D ROTATIONS AND DOUBLE QUATERNIONS

After a proper change in the orientation of the reference

frame, an arbitrary 4D rotation matrix (i.e., an orthogonal

matrix with determinant +1) can be expressed as [31, Theorem

4]:




cosα1 − sinα1 0 0
sinα1 cosα1 0 0
0 0 cosα2 − sinα2

0 0 sinα2 cosα2


 . (1)

Thus, a 4D rotation is defined by two mutually orthogonal

planes of rotation, each of which is fixed in the sense that

points in each plane stay within the planes. Then, a 4D rotation

has two angles of rotation, α1 and α2, one for each plane of

rotation, through which points in the planes rotate. All points

not in the planes rotate through an angle between α1 and α2.

See [32] for details on the geometric interpretation of rotations

in four dimensions.

If α1 = ±α2, the rotation is called an isoclinic rotation. An

isoclinic rotation can be left- or right-isoclinic (depending on

whether α1 = α2 or α1 = −α2, respectively) which can be

represented by a rotation matrix of the form

RL =




l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0


 , (2)

and

RR =




r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0


 , (3)

respectively. Since (2) and (3) are rotation matrices, their rows

and columns are unit vectors. As a consequence,

l21 + l22 + l23 + l24 = 1 (4)

and

r21 + r22 + r23 + r24 = 1. (5)

Without loss of generality, we have introduced some

changes in the signs and indices of (2) and (3) with respect to

the notation used by Cayley [14], [33] to ease the treatment

given below and to provide a neat connection with the stan-

dard use of quaternions for representating rotations in three

dimensions.

Isoclinic rotation matrices have three important properties:

1) The product of two right- (left-) isoclinic matrices is a

right- (left-) isoclinic matrix.

2) The product of a right- and a left-isoclinic matrix is

commutative.

3) Any 4D rotation matrix, according to Cayley’s factor-

ization, can be decomposed into the product of a right-

and a left-isoclinic matrix.

Then, a 4D rotation matrix, say R, can be expressed as:

R = RLRR = RRRL (6)

where

RL = l0I+ l1A1 + l2A2 + l3A3 (7)

and

RR = r0I+ r1B1 + r2B2 + r3B3, (8)

where I stands for the 4× 4 identity matrix and

A1 =



0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , A2 =




0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0


 ,

A3 =



0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , B1 =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


 ,

B2 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 , B3 =



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 .

Therefore, {I,A1,A2,A3} and {I,B1,B2,B3} can be seen,

respectively, as bases for left- and right-isoclinic rotations.

The details on how to compute Cayley’s factorization (6)

can be found in the appendix.

Now, it can be verified that

A2
1 = A2

2 = A2
3 = A1A2A3 = −I, (9)

and

B2
1 = B2

2 = B2
3 = B1B2B3 = −I. (10)

We can recognize in these two expressions the quaternion

definition. Actually, (9) and (10) reproduce the celebrated

formula that Hamilton carved into the stone of Brougham

Bridge.

Expression (9) determines all the possible products of A1,

A2, and A3 resulting in

A1A2 = A3, A2A3 = A1, A3A1 = A2,

A2A1 = −A3, A3A2 = −A1, A1A3 = −A2. (11)

Likewise, all the possible products of B1, B2, and B3 can

be derived from expression (10). All these products can be

summarized in the following product tables:

I A1 A2 A3

I I A1 A2 A3

A1 A1 −I A3 −A2

A2 A2 −A3 −I A1

A3 A3 A2 −A1 −I

(12)

I B1 B2 B3

I I B1 B2 B3

B1 B1 −I B3 −B2

B2 B2 −B3 −I B1

B3 B3 B2 −B1 −I

(13)

Moreover, it can be verified that

AiBj = BjAi. (14)
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which is actually a consequence of the commutativity of left-

and right-isoclinic rotations. Then, in the composition of two

4D rotations, we have:

R1R2 = (RL
1R

R
1 )(R

L
2R

R
2 ) = (RL

1R
L
2 )(R

R
1 R

R
2 ). (15)

It can be concluded that RL
i and RR

i can be seen either as

4 × 4 rotation matrices or, when expressed as in (7) and (8)

respectively, as unit quaternions and their product, as a double

quaternion because they operate independently in the product

of two 4D rotations. It is said that they are unit quaternions

because their coefficients satisfy (4) and (5).

Next, in Section IV, the above twofold matrix-quaternion

representation of 4D rotations is specialized to 3D rotations

and, in Section V, generalized to represent 3D translations.

Nevertheless, let us fist explore this twofold representation a

bit further.

III. A DIGRESSION

One of the multiple advantages of the proposed matrix-

quaternion formulation is that the involved imaginary units

have a clear algebraic interpretation. We can operate with these

units to obtain different representations of 4D rotations that

would otherwise be quite abstract and difficult to derive. To

see this, let us start by defining

D1 = A1B
−1

1 =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ,

D2 = −A2B
−1

2 =



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ,

D3 = A3B
−1

3 =



−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 .

Then, it can be verified that

D2
1 = D2

2 = D2
3 = D1D2D3 = I (16)

which allow us to define a kind of quaternion whose imaginary

units are double units. As with ordinary quaternions, (16)

determines all the possible products of D1, D2, and D3 which

can be summarized in the following product table:

I D1 D2 D3

I I D1 D2 D3

D1 D1 I D3 D2

D2 D2 D3 I D1

D3 D3 D2 D1 I

(17)

Then, clearly Di = D−1

i , i = 1, 2, 3, and, as a consequence,

B1 = D1A1, B2 = −D2A2, and B3 = D3A3.

Substituting the above expressions for Bi, i = 1, 2, 3, in (8),

multiplying the result by (7), and factoring out Di, i = 1, 2, 3,

we conclude that (6) can be rewritten as:

R = IQ0 +D1Q1 +D2Q2 +D3Q3 (18)

where

Q0 = r0 (l0I+ l1A1 + l2A2 + l3A3) ,

Q1 = r1 (l0A1 − l1I+ l2A3 − l3A2) ,

Q2 = r2 (−l0A2 + l1A3 + l2I− l3A1) ,

Q3 = r3 (l0A3 + l1A2 − l2A1 − l3I) .

Now, we can shift from the basis {I,D1,D2,D3} to the

basis {E1,E2,E3,E4} defined as

E1 =
1

4
(I−D1 +D2 −D3) =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (19)

E2 =
1

4
(I+D1 −D2 −D3) =



0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , (20)

E3 =
1

4
(I+D1 +D2 +D3) =



0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , (21)

E4 =
1

4
(I−D1 −D2 +D3) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 . (22)

The elements of this basis are distinguished by the fact that

their multiplication table is the simplest possible for a basis:

E1 E2 E3 E4

E1 E1 0 0 0

E2 0 E2 0 0

E3 0 0 E3 0

E4 0 0 0 E4

By inverting the system of equations defined by (19)-(22),

we obtain:

I = E1 +E2 +E3 +E4

D1 = −E1 +E2 +E3 −E4

D2 = E1 −E2 +E3 −E4

D3 = −E1 −E2 +E3 +E4

Substituting these expressions in (18) and factoring out Ei,

for i = 1, . . . , 4, we obtain:

R = E1K1 +E2K2 +E3K3 +E4K4, (23)

where

K1 =Q0 −Q1 +Q2 −Q3

=(r0l0 + r1l1 + r2l2 + r3l3)I

+ (r0l1 − r1l0 − r2l3 + r3l2)A1

+ (r0l2 + r1l3 − r2l0 − r3l1)A2

+ (r0l3 − r1l2 + r2l1 − r3l0)A3,
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K2 =Q0 +Q1 −Q2 −Q3

=(r0l0 − r1l1 − r2l2 + r3l3)I

+ (r0l1 + r1l0 + r2l3 + r3l2)A1

+ (r0l2 − r1l3 + r2l0 − r3l1)A2

+ (r0l3 + r1l2 − r2l1 − r3l0)A3,

K3 =Q0 +Q1 +Q2 +Q3

=(r0l0 − r1l1 + r2l2 − r3l3)I

+ (r0l1 + r1l0 − r2l3 − r3l2)A1

+ (r0l2 − r1l3 − r2l0 + r3l1)A2

+ (r0l3 + r1l2 + r2l1 + r3l0)A3,

and

K4 =Q0 −Q1 −Q2 +Q3

=(r0l0 + r1l1 − r2l2 − r3l3)I

+ (r0l1 − r1l0 + r2l3 − r3l2)A1

+ (r0l2 + r1l3 + r2l0 + r3l1)A2

+ (r0l3 − r1l2 − r2l1 + r3l0)A3.

It is thus concluded that a 4D rotation can be expressed

as a linear combination of four quaternions. In the product of

two 4D rotations, these four quaternions operate independently

because E2
i = Ei, for i = 1, 2, 3, 4, and EiEj = 0 if i 6=

j. The reader interested in further exploring the connections

between 4D rotations and different sets of imaginary units is

referred to [33] and [34].

IV. 3D ROTATIONS AND ORDINARY QUATERNIONS

We have seen how double quaternions naturally emerge

from Cayley’s factorization of 4D rotations into isoclinic

rotations. Now, we specialize this result to 3D rotations.

The homogenous matrix transformation representing a ro-

tation by φ about the x axis is:

Rx(φ) =



1 0 0 0
0 cos(φ) − sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1


 , (24)

which can be readily interpreted as a rotation in R
4. Then, its

Cayley’s factorization into a right- and a left-isoclinic rotation,

using the procedure given in the appendix, yields

RL
x
(φ) =

1√
t2 + 1



1 0 0 −t
0 1 −t 0
0 t 1 0
t 0 0 1


 (25)

and

RR
x
(φ) =

1√
t2 + 1




1 0 0 t
0 1 −t 0
0 t 1 0
−t 0 0 1


 , (26)

respectively, where we have introduced the change of variable

t = tan
(

φ
2

)
to obtain more amenable expressions. Then,

Rx(φ) =

(
1√

t2 + 1
(I+ tA1)

)(
1√

t2 + 1
(I+ tB1)

)
.

(27)

We can perform the same factorization for rotations about

the y and the z axes. Table I compiles the results.

Now, let us suppose that we want to represent a general

rotation using the XYZ Cardanian angles [35, p. 28]. Then,

Rx(φ1)Ry(φ2)Rz(φ3) =(
1√

t21 + 1
(I+ t1A1)

)(
1√

t21 + 1
(I+ t1B1)

)

(
1√

t22 + 1
(I+ t2A2)

)(
1√

t22 + 1
(I+ t2B2)

)

(
1√

t23 + 1
(I+ t3A3)

)(
1√

t23 + 1
(I+ t3B3)

)
.

Therefore, using the commutativity of left- and right-

isoclinic rotations, and the product tables (12) and (13), we

conclude that:

Rx(φ1)Ry(φ2)Rz(φ3) = Q1Q2 = Q2Q1, (28)

where

Q1 =
1√

(t21 + 1)(t22 + 1)(t23 + 1)
[(1− t1t2t3)I

+ (t1 + t2t3)A1 + (t2 − t1t3)A2 + (t3 + t1t2)A3]

and

Q2 =
1√

(t21 + 1)(t22 + 1)(t23 + 1)
[(1− t1t2t3)I

+ (t1 + t2t3)B1 + (t2 − t1t3)B2 + (t3 + t1t2)B3].

Similar results are obtained for other sets of Eulerian or

Cardanian angles. In any case, after constraining rotations

to three dimensions, the double quaternion representation

becomes redundant as one quaternion can be deduced from

the other by simply exchanging Ai and Bi. Thus, a 3D

rotation can be represented either by a quaternion of the form

(p0I+p1A1+p2A2+p3A3) or (p0I+p1B1+p2B2+p3B3)
and the corresponding homogeneous matrix can be obtained

by computing their commutative product. Indeed, it can be

verified that

(p0I+ p1A1 + p2A2 + p3A3)(p0I+ p1B1 + p2B2 + p3B3)

=




p0 −p3 p2 −p1
p3 p0 −p1 −p2

−p2 p1 p0 −p3
p1 p2 p3 p0







p0 −p3 p2 p1
p3 p0 −p1 p2

−p2 p1 p0 p3
−p1 −p2 −p3 p0




=




1− 2p22 − 2p23 2p1p2 − 2p0p3 2p0p2 + 2p1p3 0
2p0p3 + 2p1p2 1− 2p21 − 2p23 2p2p3 − 2p0p1 0
2p1p3 − 2p0p2 2p0p1 + 2p2p3 1− p21 − p22 0

0 0 0 1


 .

(29)

Observe that this is the well-known formula that permits

passing from a quaternion representation to the corresponding

rotation matrix [7, p. 85].

Now, if we substitute in (29) the following values

p0 = cos

(
θ

2

)
, p1 = nx sin

(
θ

2

)
,

p2 = ny sin

(
θ

2

)
, p3 = nz sin

(
θ

2

)
,
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.

TABLE I
3D ROTATIONS IN HOMOGENEOUS COORDINATES INTERPRETED AS 4D ROTATIONS AND THEIR FACTORIZATIONS INTO LEFT- AND RIGHT- ISOCLINIC

ROTATIONS (t = tan
(

φ
2

)

).

Transformation Left-Isoclinic Right-Isoclinic Double quaternion

Rx(φ) =











1 0 0 0

0 1−t2

t2+1

−2t
t2+1

0

0 2t
t2+1

1−t2

t2+1
0

0 0 0 1











= 1√
t2+1







1 0 0 −t
0 1 −t 0
0 t 1 0
t 0 0 1






· 1√

t2+1







1 0 0 t
0 1 −t 0
0 t 1 0
−t 0 0 1






= 1√

t2+1
(I+ tA1) ·

1√
t2+1

(I+ tB1)

Ry(φ) =











1−t2

t2+1
0 −2t

t2+1
0

0 1 0 0
−2t
t2+1

0 1−t2

t2+1
0

0 0 0 1











= 1√
t2+1







1 0 t 0
0 1 0 −t
−t 0 1 0
0 t 0 1






· 1√

t2+1







1 0 t 0
0 1 0 t
−t 0 1 0
0 −t 0 1






= 1√

t2+1
(I+ tA2) ·

1√
t2+1

(I+ tB2)

Rz(φ) =











1−t2

t2+1

−2t
t2+1

0 0

2t
t2+1

1−t2

t2+1
0 0

0 0 1 0
0 0 0 1











= 1√
t2+1







1 −t 0 0
t 1 0 0
0 0 1 −t
0 0 t 1






· 1√

t2+1







1 −t 0 0
t 1 0 0
0 0 1 t
0 0 −t 1






= 1√

t2+1
(I+ tA3) ·

1√
t2+1

(I+ tB3)

with n2
x + n2

y + n2
z = 1, the result can be recognized as the

rotation through an angle θ about an axis that passes through

the origin and has direction given by the unit vector n =
(nx, ny, nz) (see, for example, [36, p. 47]). In sum,

Rn(θ) =

[
cos

(
θ

2

)
I+ sin

(
θ

2

)
(nxA1 + nyA2 + nzA3)

]

[
cos

(
θ

2

)
I+ sin

(
θ

2

)
(nxB1 + nyB2 + nzB3)

]
.

(30)

This alternative to Rodrigues’ formula provides a seam-

less connection between homogeneous transformations and

quaternions that can easily be grasped by anyone approaching

quaternions for the first time. This formula also demonstrates

two important concepts. First, a 3D rotation can be seen as the

composition of two 4D isoclinic rotations. Second, contrary

to popular belief, a unit quaternion actually represents a 4D

rotation (see [37] for an alternative proof of these two facts

using heavier mathematical machinery).

Equation (30) is also interesting because it can be concluded

from it that Cayley’s factorization gives the axis-angle repre-

sentation of a 3D rotation.

Notice that we can operate with Ai and Bi, i = 1, . . . , 3,

as symbols whose products commute and satisfy the product

tables (12) and (13). We do not need to substitute for them

by their corresponding matrices unless we explicitly need the

matrix representation. Keeping them as symbols has benefits

in three important practical applications:

1) to generate more compact expressions involving rota-

tions and, in general, to increase speed and reduce

storage for calculations involving long sequences of

rotations,

2) to avoid distortions arising from numerical inaccuracies

caused by floating point computations with rotations,

and

3) to interpolate between two rotations for generating

trajectories. The interpolation of two quaternions still

represents a valid rotation contrarily to what happens

when interpolating two rotation matrices.

Actually, these are the well-known advantages of using quater-

nions. For their detailed analysis see [30, Chap. IX].

V. 3D TRANSLATIONS AND DUAL QUATERNIONS

Let us suppose that we want to obtain the nearest rotation

matrix, under the Frobenius norm, to a given homogeneous

transformation matrix M. To find this rotation matrix, say R,

we can use the singular value decomposition M = U Σ VT

to write R = UVT [38], [39].

If we compute the singular value decomposition of the ho-

mogeneous transformation matrix representing an infinitesimal

translation along the x-axis, we obtain



1 0 0 d/δ
0 1 0 0
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣
δ→∞

≃




+
√

2+d/δ

2
0 0

−

√
2−d/δ

2

0 1 0 0
0 0 1 0

+
√

2−d/δ

2
0 0

+
√

2+d/δ

2






1− d

2δ
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1 + d

2δ







+
√

2−d/δ

2
0 0

+
√

2+d/δ

2

0 1 0 0
0 0 1 0

−

√
2+d/δ

2
0 0

+
√

2−d/δ

2


 .

Then, the nearest (in Frobenious norm) 4D rotation matrix

approximating an infinitesimal translation along the x-axis in

homogeneous coordinates is given by:


1 0 0 d/δ
0 1 0 0
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣
δ→∞

≃




1 0 0 d/2δ
0 1 0 0
0 0 1 0

−d/2δ 0 0 1


 ,

which can be factored into the product of a right- and left-

isoclinic rotation. The same can be performed for infinitesimal
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TABLE II
INFINITESIMAL 3D TRANSLATIONS IN HOMOGENEOUS COORDINATES APPROXIMATED BY 4D ROTATIONS AND THEIR FACTORIZATIONS INTO LEFT- AND

RIGHT-ISOCLINIC ROTATIONS

Transformation Left-Isoclinic Right-Isoclinic Double quaternion

Tx

(

d
δ

)∣

∣

∣

δ→∞

=









1 0 0 d
δ

0 1 0 0
0 0 1 0
0 0 0 1









∣

∣

∣

∣

∣

∣

∣

∣

δ→∞

≃









1 0 0 d
2δ

0 1 0 0
0 0 1 0

− d
2δ

0 0 1









=









1 0 0 d
4δ

0 1 d
4δ

0

0 − d
4δ

1 0

− d
4δ

0 0 1









·









1 0 0 d
4δ

0 1 − d
4δ

0

0 d
4δ

1 0

− d
4δ

0 0 1









=
(

I− d
4δ

A1

)

·
(

I+ d
4δ

B1

)

Ty

(

d
δ

)∣

∣

∣

δ→∞

=









1 0 0 0

0 1 0 d
δ

0 0 1 0
0 0 0 1









∣

∣

∣

∣

∣

∣

∣

∣

δ→∞

≃









1 0 0 0

0 1 0 d
2δ

0 0 1 0

0 − d
2δ

0 1









=









1 0 − d
4δ

0

0 1 0 d
4δ

d
4δ

0 1 0

0 − d
4δ

0 1









·









1 0 d
4δ

0

0 1 0 d
4δ

− d
4δ

0 1 0

0 − d
4δ

0 1









=
(

I− d
4δ

A2

)

·
(

I+ d
4δ

B2

)

Tz

(

d
δ

)∣

∣

∣

δ→∞

=









1 0 0 0
0 1 0 0

0 0 1 d
δ

0 0 0 1









∣

∣

∣

∣

∣

∣

∣

∣

d→0

≃









1 0 0 0
0 1 0 0

0 0 1 d
2δ

0 0 − d
2δ

1









=









1 d
4δ

0 0

− d
4δ

1 0 0

0 0 1 d
4δ

0 0 − d
4δ

1









·









1 − d
4δ

0 0
d
4δ

1 0 0

0 0 1 d
4δ

0 0 − d
4δ

1









=
(

I− d
4δ

A3

)

·
(

I+ d
4δ

B3

)

translations along the other coordinate axes. Table II compiles

the results.

Now, let us suppose that we perform an infinitesimal trans-

lation in the direction given by the vector t = (tx, ty, tz)
T .

Then,

Tx

(
tx
δ

)
Ty

(
ty
δ

)
Tz

(
tz
δ

)∣∣∣∣
δ→∞

≃
(
I− tx

4δ
A1

)(
I+

tx
4δ

B1

)(
I− ty

4δ
A2

)

(
I+

ty
4δ

B2

)(
I− tz

4δ
A3

)(
I+

tz
4δ

B3

)
.

Using the product tables (12) and (13) and neglecting

higher-order infinitesimals, we conclude that

Tx

(
tx
δ

)
Ty

(
ty
δ

)
Tz

(
tz
δ

)∣∣∣∣
δ→∞

≃
[
I− 1

4δ
(txA1 + tyA2 + tzA3)

]

[
I+

1

4δ
(txB1 + tyB2 + tzB3)

]

=




1 0 0 tx/2δ
0 1 0 ty/2δ
0 0 1 tz/2δ

−tx/2δ −ty/2δ −tz/2δ 1


 .

An alternative way to perform the above operation in a more

elegant way is by introducing the symbol ε, ε2 = 0 (i.e., the

dual unit). It can actually be shown that

Tx(εtx)Ty(εty)Tz(εtz)

=

[
I− ε

1

4
(txA1 + tyA2 + tzA3)

]

[
I+ ε

1

4
(txB1 + tyB2 + tzB3)

]

=




1 0 0 εtx/2
0 1 0 εty/2
0 0 1 εtz/2

−εtx/2 −εty/2 −εtz/2 1


 . (31)

In other words, εd permits working as if d were infinitely

small without explicitly having to compute limits. Therefore,

based on (31), we can establish the following one-to-one

correspondence between general 3D translations expressed

as homogeneous transformation matrices and 4D rotation

matrices

(
I3×3 t

0T 1

)
⇄

(
I3×3 εt
−εtT 1

)
(32)

Observe that we have dropped the 1/2 term as it is just a

constant scaling factor.

Since any arbitrary rigid motion can be expressed as a

translation followed by a rotation, the above correspondence

induces the following correspondence between general 3D

rigid motions expressed as homogeneous transformation ma-

trices and 4D rotation matrices:
(
I3×3 t

0T 1

)(
R3×3 0
0T 1

) (
I3×3 εt
−εtT 1

)(
R3×3 0
0T 1

)

‖ ‖
(
R3×3 t

0T 1

) F

⇄
F−1

(
R3×3 εt

−εtTR3×3 1

)

(33)

From now on, we will denote M̃ = F(M), where M is an

arbitrary transformation matrix. Observe that F(M1M2) =
F(M1)F(M2). From this property, one can deduce that F
maps the identity element into the identity element, and it

also maps inverses to inverses in the sense that F(M−1) =
(F(M))−1. Technically speaking, F is a group isomorphism

[40, Section 2.2].

At this point, it is important to realize that the 4D rotation

matrix corresponding to a 3D homogeneous transformation

matrix through F is not an approximation, it is an exact

representation, and that the use of dual numbers to represent

general 3D translations in terms of 4D rotation matrices is

completely different from the standard approach based on

3D rotation matrices [41], [42], [43]. The use given here,

while allowing a clear-cut distinction between translations and
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rotations, provides at the same time a neat connection with

standard homogeneous transformations.

Now, the 4D rotation matrix corresponding to the translation

in the direction given by the unit vector n = (nx, ny, nz)
T a

distance d, after factoring it using Cayley’s factorization, can

be expressed as:

T̃n(d) =

[
I− ε

d

2
(nxA1 + nyA2 + nzA3)

]

[
I+ ε

d

2
(nxB1 + nyB2 + nzB3)

]
. (34)

As with 3D rotations, the double quaternion representation

of 3D translations is also redundant because one quaternion

can be deduced from the other by exchanging Ai and Bi and

changing the sign of the dual part.

VI. KINEMATIC EQUATIONS

Consider the kinematic equation:

M0 = M1M2 · · ·Mn, (35)

where Mi, i = 0, . . . , n, is an arbitrary transformation in

homogeneous coordinates. This kinematic equation can be

translated, through the mapping in (33), into a kinematic

equation fully expressed in terms of 4D rotation matrices. That

is,

M̃0 = M̃1M̃2 · · · M̃n. (36)

Then, using Cayley’s factorization, we obtain

M̃L
0 M̃

R
0 = M̃L

1 M̃
R
1 M̃L

2 M̃
R
2 · · · M̃L

nM̃
R
n . (37)

Therefore, using the properties of left- and right-isoclinic

rotations, we conclude that

M̃L
0 =M̃L

1 M̃L
2 · · · M̃L

n , (38)

M̃R
0 =M̃R

1 M̃R
2 · · · M̃R

n . (39)

Each rotation matrix in (38), or (39), can readily be

interpreted as a quaternion if expressed in the basis

{I,A1,A2,A3}, or {I,B1,B2,B3}. Moreover, as we have

already seen, any of these two equations can be obtained from

the other by exchanging Ai and Bi and changing the sign of

the dual symbol.

Although translations and rotations provide the basic build-

ing blocks of any kinematic equation, in many applications it

is interesting to have a more compact expression for motions

combining a rotation about an axis and a translation in the

direction given by the same axis (i.e., screw motions). Indeed,

if we define

S = Rn(θ)Tn(d), (40)

then

S̃R =

[
cos

(
θ

2

)
− ε

d

2
sin

(
θ

2

)]
I

+

[
sin

(
θ

2

)
+ ε

d

2
cos

(
θ

2

)]
(nxB1 + nyB2 + nzB3).

(41)

Since all powers greater or equal to two of ε vanish, the

Taylor expansion of f(a+ εb) about a yields f(a) + εbf ′(a).

As a consequence, sin(a+ εb) = sin a+ εb cos a and cos(a+
εb) = cos a− εb sin a [43, p. 3]. Therefore, (41) can be more

compactly expressed as:

S̃R = cos

(
θ̂

2

)
I+ sin

(
θ̂

2

)
(nxB1 + nyB2 + nzB3), (42)

where θ̂ = θ + εd. The dual quaternion (42) is undoubtedly

a much more compact representation of a screw motion

than the expansion of (40). Thus, it is not surprising that

dual quaternions defining successive screw displacements are

introduced to simplify the structure of the design equations in

the synthesis of mechanisms [29].

The screw displacement given by (42) is not general as the

rotation axis passes through the origin. The general form is

derived as an example in the next section.

VII. EXAMPLES

The following examples illustrate different aspects on how

to operate with the presented twofold matrix-quaternion for-

malism.

A. Derivation of the sandwich formula

It is straightforward to prove that, if q = C p, where C is

an arbitrary rotation matrix in homogeneous coordinates and

p a unit vector, then

Rq(θ) = C Rp(θ) C
T . (43)

If we substitute (30) in (43), set θ = π, and separate left- and

right-isoclinic rotations, we obtain

(qxA1+ qyA2+ qzA3) = CL(pxA1+ pyA2+ pzA3)(C
L)T

(44)

and

(qxB1 + qyB2 + qzB3) = CR(pxB1 + pyB2 + pzB3)(C
R)T

(45)

respectively.

Observe that either (44) or (45), after expressing CR and

CL in quaternion form according to (2) and (3), respectively,

is the well-known quaternion sandwich formula used to rotate

vectors. It is interesting to observe the number of pages de-

voted to the derivation of this formula in current textbooks [4,

pp. 127-134], [7], and the existence of recent papers essentially

devoted to its justification [8], while its derivation using the

proposed twofold matrix-quaternion formulation seems much

easier, at least for those used to work with homogenous

transformations.

B. Approximating dual quaternions by double quaternions

Let us suppose that we need to obtain the quaternion

representation of the following transformation in homogeneous

coordinates

M = Tx(4)Ty(−3)Tz(7)Ry

(π
2

)
Rz

(π
2

)

=



0 0 1 4
1 0 0 −3
0 1 0 7
0 0 0 1


 . (46)
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The 4D rotation matrix resulting from the mapping in (33)

is:

M̃ =




0 0 1 4ε
1 0 0 −3ε
0 1 0 7ε
3ε −7ε −4ε 1


 . (47)

Cayley’s factoring of this matrix into a left- and right-isoclinic

rotation matrix, using the procedure given in the appendix,

yields:

M̃L=




0.5 + 2ε −0.5 + 3.5ε 0.5 −0.5− 1.5ε
0.5− 3.5ε 0.5 + 2ε −0.5− 1.5ε −0.5

−0.5 0.5 + 1.5ε 0.5 + 2ε −0.5 + 3.5ε
0.5 + 1.5ε 0.5 0.5− 3.5ε 0.5 + 2ε




=(0.5 + 2ε)I+ (0.5 + 1.5ε)A1 + 0.5A2 + (0.5− 3.5ε)A3

(48)

and

M̃R=




0.5− 2ε −0.5− 3.5ε 0.5 0.5− 1.5ε
0.5 + 3.5ε 0.5− 2ε −0.5 + 1.5ε 0.5

−0.5 0.5− 1.5ε 0.5− 2ε 0.5 + 3.5ε
−0.5 + 1.5ε −0.5 −0.5− 3.5ε 0.5− 2ε




=(0.5− 2ε)I+ (0.5− 1.5ε)B1 + 0.5B2 + (0.5 + 3.5ε)B3,
(49)

respectively. Hence,

M̃ = M̃LM̃R =[(0.5 + 2ε)I+ (0.5 + 1.5ε)A1

+ 0.5A2 + (0.5− 3.5ε)A3]

[(0.5− 2ε)I+ (0.5− 1.5ε)B1

+ 0.5B2 + (0.5 + 3.5ε)B3].

This double quaternion representation is redundant as one

quaternion can be deduced from the other by exchanging Ai

and Bi and changing the sign of the dual part. Thus, either

the dual quaternion (48) or (49) unambiguously represents the

transformation (46).

The rotation matrix M̃ is an exact representation of M, it

is not an approximation. Alternatively, if we are not interested

in using dual numbers, we can approximate M by

˜̃
M =




0 0 1 4/δ
1 0 0 −3/δ
0 1 0 7/δ

3/δ −7/δ −4/δ 1


 . (50)

where δ is a scaling factor.
˜̃
M is closer to a 4D rotation

matrix as δ tends to infinity (it can be verified that det(
˜̃
M ) =

1 − 5/δ2). This is the approach pioneered in [44] and [45]

to approximate 3D homogeneous transformations by 4D rota-

tion matrices and used, for example, in [23] in dimensional

synthesis, or in [46] to solve the inverse kinematics of a

6R robot. This kind of approximation introduces a tradeoff

between numerical stability and accuracy of the approximation

(see [45] for details). If we factor
˜̃
M into a left- and a right-

isoclinic rotation, with δ = 100, we obtain:

˜̃
M

L

=




0.5204 −0.4632 0.4996 −0.5152
0.4632 0.5204 −0.5152 −0.4996

−0.4996 0.5152 0.5204 −0.4632
0.5152 0.4996 0.4632 0.5204




= 0.5204I+ 0.5152A1 + 0.4996A2 + 0.4632A3 (51)

and

˜̃
M

R

=




0.4804 −0.5332 0.4996 0.4852
0.5332 0.4804 −0.4852 0.4996

−0.4996 0.4852 0.4804 0.5332
−0.4852 −0.4996 −0.5332 0.4804




= 0.4804I+ 0.4852B1 + 0.4996B2 + 0.5332B3.
(52)

Hence,
˜̃
M

L ˜̃
M

R

can be used as an approximation of

M by properly scaling the translations. This approximate

double quaternion representation of M is not redundant as

one quaternion cannot be deduced from the other.

C. Computation of screw parameters

Chasles’ theorem states that the general spatial motion of

a rigid body can be produced a rotation about an axis and a

translation along the direction given by the same axis. Such

a combination of translation and rotation is called a general

screw motion [47]. In the definition of screw motion, a positive

rotation corresponds to a positive translation along the screw

axis by the right-hand rule.

qp

n

θ

Fig. 1. Geometrix parameters used to describe a general screw motion.

In Fig. 1, a screw axis is defined by n = (nx, ny, nz)
T , a

unit vector defining its direction, and qp, the position vector

of a point lying on it, where p = (px, py, pz)
T is also

a unit vector. The angle of rotation θ and the translational

distance d are called the screw parameters. These screw

parameters together with the screw axis completely define the

general displacement of a rigid body. In terms of homogeneous

transformations, in a way similar to (43), this can be expressed

as:

S = Tp(q)Rn(θ)Tn(d)Tp(−q) (53)
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Then, using (34) and (42),

S̃R =
[
I+ ε

q

2
(pxB1 + pyB2 + pzB3)

]

[
cos

(
θ̂

2

)
I+ sin

(
θ̂

2

)
(nxB1 + nyB2 + nzB3)

]

[
I− ε

q

2
(pxB1 + pyB2 + pzB3)

]
(54)

where θ̂ = θ + εd. This can be rewritten, after simplification,

as:

S̃R = cos

(
θ̂

2

)
I+ sin

(
θ̂

2

)
(n̂xB1 + n̂yB2 + n̂zB3) (55)

where n̂ = (n̂x, n̂y, n̂z)
T = n+ ε q p× n.

Thus, using the presented formalism, the derivation of

the screw parameters of an arbitrary 3D transformation in

homogenous coordinates entails finding the corresponding

4D rotation matrix through the mapping (33), obtaining its

Cayley’s factorization and, finally, identifying the resulting

right-isoclinic rotation with (55). For example, to obtain the

screw parameters of (46), we have to identify (49) with (55).

This identification yields:

cos

(
θ̂

2

)
= 0.5− 2ε (56)

n̂x sin

(
θ̂

2

)
= 0.5− 1.5ε (57)

n̂y sin

(
θ̂

2

)
= 0.5 (58)

n̂z sin

(
θ̂

2

)
= 0.5 + 3.5ε (59)

From (56), we have that θ̂ = θ + εd = 2

3
π + ε 8√

3
. Then,

substituting this value in (57)-(59), we conclude that n =(
1√
3
, 1√

3
, 1√

3

)T
and qp× n =

(
− 6

√
3−1

6
,− 1

6
, 14

√
3−1

6

)T
.

The conversion of a transformation in homogeneous coor-

dinates to its corresponding dual quaternion counterpart has

traditionally been performed by computing its screw parame-

ters [48, p. 100]. We have shown how Cayley’s factorization

performs this task in a more straightforward way. Actually,

the screw parameters can be seen as a by-product of this

factorization.

VIII. CONCLUSIONS

We have presented a two-fold matrix-quaternion formal-

ism for the representation of rigid-body transformations that

permits a better understanding of what dual quaternions are

and how they can be manipulated. This formalism stems from

Cayley’s factorization of 4D rotation matrices whose use has

been crucial for at least the following three reasons:

• Cayley’s factorization leads to a matrix representation of

quaternions that alleviates the sense of arbitrariness that

has dominated the representation of quaternions using

matrices.

• Cayley’s factorization, together with a new one-to-one

correspondence between 3D homogeneous transforma-

tion matrices and 4D rotation matrices, permits deriving

dual quaternions from homogeneous transformations in a

way that a deeper understanding of dual quaternions can

be attained.

• Cayley’s factorization permits converting a transforma-

tion in homogeneous coordinates to its corresponding

dual quaternion without having to compute screw param-

eters. It is not even necessary to know the existence of

Chasles’ theorem to perform this conversion.

Thus, Cayley’s factorization certainly deserves a more

prominent place in the arsenal of the applied kinematician.

This work can ultimately be seen as a vindication of its

importance.

APPENDIX. CAYLEY’S FACTORIZATION OF 4D ROTATION

MATRICES

The problem of factoring a 4D rotation matrix, say S, into

the product of a right- and a left- isoclinic rotation matrix

consists in finding the values of l0, . . . , l3 and r0, . . . , r3 that

satisfy the following matrix equation:

S =



s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44




=




l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0







r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0


 .

(60)

According to [33], this problem was first solved by Rosen,

a close collaborator of Einstein, in [49].

Equation (60) can be rewritten as:



l0r0 l0r1 l0r2 l0r3
l1r0 l1r1 l1r2 l1r3
l2r0 l2r1 l2r2 l2r3
l3r0 l3r1 l3r2 l3r3




=
1

4




s11 + s22 + s33 + s44 s31 + s42 − s13 − s24
s41 + s32 − s23 − s14 −s21 − s12 − s43 − s34

−s31 + s42 + s13 + s24 s11 − s22 + s33 − s44
s21 − s12 + s43 − s34 s41 − s32 − s23 + s14

−s41 + s32 − s23 + s14 s21 − s12 − s43 + s34
s21 + s12 − s43 − s34 s41 + s32 + s23 + s14
s11 − s22 − s33 + s44 s31 − s42 + s13 − s24
s31 + s42 + s13 + s24 −s11 − s22 + s33 + s44


 .

(61)

Then, if we square and add all the entries in row i of the

above matrix equation, we obtain

l2i−1(r
2
0 + r21 + r22 + r23) =

1

16

4∑

j=1

w2
i,j , (62)

where wij denotes the entry (i, j) of the matrix on the right-

hand side of (61). Hence, according to (5),

li−1 = ±

√√√√ 1

16

4∑

j=1

w2
i,j . (63)
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Therefore, assuming that li−1 6= 0, which is always true for

at least one value of i according to (4), the entries of the

right-isoclinic matrix can be obtained as follows:

rj−1 =
wi,j

li−1

. (64)

Now, if we take a value of j for which rj−1 6= 0, all other

entries of the left-isoclinic matrix, besides that obtained in

(63), can be obtained as follows:

lk−1 =
wk,j

rj−1

. (65)

Observe that we have two possible solutions for the fac-

torization depending on the sign chosen for the square root in

(63). This simply says that the factorization of S into isoclinic

rotations can either be expressed as SLSR or (−SL)(−SR).
In other words, Cayley’s factorization is unique up to a sign

change. The consequence of this fact is that quaternions

provide a double covering of the space of rotations.
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Robótica e Informática Industrial, Barcelona. His
research interests include geometry and kinematics
with applications to robotics. Prof. Thomas was an
Associate Editor of the IEEE TRANSACTIONS ON
ROBOTICS.


