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Abstract— Robot learning from demonstration faces new
challenges when applied to tasks in which forces play a key
role. Pouring liquid from a bottle into a glass is one such tak,
where not just a motion with a certain force profile needs
to be learned, but the motion is subtly conditioned by the
amount of liquid in the bottle. In this paper, the pouring skill
is taught to a robot as follows. In a training phase, the human
teleoperates the robot using a haptic device, and data fromhe
demonstrations are statistically encoded by a parametric tdden
Markov model, which compactly encapsulates the relation
between the task parameter (dependent on the bottle weight)
and the force-torque traces. Gaussian mixture regressionsi
then used at the reproduction stage for retrieving the suithle
robot actions based on the force perceptions. Computationa
and experimental results show that the robot is able to learn
to pour drinks using the proposed framework, outperforming
other approaches such as the classical hidden Markov models
in that it requires less training, yields more compact encothgs
and shows better generalization capabilities.

I. INTRODUCTION

Robot learning from demonstratibfLfD) aims to en-
dow robots with skills learned from human examples [1]
The teacher can demonstrate the task by teleoperation [
kinesthetic teaching [3], or by using motion sensors

markers attached to the body [4]. During the demonstratio

phase, the perception system of the robot gathers all t

information about the state of the robot and its environmen

In this context, force sensing has recently opened the aoor
learning tasks where contact with the surroundings, obje
and even with a human partner may occur.

Force-based data may enrich the perception system o
robot by providing additional information about the task

sometimes missed by other kind of sensors. For instanc
Falco et al. used force measurements to improve the ob[—
servation of the human hand motion [5], which may be

of particular interest in LfD applications. Specificallprée
inputs have been exploited in two kinds of scenarios, namel

(i) tasks involving contact and/or manipulation of objects

and (ii) physical human-robot interactiopKIRI). In [6],

control policies based on goal-driven dynamical systeras ar
learned to encode interaction force skills for a robot iq
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Fig. 1. Proposed learning framework. At tldemonstration phase, the
human provides examples of the pouring task by teleoperdtie robotic
arm using a haptic device. The force perceptions sensedtlwwerourse of
the task, along with their initial value (i.e., the task paeder), are used to
train a PHMM. At thereproduction stage, the robot carries out the pouring
skill using GMR to retrieve joint-level commands given therde-torque
inputs at each time step.
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ntact with compliant environments. Schmidtsal. [7]
‘opose to learn human grasping skills from motion and force
nata, which are encoded by a hidden Markov motiéli )
i(’1;1nd reproduced by a Gaussian mixture regressBMR)
Itaeter. A similar structure was previously used in the cohtex
f pHRI for learning a collaborative lifting task, wherein
tI e haptic communication was exploited to extract leading

and following robot behaviors [8]. Force control policies

Pave been also learned through reinforcement learning for

cgmpliant manipulation [9].
’e In this paper we propose to teach a robot to pour drinks us-
ing force-based perceptions exclusively, where the key con
ribution is to exploit the haptic input information perced
at the beginning of each demonstration to parameterizeforc
based tasks and encode them through a compact probabilistic
odel. In a real situation, a human carrying out the same task
must turn the bottle in such a way that the fluid is poured,
which definitely depends on the quantity of fluid inside it, as
hown in Figure 2. Such situation of having a task parameter
hat modifies the execution accordingly is often found in
several scenarios. For instance, a point-to-point regdaisk
may depend on the location of the object to be grasped,
which would modify the trajectory followed by the robot to
reach the goal. A similar case was tackled in [10] where the
authors propose to learn reaching movements through HMMs
projected onto several position-varying landmark frantles (
task parameters), and then to estimate a resulting model
in the form of products of Gaussians. Similarly, Cederborg

S



et al. used the notion oframings to incrementally learn
various tasks that can be defined in different frames (also
viewed as task parameters), where the system infers from
demonstrations which particular frame should be used for
each task [11].

In contrast to the aforementioned works, we propose a
learning framework where a parametric version of the HMM
(PHMM) [12] is used to represent the demonstrations and
parameters of force-based skills, which is further used in a
reproduction phase where GMR is implemented to retrieve |
the robot movements. We show the benefits of this approach
in a pouring task scenario. Note that Kriuget al. [13] e
proposed to synthesize and recognize robot reaching move-
ments — action primitives — by using PHMMs, where the task
parameters correspond to the initial and final location ef thFig. 2. IIIustrati_on of poyring Fask carried out by a humamireal situation.
grasped object. Nonetheless, this task may also be solvEjf55art of ud nside the botle, te more te fumans te
using the frames-based approaches described above, unbk#e needs to be turned to accomplish the task successfull
our case where the parameters are not position dependent.

The advantage of using a PHMM is that the parameters can

colmef from dlﬁeregt kmdsh(_)fhmforlinat!on source (::;Ie.’ ngﬁnto all the glasses placed at different locations, hereyeve
only from position data), which makes it more suitable to %ample of the task starts from a unique predefined initiaépos

use(rj]_in forceibased r.obgt Ie?rﬂing.. . q i of the bottle, which is also the stop configuration once the
This paperis organized as follows: Section Il describes oyp, o pag poured a drink. Initially, the bottle is complgtel

experimental setup and the pouring task taught to the robgly 4 the teacher carries out several demonstratiotis un

Sections Il and_ v e>_<p|a_in the _Iearning ar_1d_ reproduptioqhe bottle is empty. Thus, the initial force-torque values f
phases, respectively, first illustrating the statisticaigmetric each example vary according to how much fluid has been

e;:codmghof the dem_on_straltlons bydusmgha PHMM_and the oured previously, which, at the time, is the task parameter
showing how GMR is implemented at the execution stag onditioning the robot movements.

Section V shows computational and robot execution results

Finally, the conclusions of this paper and future work are ?'m'la”):jt? our prew(;)uhs wo;k [14]. a Qyn??lcbc?trlnpen-
presented in Section VI. sation model was used here for removing the bottle mass

effects from the sensor readings, in order to feed back the

Il. EXPERIMENTAL SETUP teacher with only the external forces-torques generated by
e fluid at the demonstration phase. Note that in this task,

the teacher is able to watch the scene directly (see Figure
, thus he/she can know the location of the glass in the
robot workspace. Such information is not provided to the

Dimension) teleoperates a robotic arm (RX60 from Staubl pbot dur.ing the execution pha_se because the glass position
which has a force-torque sensor (Schunk FTC-050) plac S predefined in advance and fixed across the examples.
on its wrist (see Figure 3). The sensed forces-torques areLet us mention that the proposed task is challenging
fed back to the teacher in order to establish a bidirection@nd has aroused the research community’s interest recently
communication channel during the demonstration stages Thiamosiunaiteet al. [15] tackled the same problem us-
implies to work at a minimum frequency of 1000 Hz toing reinforcement learning, which was applied to improve
have a high fidelity force reflection and a stable teleopemati the initial encoding obtained from human demonstrations
system, which greatly depends on the executed proces$Bgdeled through dynamic motion primitives. Cakmak and
between the position sensing of the haptic device and whdiiomaz [16] taught a humanoid robot to pour through an
the sensed force is reflected on it. Our experimental set@stive learning framework, wherein the robot was allowed
takes such requirement into account and guarantees a highask questions regarding the task at hand. Our approach
bandwidth communication in the haptic loop. significantly differs from these works in that the humanebb

In our experimental scenario the robot holds a 1 liter pladnteraction is through a haptic device, the demonstrations
tic bottle full of tiny metallic spheres, which play the raiea  are encoded by a probabilistic model that exploits the task
fluid (this solution was adopted to avoid spilling liquid thg  Parameters and the perception system senses only the-forces
tests and, in the end, what we like to learn is a given fluitorques generated over the execution of the skill.
like dynamics, no matter which). The teacher teleoperates t
robot in order to demonstrate how to pour 100 ml drinks into

?‘ plf"‘St'C glass. In contrast to the '"us_trat've fexample/\sho glass in the robot frame, so that the demonstrations woshilz dependent
in Figure 2 where the human moves its arm in order to pown this parameter.

We constructed an experimental setup to teach a robo
manipulator to carry out the pouring task using exclusivel
haptic data. In such scenario a human user holding the e
effector of a 6-DoF haptic interface (Delta device from Forc

2Note that a camera system may also be used to know the loazitibve



1 of the model, we have:
ﬂi(em) = W0, + ps, 1)

where W; describes the linear variation. Eq. (1) can be
expressed in a matrix fashion @as(6,,,) = Z,€2,,, where

Z; =W, wi], Qun =10, 1]". (2)

The former linear formulation allows to estimate only
one additional model parameter, namély, from which the
means of the model are computed for a specific value of
0., (the readers are referred to [12] in order to look up the
estimation equation foZ;). Note that this parametric model
allows us to provide a compact probabilistic encoding of the
Fig. 3. Experimental scenario of tipeuring task. The teacher demonstrates demonstrations, handling the task parameters througlearlin
the robot how to pour 100 ml drinks into a glass by teleoperati dependence that modifies the location of the output dessitie
in the dataspace, without influencing their shape (i.e., the
covariance information). Results of the parametric enogdi

I1l. PARAMETRIC ENCODING OF THESKILL of the pouring skill are given and explained in Section V.

The hidden Markov model has been extensively used

for encoding or representing the teacher examples in LfD IV. REPRODUCTION OF THESKILL

applications [2], [3], [8]. An HMM can be interpreted as an Once the PHMM has been trained, it is necessary to

extension of the Gaussian mixture mod&MM ) in which find a suitable way to reconstruct the output commands

the choice of the mixture component for each observation . : )
X iven a force perception and the resulting parametric model

depends also on the choice of the component for the prewvi- . . . ;
. . g achieve this goal, we resort to use Gaussian mixture

ous observation. Moreover, this method has the advantalgee

of containing time as an imolicit variable. which can be gression for computing the robot actions to be sent to the
g P ’ controller as the desired robot state to be achieved. Note

tend to show very large time discrepancies.

Specifically, a classical HMMX of N components is
defined by its initial distributionm = {m;}, the transition
probability distribution A = {a;;} and the continuous
observation probability distributio = {b;}, with i,j =
1,2,...,N. For continuous observation densities, the
are often represented by a Gaussian distribution with me
p; and covariance matri®l;. The model parameters are
estimated through thBaum-Welch method given a training
dataset{d,'}, with m = 1,2,...,M andp = 1,2,..., P,
where M is the number of demonstrations arl is the R 754 s e u
number of datapoints collected along demonstratiorffor Hi= [ e } ’ v [ D)L Y e ]
a general explanation of the HMM please refer to [17]). » . _
It should be noted that this classic model does not handle T"€n. the conditional expectatigngiven the input vector
task parameters explicitly, and if a parameter exists fergy % [0 @ mixture of NV’ Gaussians is:
demonstration, a possible solution would be to add it as an N
additional (likely constant) input variable with the cosdt o Y= Zhi [6¢ + =Y e — af)], 4)
increasing the dataspace dimensionality. i=1

Instead, we propose to use a parametric version of t%nere
HMM, namely PHMM [12]. This technique models the p(i)p(x|i)
dependence on the parameter of interest in an explicit way P AN o ®)
through the output densitiels. Formally, the observation 2= P()p(l7)
probability distributions are now a function of the demonis a weight exclusively based on the input variables, mainly
stration and an associated parame®@y,: bi(d";0.,). In  force-torque data in our task. Hence, we aim at predictieg th
this paper we adopt the linear dependence of the mean @écessary robot commands as a function of its force-based
the Gaussian distributions @h wherein for each component perceptions in order to follow the taught movements to carry

out the pouring process. Computational and experimental
3The dimension of the parameter depends on its degrees alofreefor P gp P P

instance® would be a three dimensional vector if representing thetioca results of the rePFOqut'on phase |m_plement|ng GMR are
of an object in the space. shown and explained in the next section.

tasks at trajectory level, where the main idea is to model dat

from a mixture of Gaussians and to compute predictions for

a given set of queries through a regression that uses mean

and covariance information to retrieve the estimated dutpu
In this work, GMR uses the information encapsulated

the observation probability distributions of the PHMM.

ormally, for each Gaussian componenf the model, input

x and outputy are separated by expressing the mean and

covariance matrix as:

®3)



classic HMM and the other one to the PHMM. Encoding and
reproduction results are presented next, where the praject
of the models is done on the space definedMyand ¢g,
which are one of the most relevant variables of the task and
the robot joint turning the bottle, respectively.

A. Classical HMM

‘ ‘ ‘ ‘ ‘ ‘ ‘ The resulting training dataset was used to train a 5-
-40 -35 -30 -%5 -20 -15 -10 -5 components HMM IV = 5) by applying theBaumWelch
z method until convergence. The number of Gaussians was
Fig. 4. Resulting 5-components HMM trained with three desttions Chosen according to the BayeSIar.] Informatlor! Crlterlor].[19
of the pouring task. Each subset of provided samples of tileslows  Figure 4 shows the model encoding the pouring skill, where
different initial force-torque values given by the quantif fluid inside the the yellow component covers the beginning and the end of
bottle. The less quantity, the more the robot rotates théebd®obot joint : : :
values are given in degrees while forces are in Newtons. all the execut|0_ns, whereas the light blue aqd green gﬂlpse
are encapsulating the phases when the fluid is coming out
of the bottle. The other two Gaussians can be considered as
V. RESULTS intermediate phases of the task.
) In order to test the reproduction performance of the model,
In_ the _proposed experlmentql task, namely then,e yemonstration (serving four 100 ml drinks) was removed
pouring skill, the robot perceptions are the wrenclh,m, e training data to be used as query datapoints. All the

A = {F B, F. T, T, T.} ie., the sensed forces j,int yrajectories executed by the robot were quite similar

a”O_' torques in the robot's frame. However, sev_eral of theﬁS the ones obtained from the teacher examples as well as
variables do not F"aY a relevant ro_Ie_ for learning the SkIIlhe input-output pattern. After this, the following testene
at all, thus we su_bje_cted the training data to a Mutualj,ay o evaluating the generalization capabilities of the
Information analysis in order to select the most relevantyineq HMM. In this case, the bottle contained quantitis o
perceptions, reducing significantly the input dimensiapal ;g giferent from the ones used at the demonstration phase
and the computational cost of further processes (i-8zgr gl the tests where the starting force-torque percaptio
enchmg and reproducuon_ pk:ases),_ S|m|Ia_rIy ., 0 OUlas covered by the initial HMM component (i.e., the yellow
previous work [2]. The resulting _most informative” set OfeIIipse in Figure 4), the robot performed successfully. The
inputs wasd = {7, F. T}, of whichT; andF>; may also qht joint trajectories and the input-output pattern foeo
be directly ext_racted from an analysis of the task at H’and.of these tests is shown in Figure 5(a). Nevertheless, as
The whole input space is composed of the selected SUfe starting perception significantly differs from the \esu
set of variablesd and the current joint valug at time  oncanqulated by the initial component, the robot perforaan
step . Output is the desired robot joint position t0 beyeteriprates considerably (see Figure 5(b)). In other ord
achlived at +1. Thus, e?ch traln:ng dte::[?pomt |stEIlef|ne he actual model shows good interpolation competences but
asd,’ = _{TI Ty e - av, @0 - 4y, bhooa poor extrapolation performance, which constrains thgean
where N, is the number of joints of the robot. The factt gjtyations where the robot would perform successfully

of having included the robot state into the input vector iginout retraining the HMM.
aimed at encapsulating the task dynamics, so that the next
robot state depends not only on the force-based perceptiddis PHMM

but also on the current robot joint values, which is in the A pHMM of three Gaussians = 3) was trained using
line of a consistent representation of the skill [18]. only one demonstration)( = 1) of the pouring skill, i.e.,

In order to teach the robot to pour drinks, three “completg, ;- examples of pouring 100 ml drinks. The parameter was
executions” (/ = 3) of the task (i.e., serving four drinks gt 1o pe the initial force-torque values directly repréisgn
consecutively) are provided to the robot by teleoperati®n gnhe quantity of fluid at the beginning of the demonstration
described in Section Il. Each demonstratienconsists in . hat is0,,, = [F7* T with t = 1. Thereforef2,, =
starting with the bottle full of fluid and pouring four 100 [pm.t pm.t 1" ariddim?zi) — (Ni4N,) x (dim(6,)+1)

ml drinks. Note that after each drink is poured, the initia{vﬁere]\i — 9 and N, — 6 are the number of inputs and
force-torque value changes for th_e ngxt one, which coritio outputs of the task, respectively. Figure 6 shows the riesult
the robot movements as shown in Figure 4 where the bla?hodel, where it is possible to see how the PHMM is able
lines represent the teacher’s demonstrations. Observéhtha 5 encode the task through a simpéit-to-right topology.
less quantity of fluid, the more the robot rotates the bottlyqgte how the provided parameter translates the model com-
Using this training dataset, two different models werengdi  onents to cover the corresponding demonstration data due
for comparison purposes, one of them corresponds 10 the the Jinear relationship between the task parameter aad th
4A simple analysis should convince the reader that the betile the t(;auéSIan .meani (See Eqih(l.))' lt. ShtOlt'l.Id be nOteg.;ha;.gelttEer
fluid inside produces a load on the sensor because the giavitaforce, € Gaussians shape nor their orientation are modineaisn
generating a force along the axisand a torque aboit. task — and those also depending on parameters — it may be
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(a) Untrained force-torque perception covered by the HMNMhponents. (b) Untrained force-torque perception not covered by theNHsbmponents.

Fig. 5. Reproduction for two quantities of fluid using the HMIVhe robot joint trajectories during the execution are shawthe three first columns at
each graph. Last plot displays the reproduction pattermydoas a function ofF’,. Robot joint values are given in degrees while forces are eéwtdns.

useful to shape the Gaussians to improve the reproductions. 10 ‘ - ‘ . ‘

For instance, the first component of the model may be —10! R
explicitly shaped according to how much the robot rotates

the bottle for a given force parameter. Approaches like the _ _—30/ ! \
proposed by Herzogt al. [20] or Calinonet al. [21] may be & _50! \ \
taken into consideration in future for improving the cutren \

results. The core of these works is to also parameterize  —70f . J
covariance of the Gaussian components, which is crucial _ ‘ ‘ ‘ ‘ T
because covariance encodes the local relationships among -40 -35 -30 -25 -20 -15 -10 -5
the variables that are of interest for the task, as well as the F

expected Va”atl(_)ns during its execution. . Fig. 6. Resulting 3-components PHMM trained with one dertratisn
The reproduction performance of the PHMM was satisfacsf the task (four 100 ml drinks poured). Crosses show thé pkilameter,

tory when faced to force-torque values previously observéPdL’\\IAVmCh t_h? COff$Spondi39 mr?del iSk displayed_rﬁzifgg th_eﬁsamOr-l The

- . - . . - satisfactorily encodes the task using a si to-right topology.
d_u”,ng the demonStratlor]S’ showmg joint tra]eCtongsyverRobot joint values are given in degrees while forces are iwthies.
similar to the ones provided by the HMM. Regarding the
generalization capabilities, different quantities of didrom
the ones used in the demonstrations were given to the robot, ] ) )
using the same bottle and a larger one. For both cases, #@sed on haptic perceptions. We propose to use a learning
robot successfully poured a drink of 100 ml approximateljf@mework based on a parametric version of the classic
(see Figure 7). Figure 7(b) displays a robot execution wh MM and Gaussian mixture regression to encapsulate the

a larger bottle full of fluid was used, where it is possible tglemonstrations and reproduce the task, respectively. ©ne o
observe how the robot joings follows a trajectory quite the contributions of this paper is to show how the PHMM can

similar to the demonstrated ones, performing the skill agffer a compact and simpler model for representing force-
expected. This result shows that the robot is able to pofi@sed skills by taking advantage of the task parameters,
drinks using different types of bottle without retrainiffget 1N comparison to other learning algorithms commonly used
model, because the force-based parameter allows to displ&$ theé HMM. Results demonstrate that the PHMM provide
the model so that it can cover the subspace where tlpstter generalization capabilities than those observeenwh
data are expected to be, which is not possible using tf8€ HMM was used.
classic HMM (see Figure 5(b)). Thus, the PHMM provides It should be noted that fewer demonstrations were needed
better generalization capabilities than those observétus to train the PHMM than when training the classic version.
the HMM, with fewer components and a simpler topology.This is because the HMM components must cover the entire
Figure 8 displays the Gaussian distribution and thepace that the provided samples occupy, thus needing more
influence of the model components for the reprodugnformation to converge to a good encoding in terms of
tion shown in Figure 7(b). One can observe how théhe resulting likelihood. In contrast, the PHMM exploiteth
model translates to cover a different data subspace givéask parameters to linearly translate its components so tha
the new task parameter. It is also possible to see hdilrey cover a specific region of the dataspace, requiring less
the GMR weightsh; (Eqg. (4)) evolve over time, show- information — and probably fewer components — to achieve
ing how the model components influence the reproa good representation of the task. On the other hand, it
duction. A video accompanying this paper is availablés worth mentioning that in literature task parametersrofte
at http:// programmi ng- by- demonstrati on. or g/ RoMbCo13, considered are the location — and possibly the orientation —
where executions of the skill for observed and unobservedf objects to be grasped. Thus, other scenarios are ignored,

situations are shown. where the parameters come from different sources, likesforc
based information as we propose. Therefore, in the line of ou
VI. CONCLUSIONS ANDFUTURE WORK previous work on force-based LfD [2], we consider this work

This work is aimed at exploiting force parameters tas a step ahead for achieving a more generic and versatile
obtain a compact encoding of skills that are exclusivelframework to learn tasks in the force domain.
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Reproduction for two quantities of fluid using the PMMThe robot joint trajectories during the execution areveman the three first columns

at each graph. Last plot displays the reproduction patrgd as a function off’,. Robot joint values are given in degrees while forces are ewtsns.
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Fig. 8. Top: Component distribution and input-output profile of a repro-
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As future work, we plan to include vision to the robot[3l
perception system in order to exploit multi-modal sensing
in robot learning from demonstration, where both visioni4]
and force parameters may condition the robot behavior. For

instance, in the proposed experimental setting a camera

provide the location of the glass so that the robot can
approach the bottle to the glass and then pour the drink. For
both phases of the task there will be a different parameteys
conditioning the robot actions, which may be exploited to
encode the whole task compactly. Moreover, we will stud
techniques to allow the task parameter to shape and reorlint]
the model Gaussians, which would provide an even more
generic framework and better reproduction results.
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