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Vision-based robot localization outdoors has remained more elusive than its indoors counterpart. Drastic illumination 

changes and the scarceness of suitable landmarks are the main difficulties. This paper attempts to surmount them by 

deviating from the main trend of using local features. Instead, a global descriptor called landmark-view is defined, which 

aggregates the most visually-salient landmarks present in each scene. Thus, landmark co-occurrence and spatial and 

saliency relationships between them are added to the single landmark characterization, based on saliency and color 

distribution. A suitable framework to compare landmark-views is developed, and it is shown how this remarkably 

enhances the recognition performance, compared against single landmark recognition. A view-matching model is 

constructed using logistic regression. Experimentation using 45 views, acquired outdoors, containing 273 landmarks, 

yielded good recognition results. The overall percentage of correct view classification obtained was 80.6%, indicating the 

adequacy of the approach. 

Keywords: visual landmarks, visual saliency, robot navigation, autonomous robot 

 

1 Introduction 

The extraction of reliable visual landmarks for mobile robot localization in unknown outdoor unstructured 

environments is still an open research problem. One of the key factors that makes the detection and 

recognition of visual landmarks in outdoor environments, as well as indoors without dominant artificial 

illumination, a challenging task is that acquired visual information is strongly dependent on lighting 

geometry (direction and intensity of light source) and illuminant color (spectral power distribution), 

which change with sun position and atmospheric conditions. 

Most feature extraction approaches are not adequate for this type of environments, since they rely on 

either structured information from non-deformable objects [7], or on a priori knowledge about the 

landmarks [3]. Several recent works achieved interesting results using SIFT features to match pairs of 

images [18, 22, 32], which can be extended to the landmark recognition problem. Since mobile robot 

navigation tasks require real-time execution, some efforts have been made to reduce the considerable 

computational cost necessary to evaluate SIFT features for a whole image [17, 28]. Also it was reported 

that SIFT features fail to consider global context to resolve ambiguities that can occur locally in images, 

motivating solutions that improve the amount of global information used in the descriptors [10, 24]. More 

recently SURF features have been introduced, giving comparable results to SIFT but with lower 

computational cost [4, 40]. 
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Nowadays most image retrieval and image recognition systems are based on interest point detectors 

that select the features in the images to be characterized by descriptors. Mikolajczyk and Schmid [23] and 

Schmid, Mohr, and Bauckhage [31] compare several interest point detectors. Finally, Antani, Kasturi and 

Jain [2] and Li and Allison [21] present excelent surveys of pattern recognition methods and features used 

for image retrieval and computer vision. 

In this context, the present work relies on the concept of landmark-view, based on a group description 

of the most salient landmarks present in each image. The landmark-view combines the compactness of 

landmark representation with the global information of view-based approaches, here provided by the 

spatial and saliency relationships between landmarks. The matching scores between landmark-views are 

evaluated with the use of logistic regression. The definition of landmark-views and their matching using 

logistic regression is the main contribution of this work. 

A suitable framework to compare views is developed, and it is shown how this remarkably enhances 

the recognition performance. 

The remainder of the paper is organized as follows. Section 2 presents the concept of landmark and 

visual saliency. In this context, landmarks are the visual elements that are used to provide the features for 

the recognition of places, and they are found or defined based on classical visual saliency criteria, 

inspired in a biological model of visual opponency. Section 3 describes how to refine the coarse landmark 

regions found in the previous step, based on visual saliency. Histogram backprojection and mean-shift 

algorithms are used to expand the spots of salient regions, taken as seeds, to areas that correspond to 

elements, or part of them, in the scenes. Section 4 presents the landmark characterization, based on 

chromaticity histograms and relative saliency metrics, and the subsequent matching, based on a quadratic-

form distance, that is more robust to small skew in the distributions than simple histogram distances. 

Section 5 describes the concept of landmark-view, simply denoted by view. A view is a group of co-

occurrent landmarks, more robust to recognition than single landmarks. Also the view concept supports 

the insertion of spatial distribution and relative saliency metrics in the characterization. Section 6 presents 

the view matching, generalized from the landmark recognition. In Section 7 a statistical model for view 

matching is discussed, using logistic regression to evaluate the importance of each metric in the 

recognition process. Section 8 shows experimental results. Finally, discussion and conclusions are 

presented in Section 9. 

2 Looking for Landmarks based on Visual Saliency 

When addressing robot localization, Levitt and Lawton [19] were among the first to refer to research by 

cognitive psychologists showing that humans and animals record references and use the structure inherent 

in local and temporal relationships between these references to identify places in the world and to plan 

and execute paths between locations. This idea continues to be supported by recent research in this field 

[13, 20, 33], which encourages its use as inspiration for the development of robot localization algorithms. 

These references are called landmarks, which in robotics are defined as distinctive entities that the 

robot can recognize whenever they are in their detection range [19, 36]. A visual landmark is a stationary 
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distinctive object or pattern that the robot can recognize with its vision system whenever it is in view. 

If we want to recognize visual landmarks, the first task to be done is to locate candidate landmarks in 

the color images acquired by the mobile robot. The candidate landmarks are image regions selected 

according to their visual saliency, inspired on a biological model of visual attention [15].  Human vision 

and artificial vision have in common the challenge of reducing the amount of sensorial information to be 

processed in order to analyze a scene image, due to intrinsic limitations in bandwidth, memory, and 

computational speed. The most accepted models of the primate visual system [12, 39] consider the 

existence of an attention mechanism responsible for selecting the most relevant visual stimuli for further 

processing by the available resources, rather than attempting to fully interpret visual scenes in a parallel 

fashion. The attention mechanism is driven by the visual saliency of the scene elements, which refers to 

the idea that certain parts of a scene are distinctive and that they create some form of significant visual 

arousal at the early visual stages [16]. This mechanism is essentially data-driven, which is particularly 

useful in those situations where the semantics of the contents of the image is not known and models of the 

perceived objects are not available [30].  

Light intensity contrast appears to be the primary variable on which humans base visual saliency 

computation, although other features participate in defining visual saliency at higher processing levels in 

the visual cortex [12, 25]. Among these are edge or line orientation, color, motion, and stereo. One major 

observation is that the relevant variable is not the amplitude of visual signals in a particular feature 

dimension, but the contrast between this amplitude at a given point and at the corresponding surrounding 

locations [41]. 

The visual saliency of elements in the images is detected with the color-ratios saliency algorithm [37], 

which has the interesting characteristic of embedding color constancy within the saliency computation. 

The color constancy counterbalances the intrinsic variations of illumination outdoors that can affect the 

color perception and, subsequently, the saliency results. In the following, this algorithm is described 

shortly. 

Therefore, the notion of visual saliency relies on the previous notion of opponency. For example, a red 

roof is salient in a green landscape, but not if it is surrounded by similarly reddish walls and terraces. 

Likewise, a vertical pole is salient if it is in the middle of a horizontally stripped fence. Thus, a region in 

an image is considered salient if it ranks high in a given feature and its surround ranks high in the 

opposite feature. Here, the features considered to compute the visual saliency are the opponent colors red-

green and blue-yellow, because they are the most stable features of the visual saliency model when the 

scenes are subject to illumination changes [37]. From the input image, two Gaussian pyramids are 

constructed, each one corresponding to a color feature in logarithmic space. In the pyramid image 

structure, a pixel at a fine scale corresponds to a center region, whereas the respective pixel at a coarser 

scale corresponds to its surround. The ratios between features at different pyramid levels correspond to 

the computation of the center-surround saliencies at different spatial scales and give the corresponding 

partial saliency maps. Two sets of partial saliency maps are computed, corresponding to the red-green and 

blue-yellow color features at several combinations of spatial center-surround scales. In this case, the 

center images were taken at pyramid levels 2, 3, and 4, and surround images at pyramid levels 5, 6, and 7. 
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Using several scales, not only for center but also for surround, yields truly multiscale feature extraction, 

being possible to detect visual salient objects within a wide size range. 

The resultant partial maps are combined into a global map, in which salient areas are indicated by large 

values, whereas non-salient areas have small values. The partial saliency maps cannot simply be added, 

because salient regions present in only a few maps can be masked by noise or less salient regions present 

in a larger number of maps. The process of combining the partial saliency maps is structured in three 

stages. In the first stage, the partial saliency maps are normalized by the maximum saliency value 

obtained at all center-surround scales. In the second stage, the maps are weighted by their information 

content. The information content of an image is based on their zero-order entropy. Finally, the partial 

saliency maps are subject to exponentiation and added to compose the global saliency map. To reduce 

computational costs, the saliency maps are represented at a scale that corresponds to the second level of 

the pyramids in the color ratio visual saliency algorithm, yielding 128x128 pixels images. Figure 1 shows 

some examples of saliency maps resulting from RGB images. 
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Figure 1. Input RGB images (left) and corresponding saliency maps (right). The brightest areas in saliency maps correspond to the 

most salient areas in the input images. 

3 Refining Landmark Regions 

Since the extracted salient regions obtained with the visual saliency algorithm, described in the previous 

section, are not necessarily bounded by well-defined contours, nor associated to single elements in the 

scenes, a refinement process is necessary to determine the boundaries of landmark candidates. Figure 2 

shows an overview of all the steps taken starting from the input image to the delimitation of landmark 

areas. 

The saliency map obtained with the color ratios algorithm has several salient spots. These spots 
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typically have diffuse borders, with saliency values decreasing from some local maximum to a 

background level of noisy saliency. Thus, a segmentation process is necessary to delimit the salient 

regions. 

This is a non-trivial task, because segmentation in outdoor environments usually requires high-level 

information to validate the results [3]. Here, we assume that there is no high-level information available; 

thus the segmentation has to be done roughly, based only on the low-level features available. Since the 

saliency spots can have different peak values, the multilevel thresholding is a well-suited technique to 

segment the saliency map [27]. In this technique, each saliency spot corresponds to a seed that is 

expanded until some fraction of the local maximum is attained, constituting an adaptive region-growing 

segmentation. 

As an initial approximation for landmark regions, a minimal rectangular bounding box is computed for 

each segmented saliency spot. Very small bounding boxes (for instance, in the current implementation the 

minimum area is set to 64 pixels) are discarded, because the low pixel count does not allow making 

reliable assumptions about the detected saliency. 

Due to the sensitivity of saliency to the surrounding information and shadowing, the spatial distribution 

of saliency can change significantly in images taken from the same scene under different conditions. The 

objective of the next two processing steps is to adjust the bounding box size and position, getting a better 

fitting to the detected salient elements. 

In the next step, for each bounding box a chromaticity histogram is computed and the image is 

submitted to a histogram backprojection processing [35], emphasizing where the same colors appear in 

the whole image. Histogram backprojection identifies where, in some image, are the colors that belong to 

a target model being looked for. It is based on the ratio histogram, defined as 

 
2 1[ ] min( [ ]/ [ ],1), 0,.., 1R i h i h i i n    (1) 

where h1 is the image histogram, h2 is the searched target histogram (obtained from the landmark 

bounding box), and n is the number of histogram bins. This ratio histogram is back-projected onto the 

image, that is, the image values are replaced by the values of R that they index. The values in the resultant 

image represent the expectation of the target location.  

After this, the size and position of all bounding boxes are adjusted, taking into account the color spatial 

distribution obtained with backprojection. This is achieved using the continuously adaptive mean shift 

algorithm [6]. This is a non-parametric technique that climbs the gradient of a probability distribution to 

find the nearest dominant mode, with the capability to adapt the window size. In our case, this means that 

bounding boxes defined by the saliency spots are adjusted in size and location to the neighboring areas 

that have similar color distributions. 

To increase the amount of information associated with the bounding boxes, their immediate 

surrounding region is also analyzed (Figure 2), giving additional context information to the recognition. 
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Figure 2. The process of delimiting the landmark regions. From the source image a saliency map is computed, then this map is 

segmented, generating the seeds of the landmark regions. These seeds are enclosed by bounding boxes, which are fitted to the 

salient elements in the image using color histogram backprojection and mean-shift algorithms. Finally, the landmark bounding 
boxes are expanded, encompassing the immediate surrounding regions. 

4 Landmark Characterization and Matching 

After the determination of the bounding boxes, using the procedure proposed in the previous section, 

region descriptors are extracted using low-level image features. These descriptors should be appropriate 

to characterize the bounding boxes as signatures of the landmarks and should make possible the 

comparison between them. 

The descriptors must be invariant to scale, translation and rotation, or at least at limited amounts of 

these transformations, because the images are taken from several different locations, as the robot moves. 

Typically the landmarks change their appearance with changes in viewpoint; they can even change 

completely in shape, color and texture. Considering these constraints, the following region descriptors 

were implemented: 

1. Normalized chromaticity histogram of segmented salient spots. 

2. Normalized chromaticity histogram of fitted bounding box (after backprojection and mean shift). 

3. Normalized chromaticity histogram of expanded bounding box (including surround area). 

4. Mean saliency of fitted bounding box. 

The histograms are all normalized to be independent of scale. Texture features are not used because, 

with the large distance from robot to landmarks, the texture discrimination is not effective, and because 

texture features are strongly sensitive to the illumination changes present in outdoor environments.  

The similarity between the histogram descriptors of two image regions i and j is measured by the 

distance between their corresponding points hi and hj in histogram space [35]. The quadratic form metric 
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[14] is used: 

 
2 ( , ) ( ) ( )T

hist i j i j i jd h h h h h h  A  (2) 

where hi and hj are n-dimensional color histograms, and A is the similarity matrix, whose elements akl 

( 0 1
kl

a  ) denote similarity between bins k and l.  

The histograms are normalized, then 
0 1 2h h h   can be defined, resulting in 0[ ] 0h i   , and the 

quadratic form becomes a distance that can be evaluated by: 

 
2

1 2 0 0( , ) T
histd h h h h A

. (3) 

The similarity matrix is defined as follows: 

 
max(1 / )ij ija d d 

, (4) 

where aij is an element of the similarity matrix, dij is the Euclidean distance (L2) between colors i and j, 

and dmax = maxij(dij). A refined definition of the similarity matrix, adopted in this work, is: 

 
2

maxexp( ( / ) )ij ija d d 
, (5) 

for some positive coefficient  (in this work, =16). The greater the coefficient , the more restricted the 

similarity between color bins. With   , the matrix becomes a diagonal matrix, and the quadratic-

form distance converges to the square of the Euclidean distance. 

This metric was selected because it allows for similarity matching between different colors, while other 

histogram metrics, like histogram intersection, just evaluate exact color matching. Thus, the quadratic-

form metric is more robust to small color shifts due to illumination changes. 

Initially, the distances corresponding to the four region descriptors were combined using the root of the 

sum of the squared distances, resulting in a single value to the distance between landmark pairs.  

Using a set of sample images taken in an outdoor environment, 68 landmarks were detected and 

characterized. The retrieval performance of the system was evaluated taking each time one landmark out 

of the database and matching it against the other landmarks. This experiment is described in detail in [38]. 

At this point, the process of detection and refining of landmark areas was validated, and a reasonable 

recall index was achieved (0.697), but the precision index was low (0.264), meaning that there were 

many false positives in the recognition process. This happened because the color and saliency descriptors 

adopted do not have enough information content to ensure unambiguous recognition of single landmarks. 

In the following two Sections it is described how the recognition process can be improved with the 

concept of landmark-view and Section 7 explains how logistic regression was used to define a matching 

score. 
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5 Grouping Landmarks and Defining Views 

The main idea is that landmarks detected in the same scene are grouped, constituting landmark-views, and 

these views are compared with other views to recognize places already visited by the mobile robot, 

instead of comparing single landmarks. The grouping of landmarks combines the individual recognition 

evidences of the single landmarks detected in each observation, and adds the information on the 

relationship between landmarks. 

A landmark-view is defined as the set of landmarks observed in one image captured by the robot in a 

specific spatial location and orientation. Thus, at each observation, instead of just trying to recognize 

isolated landmarks, their mutual spatial and saliency relationships are also taken into account, adding 

context information to the landmark recognition task. 

As the robot moves, other landmark-views are acquired in sequence (Figure 3). It is possible that some 

observed landmarks in neighboring landmark-views refer to the same objects or environment regions. A 

path corresponds to a sequence of views, and the relationships between landmark-views can be expressed 

by means of a graph. 

 

 

Figure 3. A landmark-view is defined as the set of landmarks observed at some location. In this figure two successive views (j and 

k) are represented, each one with a set of five landmarks. Some of the landmarks could be the same in both views, but not 

necessarily. 

 

Consequently, the problem of landmark recognition is handled as a component of a higher-level 

problem, namely landmark-view recognition. In order to be able to recognize a landmark-view, it is 

necessary to establish a distance metric to match pairs of landmark-views. The next section describes how 

the similarity between views is evaluated. 

6 View Matching 

Since landmark-views are defined as sets of landmarks, their similarity can be assessed by finding the 

optimal matching between the respective landmark sets. The idea is that corresponding views (images 
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taken from similar robot location and orientation) should match better than non-corresponding views. The 

relative visual saliency of each landmark is used to select the most relevant landmarks and is also used as 

a feature in the matching process. 

A powerful tool to model objects and relationships between them are graphs. They have been widely 

used in the fields of image analysis and image processing [5, 6, 26, 29, 38]. In the following it is 

explained how a graph-matching algorithm can be applied to the view recognition problem [1]. A graph 

( , )G V E  consists of a set of vertices { }
i

V v  and edges { }
i

E e . The edges are connections between 

vertices. Vertex vj is adjacent to vi if there is an edge ( , )
i j

e v v  between them. Two edges are adjacent if 

they have a common vertex. A matching is generally defined as a subset of the edges of a given graph 

such that no two edges are adjacent. A particular case of matching is defined between two distinct vertex 

sets { }
i

U u  and { }
j

V v , thus assuming a bipartite graph ( , , )G U V E , where E U V  . 

Disregarding the adjacency constraint, in a bipartite graph a match is any subset of edges of it: 

 { }
i

M m E   (6) 

The set of unmatched vertices is defined as:  

 { | , : ( , ) } { | , : ( , ) }S s s U v s v M s s V u u s M      (7) 

There are several ways to match the vertices of U to those of V. A matching is maximal if the number 

of matched vertices is maximum. In the classical problem of bipartite matching, the objective is to find a 

maximal one-to-one matching. In a one-to-one matching, 

 ( , ) , ( , ) : ( ) ( )
i j k l

u v M u v M i k j l        (8) 

The bipartite matching problem can involve the minimization of a cost function, taking into account the 

cost of the matching and penalizing for the unmatched vertices: 

 cost( , ) ( ) '( )
m M s S

M S c m c s
 

    (9) 

where c(m) with m=(u,v) is the cost of matching u to v, and c’(s) is the cost of leaving a vertex s 

unmatched. 

When edges are weighted with the cost of matching the two linked vertices, the problem is called 

weighted bipartite matching [1]. 

In a bipartite graph, the matching is done between two separate vertex sets, which have no internal 

structure. Both bipartite matching and weighted bipartite matching can be reduced to the more general 

maximum flow problem, which can be solved in polynomial time. 

The set U of vertices corresponds to the set of landmarks in one view, and the set V corresponds to the 

set of landmarks in the other view (Figure 4). The weight of each edge represents the similarity distance 

between the two linked landmarks, as defined in Section 4. The solution of the weighted bipartite 

matching defined by U and V gives the best matching between the landmarks and thus provides a 
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measure of view similarity. 
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Figure 4. A bipartite graph used to compare two views U and V. The matching cost c(ui, vi) of each landmark pair ui and vi is 
associated with each edge. 

Among the several available algorithms to solve the bipartite matching problem [8], the relaxation 

algorithm [5] was adopted because of its broad use, simplicity, and existence of reported successful 

experiences in the image-matching field. This is an approximate tree-search, graph matching algorithm, 

with polynomial complexity, based on the A
* 

algorithm with an incremental heuristic that avoids 

recalculating its terms at each step [8]. The algorithm consists of the following steps: 

1. Initially, the matching restriction is relaxed, allowing any vertex in V to be assigned to more than 

one vertex in U. Each vertex ui in U is assigned to the vertex in V with the minimum matching cost 

among all edges. 

2. The algorithm then iteratively selects an overassigned vertex vk in V, obtains the shortest path from 

vertex vk to all other unassigned vertices in V, considering each matching cost c(ui,vj) reduced by 

the minimum matching cost from ui to any 
zv V , and updates the assignments using the shortest 

path found, until there are no more overassigned vertices in V. The algorithm reaches optimality 

by executing a maximum of N iterations. 

 

With a naive implementation of shortest path search, the resulting computation complexity is O(N
3
), 

but it can be reduced using optimized shortest path search algorithms, for example, to O(NlogN+M) using 

the Fibonacci heap method, where M denotes the number of edges and N denotes the number of vertexes 

in the graph [11]. 

The distance between two landmark-views is computed according to the following steps: 

1. In each view the k-most salient landmarks are selected. 

2. A k x k matrix with the quadratic-form distances between all pairs of landmarks, one taken from 

each view, is computed. Note that, in addition to the four descriptors listed in the preceding 

section, the distance of each individual landmark to the centroid of the set of landmarks is 

considered as an additional descriptor. 

3. The k landmarks of the two views are paired using the weighted bipartite matching algorithm, 

based on the quadratic-form distances between the landmarks. 
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4. The minimum assignment cost resulting from the weighted bipartite matching is taken as the 

distance between the two views. 

The view with the lowest distance to a newly acquired view is considered the matching view. If no 

view has a distance to the query view below some threshold, then it is assumed that the query view is a 

new view in the system. 

As an illustration, we consider the pair of views shown in Figure 5, taken from the image database of 

the experiment reported later in Section 8. The following matrix Dist represents the landmark distances 

from one view Q (left)  to another view D (right): 

 

0.0211 0.0560 0.1332 0.0366

0.0408 0.0497 0.1717 0.0554

0.0695 0.0326 0.0100 0.0641

0.0603 0.0940 0.2619 0.0739

Dist

 
 
 
 
 
 

,  

where the rows correspond to landmarks with labels 57, 55, 56, and 54 in the left view and the columns 

correspond to landmarks 155, 153, 154, and 156 in the right view. The landmarks are arranged in order of 

decreasing saliency values. Each matrix element corresponds to the distance between the respective 

landmarks. The sequence of assignments to solve the weighted bipartite matching, and consequently the 

view matching, is indicated in Figure 6. 

 

 

Figure 5. Landmark matching in similar views. The arrows indicate the solution of the weighted bipartite matching. The numbers 

inside black rectangles are landmark labels. 
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STEP 1 STEP 2 STEP 3 

 

   
Assignment cost=0.1322 Assignment cost=0.1411 Assignment cost=0.1547 

 

Figure 6. Successive assignment of nodes as the relaxation algorithm evolves, from left to right. In the initial stage, Q-nodes (57, 55, 

56, 54) are assigned to D-nodes (155, 153, 154, 156) by minimizing the cost according to matrix Dist. At this step, node over-
assignments are allowed. In the second step the over-assignment of node 155 is partially solved. In the last stage, the over-

assignment of node 155 in view is solved. This is the final assignment corresponding to the solution of the weighted bipartite graph 

matching. At each step the removed over-assignment is the one that reallocation produces the minimum increment in the total 
assignment cost. 

7 A Statistical Model for View-Matching 

In the landmark-view matching algorithm presented in the preceding section, the different distances that 

can be obtained from each dimension of the landmark descriptors (color histograms, mean saliency, 

distance to centroid) were just combined with a root mean of squares (Section 4), resulting in a scalar 

distance. 

Here, we propose to use logistic regression [9] to evaluate the significance of each landmark descriptor 

dimension and to use this information to build a statistical model for the view and landmark recognition 

process. 

Logistic regression analysis evaluates the significance of each variable in a multivariable model whose 

output is a single binary variable. This variable has the semantics of a binary classifier based on the 

values of the input variables. We define a binary variable, named view match and denoted VM, which 

takes the value 0 when two landmark-views match, and 1 otherwise. 

The input variables considered are the following: 

 X1:Salient region chromaticity histogram. 

 X2:Fitted salient region chromaticity histogram. 

 X3:Expanded salient region chromaticity histogram. 

 X4:Landmark saliency. 

 X5:Landmark distance to the centroid of the set of landmarks in the view. 

 X6:Combined sum of squares of the previous features. 

 X7, X8:Non-assigned nodes in the weighted bipartite view matching. 
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The resulting model has the form: 

 
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 81

A B X B X B X B X B X B X B X B X

A B X B X B X B X B X B X B X B X
VM

e

e

       

       



 (10) 

where A is a constant term, and Bi are the beta coefficients (see Table 1), outputs of the logistic regression 

carried out with a training set of data. Xi are the input variables. The training set of data consisted of a 

sample of outdoor images with 68 landmarks and 78 cases of possible view pairs [38]. Table 1 presents 

the logistic regression results using these sample images. The regression was carried out in five steps, 

each one constituting a new model aggregating a new group of variables. 

In the first step, just the color descriptors of the landmarks (salient region, fitted salient region and 

expanded salient region chromaticity histograms) were used. These variables explained 43.3% of the 

model variance (Nagelkerke R2 = 0.433). The Nagelkerke coefficient represents the proportion of the 

total variability of the outcome that is accounted for by the model. The model was able to classify 

correctly 82.4% of the matching view pairs and 75.4% of the non-matching view pairs (overall correct 

classification 76.9%). The significant color variable was the expanded salient region color (p<0.05). 

It turned out that the saliency variable does not contribute to the model quality. Its introduction in step 

2 did not improve the variance explained by the model, neither the classification scores. However, it is 

important to consider that the saliency was used to select the landmarks to be taken into account in the 

view-comparison process, thus it has an important indirect contribution to the classification result. 

In step 3, the variable distance to landmark centroid was introduced. It improved the variance 

explained by the model and the classification scores. These variables together explained 48.5% of the 

model variance. The model was able to classify correctly 76.5% of the matching view pairs and 82.0% of 

the non-matching view pairs (overall correct classification 80.8%). The significant variables were the 

expanded salient region color (p<0.01) and distance to centroid (p<0.1). 

In step 4, a root mean square of the previous features was considered. The model already included the 

variables involved in the computation of this variable, and so there were no changes in the model 

prediction performance. 

In the last step, the variables NA1 and NA2, corresponding to the cost of non-assigned nodes in the 

bipartite graph matching of the landmarks in the two views, were introduced. They improved 

considerably the variance explained by the model and the classification scores. These variables explained 

56.7% of the model variance. The model was able to classify correctly 82.4% of the matching view pairs 

and 83.6% of the non-matching view pairs. The significant variables were the expanded salient region 

color (p<0.01), and the non-assigned nodes NA1 and NA2 (p<0.05). The overall correct prediction of 

matching was 83.3%. The NA1 and NA2 variables have the same significance, because they have the 

same semantics, i.e., the count of non-matched landmarks in each view. Since NA1 and NA2 carry 

implicit a direction of matching, in the regression analysis each pair of views was considered two times, 

inverting the query and database roles. 
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Table 1 Logistic regression of the "view match" variable 

Independent 

variables 

Step 1 Step 2 Step 3 Step 4 Step 5 

 beta sig. beta sig. beta sig. beta sig. beta sig. 

Salient 
Region 

Color 

1.57 0.055 1.57 0.056 1.37 0.110 1.33 0.207 0.30 0.790 

Fitted Salient 

Region 
Color 

0.04 0.988 -0.02 0.993 0.81 0.792 0.75 0.819 3.87 0.300 

Expanded 

Salient 

Region 
Color 

14.0 0.001 14.0 0.001 16.0 0.001 16.0 0.001 18.8 0.001 

Saliency   -1.74 0.836 -4.69 0.615 -4.70 0.614 -12.0 0.296 

Distance to 

Centroid 

    -1.54 0.008 -1.59 0.184 -1.31 0.317 

Combined 

Sum of 
Squares 

      0.16 0.958 1.91 0.561 

NA1         1.18 0.003 

NA2         1.18 0.003 

Constant A -1.5 0.004 -1.4 0.011 -0.8 0.204 -0.8 0.231 -3.5 0.002 

% explained 

(Nagelkerke 

R2) 

43.3  43.3  48.5  48.5  56.7  

% correct 

classification 

same view 

82.4  82.4  76.5  76.5  82.4  

% correct 

classif. on 

different 
view 

75.4  75.4  82.0  82.0  83.6  

Overall % 

correct 

classification 

76.9  76.9  80.8  80.8  83.3  

 

 

 

It is important to observe that the effect of introducing the variables in the regression 

model is not necessarily cumulative, regarding the significance of variables. The 

significance of a variable could be affected with the introduction of a new variable in the 

model, because the significance is computed in the context of that model. 

The constant term A in Eq. (10) appears as significant because it is related to the part of 

the model that is not explained by the variables. All regression models were statistically 

significant, with p<0.01 in all steps. It can be observed that the most significant variables 

in the complete model were the expanded salient region color and the non-assigned nodes, 

which constitute a combination of color and spatial information. The initial parameters of 

the model were computed off-line, using the SPSS package [34], based on a sample set of 

images, and the match score function was developed ad hoc and implemented in the view 

recognition system. 



 

 

16 

 

8 Experimental Results 

To validate the landmark-based view recognition system, a university campus was chosen 

(Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Brazil) as a real 

outdoor environment. A set of 990 view pairs from 45 different views, with 273 landmarks 

found by the proposed method, was analyzed (Figure 7). The images were acquired with a 

standard color CCD camera, producing 512 x 512 pixels RGB images, with 24 bits/pixel, 

at a rate of 0.5 Hz. 

Of the 42 corresponding view pairs, determined by hand, 30 were recognized correctly, 

resulting in 71.4% of correct classification of similar views. Of the 948 non-corresponding 

view pairs, 768 were recognized correctly, resulting in 81.0% of correct classification of 

non-similar views. The overall percentage of correct view classification was 80.6%. For 

comparison, the landmark recognition system described in Section 4 presented good 

correct landmark classification (69.7% of similar landmarks were correctly classified), but 

the ability to discriminate non-similar landmarks was poor (just 26.4% of landmarks 

considered similar to a query landmark were truly similar landmarks). 

Using a standard low-performance PC computer (Pentium III 900MHz, 256Mb DRAM, 

Microsoft Windows XP) each view matching was performed in 0.69 seconds. Reducing 

the search space for view matching, by taking into account the recent history within a 

probabilistic approach, would avoid the comparison of the current query view with all the 

stored views. This can be accomplished with Kalman filtering or using logical connections 

between views, but this was out of the scope of this work. 
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Figure 7. Some of the test images taken in the outdoor experiment at PUCRS. 

9 Discussion and Conclusions 

A noticeable increase of performance in correct classification was observed with the 

introduction of landmark-views in the landmark recognition process. The results were 

good, even in a real outdoors experiment subject to illumination effects, like highlights, 

shadows, and illumination changes present in this experimental sample. 

This work contributes to the robot localization field by proposing a new procedure for 

visual saliency detection and characterization of candidate landmarks in scenes, as well as 

an application of logistic regression analysis to determine a suitable matching model. A 

binary function to compare a query view with each view in a database of previous views 

and to decide about the similarity between them was developed with the aid of logistic 
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regression. Very good view discrimination ability was observed, with scores of correct 

classification that validate the concept of landmark-view, and the proposed view 

recognition procedure. 

Logistic regression was shown to be a powerful tool to build the matching model. 

Without it, on a trial-and-error basis, it was extremely difficult to compose the available 

information to decide the matching of views. The resulting model is simple and allows for 

the future incorporation of reinforcement mechanisms, through the continuous tuning of 

the model parameters as a background task. 

The use of view descriptors aggregating co-occurrence and spatial relationships of 

landmarks significantly improved the recognition process, preserving the simplicity and 

low quantity of stored information. 

Some lines of future research are envisaged. The first one is to reduce the search space 

for view matching by taking into account the recent history within a probabilistic 

approach. And the second, as mentioned above, is to endow views with a reinforcement 

strategy that would tune the descriptors each time a view is recognized. Finally, it could be 

interesting to use our saliency-based approach together with a SIFT- or SURF- based 

engine, combining the good properties of both techniques. The detection and 

characterization of landmarks outdoors, based solely on the information from one camera 

is a very challenging task, due to several factors, such as landmark occlusions, adverse 

illumination conditions, and possible presence of dynamic elements in the environment. 

Thus, we consider this work as contributing to part of a more comprehensive solution to 

autonomous robot navigation outdoors, involving fusion of multiple sensors and 

techniques, as well as the integration of low-level feature-based recognition with high-

level modeling of the world. 
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