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Abstract

This paper addresses a chance-constrained model predictive control

(CC-MPC) strategy for the management of drinking water networks (DWNs)

based on a finite horizon stochastic optimisation problem with joint proba-

bilistic (chance) constraints. In this approach, water demands are considered

additive stochastic disturbances with non-stationary uncertainty description,

unbounded support and known (or approximated) quasi-concave probabilis-

tic distribution. A deterministic equivalent of the stochastic problem is

formulated using Boole’s inequality to decompose joint chance constraints

into single chance constraints and by considering a uniform allocation of

risk to bound these later constraints. The resultant deterministic-equivalent

optimisation problem is suitable to be solved with tractable quadratic pro-

gramming (QP) or second order cone programming (SOCP) algorithms. The

reformulation allows to explicitly and easily propagate uncertainty over the

prediction horizon, and leads to a cost-efficient management of risk that con-

sists in a dynamic back-off to avoid frequent violation of constraints. Results
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of applying the proposed approach to a real case study –the Barcelona DWN

(Spain)– have shown that the network performance (in terms of operational

costs) and the necessary back-off (to cope with stochastic disturbances)

are optimised simultaneously within a single problem, keeping tractability

of the solution, even in large-scale networks. The general formulation of

the approach and the automatic computation of proper back-off within the

MPC framework replace the need of experience-based heuristics or bi-level

optimisation schemes that might compromise the trade-off between profits,

reliability and computational burden.

Keywords: MPC, drinking water networks, reliability, chance constraints,

robustness.

1. Introduction

Drinking Water Networks (DWNs) form the link between urban water

supply systems and drinking water consumers. These networks are vital for

the normal functioning of modern society and maintaining a truly sustainable

service is a must in these systems. All water supply undertakings should

share a common purpose, stated in [1] as the achievement of the highest

level of consumer satisfaction and service quality in line with the prevailing

regulatory framework, whilst making best use of available resources. DWNs

are large-scale multi-source/multi-sink flow systems that must be reliable and

resilient while being subject to constraints and to continuously varying condi-

tions with both deterministic and probabilistic nature. Customers behaviour

determines the transport and storage operations within the network. Water

use can vary in both the long and the short term, usually presenting time-
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based patterns for different areas. Therefore, a better understanding and

forecasting of demands will improve both modelling and control of DWNs.

The growing complexity of these network systems, i.e., dimensionality,

information structure constraints, non-linearities, uncertainty, and the higher

performance requirements make these kind of problems costly to solve for

real-time control applications and their optimal management is a task that

has become an increasingly environmental and socio-economic research sub-

ject worldwide. Different approaches reported in the literature highlight the

importance and development of the topic. As discussed in [2, 3], during the

last years, optimal operation of water supply systems has been addressed

by a wide variety of methods. For example, in [4] a dynamic programming

approach is proposed to generate pump schedules in real-time operation of

a water supply system. The problem is solved by considering deterministic

disturbances and decomposing the system in space and time to apply pro-

gressive optimality. In [2] a detailed review of several stochastic dynamic

programming techniques applied to water reservoir operations is discussed,

highlighting the curse of dimensionality of such techniques and proposing

alternative methods to design cyclostationary daily control policies based

on reinforcement learning. In [5] a critiquing-expert method that evaluates

operating plans and provides feedback to the decision manager is proposed,

which includes suggestions for improvement, warnings, and alternatives. In

[6] a deterministic linear goal programming method is examined to aid in the

identification of optimum operating policies for a multiple-reservoir system,

highlighting the importance of the forecast quality to minimise pumping cost,

but without robustness consideration. In [7] a combinatorial optimisation
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is proposed for the scheduling of on-off pumps assuming also deterministic

and reliable forecast of demands. In [8] a centralised MPC strategy using

mixed integer non-linear programming is proposed to regulate water vol-

ume in storage tanks and chlorine concentration, both around fixed targets,

considering an anticipated consumer demand profile from historical data.

Similarly, in [9–11] the economic operation of water networks is performed by

using centralised MPC. They also assumed predicted disturbances as certain

in the model but included a softened constraint to penalise depletions of

water volume below a heuristic safety threshold without forcing any target

regulation. An enhancement for these latter methods is proposed in [12],

where MPC is combined in a hierarchical way with soft-computing methods

and supply chain theory to compute dynamic safety stocks that cope with

forecast uncertainty and achieve a self-tuning trade-off between economic

optimisation and service reliability of a DWN.

Among the aforementioned approaches, decision policies based on the

MPC framework [13], are suitable to face the operation of DWNs given their

flexibility to manage constraints and to optimise multi-objective problems

as the ones encountered in these complex systems, see [14]. The basic idea

of MPC is to exploit a model of the system to predict its future evolution

and compute control actions by optimising a desired cost function that takes

into account such predictions; if future disturbances can be identified and

described, a robust MPC can be developed to explicitly consider their effect

on the future evolution of the controlled system.

Decision-making under uncertainty is a central issue in almost all disci-

plines and application areas. Since uncertainty in DWNs might be large
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and caused by many sources (e.g., exogenous and endogenous demands,

noise, equipment degradation, plant model mismatch, other disturbances),

it cannot be neglected in optimisation tasks if it is desired to fulfil reliability

requirements and quality standards. In industrial practice, uncertainties

are usually compensated by over-design of elements or overestimation of

operational parameters by introducing safety factors obtained mostly by

experience or application-dependent heuristics.

Most of the aforementioned operational MPC strategies for DWNs ad-

dress uncertainty by solving a deterministic optimisation problem where,

following the certainty equivalence principle, stochastic disturbances are re-

placed by their estimates based upon the information available at each time

instant and assuming predictions as certain. This principle guarantees to

obtain optimal control actions when using the expectation of disturbances,

especially for linear models with small additive uncertainties, Gaussian dis-

tributions and quadratic cost functions. The MPC approaches following the

aforesaid principle are often denoted certainty equivalent MPC (CE-MPC).

Nevertheless, uncertainty in DWNs could be large, which avoids to take

for granted that a certainty equivalence is justified for a reliable operation

of the constrained system. Hence, the strategy is usually complemented

with a (de)tuning of the controller, even though, CE-MPC can lead to poor

performance and constraint violations due to the ignored effects of future

uncertainty.

There is another widely reported class of control techniques that face

uncertainties explicitly in the control law, named the robust model predictive

control (RMPC). These strategies use an uncertain process model instead of
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a nominal one. A crucial factor in the design of these RMPC controllers is

the characterisation of the uncertainty, which can be divided in two main

paradigms: the deterministic worst-case description and the stochastic de-

scription. The approach relying on a purely deterministic unknown-but-

bounded description of the uncertainty has prevailed in the robust control

literature, see [15–19], but the main disadvantage of the related strategies is

the conservatism of the resultant control policy that negatively affects the

utility function of the DWNs operation. Moreover, in real applications the

boundedness assumption of disturbances might not hold, hence, constraint

violations are unavoidable due to unexpected events, faults, etc.

A more realistic description of uncertainty is the stochastic paradigm,

which leads to less conservative control approaches by including explicit

models of disturbances in the design of control laws and by transforming hard

constraints into probabilistic constraints to cope with inevitable uncertain-

ties. The stochastic approach is a classic one in the field of optimisation (see

[20] for a review), but due to the advances in technology, which have improved

computation capacity, and due to the flexibility of the MPC framework

to incorporate models and constraints within an optimal control problem,

a renewed attention has been given to the stochastic programming as a

powerful tool for robust control design, leading to the Stochastic MPC, which

has a particular variant called Chance-Constrained MPC (CC-MPC) [21].

This stochastic control strategy describes robustness in terms of probabilistic

(chance) constraints [22], which require that the violation probability of any

operational requirement or physical constraint is below a prescribed value

representing the notion of reliability or risk of the DWN. By setting this value
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properly, the operator can trade conservatism against performance. Relevant

works that address the CC-MPC approach in water systems can be found

in [23, 24] and references therein. Other stochastic approaches currently

researched are the ones based on multi-stage stochastic programming (MSP)

methods, e.g., scenario-based stochastic programming, sampling stochastic

dynamic programming, interval stochastic programming, among others [25,

26]. The main limitation of these latter approaches is their narrowed appli-

cability to large-scale stochastic models, which might be a cumbersome task,

especially when several disturbances, sources of uncertainty and decision

vectors of large dimension are involved. In fact, most of the case studies

reported for real-time optimisation of water systems and other applications

are small-scale problems, hence, the vast portfolio of developed stochastic

techniques has been dedicated for long-term off-line planning of operations

or for networks design.

The main contribution of this paper is the introduction of a formal RMPC

formulation for the management of DWNs based on chance constraint pro-

gramming. The paper presents the results of applying an economic CC-MPC

to optimise the operation of flow networks, especially those related to the

transport and storage of potable water, seeking to achieve a specified cus-

tomer service level and a reliable DWN. The complexity of the stochastic

problem is addressed by using an analytical approximation of the chance

constraints to reformulate the problem into a tractable deterministic equiv-

alent by using Boole’s inequality, a uniform risk allocation policy and the

stochastic characteristics of disturbance forecasts. This systematic approach

keeps the convex nature of the multi-objective constrained finite horizon
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optimisation problem and brings other practical benefits, i.e., flexibility, reli-

ability, and tractability of the reformulated CC-MPC controller as a decision-

support tool, which are shown in this paper through a real case study: the

Barcelona DWN. The approach avoids the set-up of conservative and heuris-

tic thresholds or bi-level optimisation approaches [27] for safety volumes in

water storage tanks. In fact, the robustness of the CC-MPC leads to a

cost-efficient management of a dynamic back-off (uncertainty-aware variable

safety volumes) to avoid frequent violation of constraints.

The reminder of the paper is organised as follows. Section 2 describes a

control-oriented flow-based model of DWNs and states the CC-MPC prob-

lem. Section 3 describes the methodology to obtain a deterministic equivalent

of a stochastic MPC with joint chance constraints. Section 4 describes the

case study where the effectiveness of the proposed approach is shown and

analysed. Section 5 highlights the concluding remarks that can be drawn

from the results presented in this paper as well as some future research

directions.

Notation

Throughout this paper, let R, Rn, Rm×n, denote the field of real numbers,

the set of column real vectors of length n and the set of m by n real matrices,

respectively, whereas N , {0, 1, 2, . . .} is the set of natural numbers including

zero, N+ , N \ {0}, and Nk
j is the set of consecutive non-negative integers

{j, . . . , k}. Scalars are denoted with lower case letters (e.g., a, b, α, β, . . .),

vectors are denoted with bold lower case letters (e.g., a,b, . . .), matrices are

denoted with bold upper case letters (e.g., A, B,. . .), and general sets are

denoted with upper case calligraphic letters (e.g., A, B,. . .). The cardinal of
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a set A is denoted with |A|. If not otherwise noted, all vectors are column

vectors. Moreover, 0 denotes a zero column vector and I the identity matrix,

both of appropriate dimensions, while v−→ ,
[
vk|k, . . . ,vk+N |k

]
∈ Rnv×N

denotes an ordered collection of N predicted vectors vk+i|k ∈ Rnv . By

superscript T transposition is denoted, and the operators<,≤,=, >,≥ denote

element-wise relations of vectors.

2. Problem Formulation

2.1. DWN flow-based control-oriented model

This paper considers a general DWN being represented by a directed

graph G(V , E), see [28], where a set of elements, i.e., ns sources, nx storage

elements, nq intersection nodes, and nd sinks, are represented by v ∈ V

vertices, which are connected by a ∈ E directed links. Due to the network

function, water is transported along the links by nu flow actuators (i.e., pipes

and valves), passing through reservoirs or tanks, from specific origin locations

to specific destination locations. The network is subject to several capacity

and operational constraints, and to measured stochastic flows to sinks driven

by customers water demand.

Stating the volume in storage elements as the state variable xk ∈ Rnx ,

the flow through the actuators as the manipulated inputs uk ∈ Rnu , and the

demanded flow as additive measured disturbances dk ∈ Rnd , then the control-

oriented model of the DWN G(V , E) may be abstracted and described by the

following set of linear (or linearised) discrete difference-algebraic equations
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(DAE) for all time instant k ∈ N:

xk+1 = Axk + Buk + Bddk, (1a)

0 = Euuk + Eddk, (1b)

where the difference equations in (1a) describe the dynamics of storage tanks,

and the algebraic equations in (1b) describe the static relations (i.e., mass

balance at junction nodes) in the network. Moreover, A, B, Bd, Eu, Ed,

are time-invariant matrices of suitable dimensions dictated by the network

topology.

Assumption 1. The states in xk and the demands in dk are observable at

time instant k, and the pair (A,B) is stabilisable.

Assumption 2. The realisation of disturbances at the current time instant

k may be decomposed as

dk = d̄k + d̃k , (2)

where d̄k is the vector of expected disturbances, and d̃k is the vector of

probabilistic independent forecasting errors with non-stationary uncertainty

and a known (or approximated) quasi-concave probability distribution D,

e.g., the normal, the logistic, the exponential distribution, among others.

Therefore, the stochastic nature of each ith row of dk is described by d(i),k ∼

D(i)(d̄(i),k,Σd̃(i),k
), where d̄(i),k denotes its mean, and Σd̃(i),k

its variance.

Given the past k measured realisations of dk, its stochastic description can

be predicted for N time instants ahead, using, e.g., time-series models.

The system is subject to hard state and input constraints given by convex
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and closed polytopic sets defined as

X , {xk ∈ Rnx |Gxk ≤ g} ⊂ Rnx ∀k, (3a)

U , {uk ∈ Rnu|Fuk ≤ f} ⊂ Rnu ∀k, (3b)

where G ∈ Rcx×nx , g ∈ Rcx , F ∈ Rcu×nu , f ∈ Rcu , being cx and cu the number

of state and input constraints, respectively.

Notice in (1) that some control variables are directly related with mea-

sured disturbances. Hence, it is clear that u does not take values in Rnu but

in a linear variety given by the algebraic equation (1b). As shown in [29],

this latter observation can be exploited to develop an affine parametrisation

of control variables in terms of a minimum set of disturbances, mapping

control problems to a space with a smaller decision vector and with less

computational burden due to the elimination of the equality constraints.

Thus, the model is rewritten as

xk+1 = Axk + B̃ ũk + B̃d dk, (4)

and constraints in (3b) are replaced with a time-varying restricted input

constraint set defined as

Ũk , {ũk ∈ Rnũ |FP̃M̃1ũk ≤ f − P̃M̃2dk} ⊂ Rnũ ∀k, (5)

(see Appendix A).

Given the stochastic nature of disturbances, state constraints are relaxed

with a predefined probability to manage the DWN reliability as follows:

P[xk ∈ X ] ≥ 1− δx, (6)
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where δx ∈ (0, 1) denotes the risk probability of constraint violation for the

states. This probabilistic general constraint is the so called chance constraint.

There are two forms of chance constraints according to the definitions below.

Definition 1 (Joint chance constraint). A (linear) joint chance constraint

is of the form

P[G(j)xk ≤ g(j) , ∀j ∈ Ncx
1 ] ≥ 1− δx ∀k, (7)

where G(j) and g(j) denote the j
th row of G and g, respectively. This requires

that all rows j have to be jointly fulfilled with the probability 1− δx.

Definition 2 (Individual chance constraint). A (linear) individual chance

constraint is of the form

P[G(j)xk ≤ g(j)] ≥ 1− δx,j, ∀j ∈ Ncx
1 ∀k, (8)

which requires that each jth row of the inequality has to be fulfilled individually

with the respective probability 1− δx,j, where δx,j ∈ (0, 1).

Both forms of constraints are useful to measure risks, hence, their selec-

tion depends on the application. This paper is concerned with the use of

joint chance constraints since they can express better the management of

the overall reliability in a DWN. All chance-constrained models require prior

knowledge of the acceptable risk associated with the constraints. A lower

risk acceptability implies a harder constraint.

2.2. Chance-Constrained Model Predictive Control

This paper addresses the problem of finding, over a fixed prediction hori-

zonHp ∈ N+, a sequence of control actions ũ−→
∗
k(xk,dk) , [ũ∗k|k, . . . , ũ

∗
k+Hp−1|k]
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that allows to redistribute resources within a DWN, from the times and

places where they are available to the ones where they are needed. This

must be done in such a way that a set O of (managers dependant) objectives

is optimised subject to input polytopic constraints and state joint chance

constraints that cope with the stochastic component of demands. Hence, the

CC-MPC controller design is based on the solution of the following multi-

objective finite horizon optimisation problem (FHOP).

Problem 1 (CC-FHOP for DWNs).

min
ũ−→

∗
k

E

 |O|∑
m=1

Hp−1∑
i=0

λmJm
(
xk+i+1|k, ũk+i|k,dk+i|k

) , (9a)

subject to:

xk+i+1|k = Axk+i|k + B̃ũk+i|k + B̃ddk+i|k, (9b)

ũk+i|k ∈ Ũk+i|k, (9c)

P

Hp−1⋂
i=0

xk+i+1|k ∈ X

 ≥ 1− δx, (9d)

(xk|k,dk|k) = (xk,dk), (9e)

where E[·] and P[·] are the expectation and probability operators, respectively,

and δx denotes the upper bound of the joint risk for constraints violation.

The expectation of the cost function is over the states and disturbances, and

the optimisation is over the sequence of control inputs. Each Jm objective

considered in the above FHOP is prioritised within the overall cost function

through m positive scalar weights λm. �
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Assuming that Problem 1 is feasible, i.e., ũ−→
∗
k 6= ∅, and taking into account

the MPC law [13] and (A.10), then the controller applies the input given by

uMPC,k , P̃M̃1ũ
∗
k|k + P̃M̃2dk. (10)

In general, (9) could be non-convex depending on the probability distri-

butions involved in the chance constraints. The main challenge in solving

this stochastic problem lies in computing the multivariate integration of the

density function of the uncertain variables. As reviewed in [30], this can

be done by two general approaches: (i) analytical methods or (ii) sampling

methods. In this paper, the former approach is considered by addressing an-

alytically the stochastic process of disturbances (using time-series modelling)

and assuming an uncertainty description given by a multivariate Gaussian

distribution to exploit its properties and reformulate the chance constraints

into a set of deterministic equivalents.

3. Deterministic Equivalent CC-MPC

3.1. Tractable Safe Approximation of Joint Chance Constraints

3.1.1. Convexity Analysis

Constraint (9d) of Problem 1 requires that the probability of violating any

of multiple inequality state constraints is below a user-defined bound. Thus,

such probabilistic constraint is a joint chance constraint. Consider that this

constraint can be generalised in a vector function h(v, ζ) : Rnv×nζ 7→ Rnc ,

where a random vector ζ ∈ Rnζ is separable of a decision vector v ∈ Rv

taking into account that the uncertainty appears in (1) in an additive way.

Hence, the joint chance constraint can be expressed in a general form as
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P [h(v, ζ) ≤ 0] ≥ 1−δζ , where δζ ∈ (0, 1) is the risk bound. As demonstrated

in [31], if h(·, ·) is jointly convex in (v, ζ) and Φ , P [·] is quasi-concave, then

the feasible set B(δζ) ,
{
v | P [h(v, ζ) ≤ 0] ≥ 1− δζ

}
is convex ∀δζ ∈ (0, 1).

Recalling that the original deterministic constraint (3a) forms a convex

and closed set, and under the assumption that disturbance uncertainty lies

in a multivariate distribution whose probabilistic density function Φ is log-

concave, then it can be concluded that Problem 1 is a smooth convex pro-

gram.

3.1.2. Decomposition of Joint Chance Constraints

Although the joint chance constraint (9d) is convex, the evaluation of

its left-hand side is still necessary. In general, joint chance constraints

lack analytical expressions; the available methods to integrate the involved

multivariate probability distribution over an arbitrary region, e.g., sampling-

based methods or numeric integration, may be intractable for large-scale

systems. Nevertheless, there are some approaches that solve the issue by

bounding or approximating the exact numeric solution, see [32] and references

therein. Here, a uniform distribution of the joint risk is distributed among

a set of individual chance constraints that can be transformed, under the

assumption of log-concavity of their univariate distributions, into equivalent

deterministic constraints that can be evaluated analytically.

The decomposition approach is as follows. Consider again the general

joint chance constraint, i.e., P [(v, ζ) ≤ 0] ≥ 1 − δζ , and define

h(v, ζ) , ζ − Hv, with ζ ∈ Rnζ , v ∈ Rnv , and H ∈ Rnζ×nv . Hence, the

additive stochastic element is separable and the following chance constraint
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is obtained:

P [ζ ≤ Hv] ≥ 1− δζ . (11)

To simplify the notation, define w , Hv ∈ Rnc , then, for any duple 〈ζ,w〉,

it follows that

Φζ(w) = P
[{
ζ1 ≤ w1, . . . , ζnc ≤ wnc

}]
. (12)

Defining the events Ci , {ζi ≤ wi}, ∀i ∈ Nnc
1 , it follows:

Φζ(w) = P
[
Ci ∩ . . . ∩ Cnc

]
. (13)

Denoting the complements of the events Ci by

Cc
i , {ζi > wi} , (14)

it is known from probability theory that

C1 ∩ . . . ∩ Cnc = (Cc
1 ∪ . . . ∪ Cc

nc
)c, (15)

and consequently

Φζ(w) = P
[
C1 ∩ . . . ∩ Cnc

]
(16a)

= P
[
(Cc

1 ∪ . . . ∪ Cc
nc

)c
]

(16b)

= 1− P
[
(Cc

1 ∪ . . . ∪ Cc
nc

)
]
≥ 1− δζ . (16c)

At this point, taking advantage of the union bound, the Boole’s inequality

allows to bound the result in (16c), stating that for a countable set of events

E1, . . . , Enc , the probability that at least one event happens is not higher

than the sum of the individual probabilities [33], i.e.,

P

[
nc⋃
i=1

Ei

]
≤

nc∑
i=1

P [Ei] . (17)
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Defining Ei , Cc
i , ∀i ∈ Nnc

1 , and applying (17) to the inequality in (16c), it

follows that
nc∑
i=1

P [Cc
i ] ≤ δζ ⇔

nc∑
i=1

(1− P [Ci]) ≤ δζ . (18)

At this point, a set of constraints arises from previous results as sufficient

conditions to enforce the joint chance constraint (11), by allocating the joint

risk δζ in nc separate risks δζ,i, i ∈ Nnc
1 . These constraints are stated as

follows:

P [Ci] ≥ 1− δζ,i, ∀i ∈ Nnc
1 , (19)

nc∑
i=1

δζ,i ≤ δζ , (20)

0 ≤ δζ,i ≤ 1, (21)

where (19) forms the set of nc resultant individual chance constraints, which

bounds the probability that each inequality of the receding horizon problem

may fail; and (20) and (21) are conditions imposed to bound the new single

risks in such a way that the joint risk bound is not violated. Any solution

that satisfies the above constraints guarantees to satisfy (11).

Remark 1. The bounds for the risk probability levels of joint or individual

chance constraints mentioned in this paper apply for the case when the

uncertainty is in the separable vector ζ. If the random component is the

matrix H, then the bounds for the risk probability, to keep a convex problem,

may change, e.g., for Gaussian distribution δ ∈ (0, 0.5]. ♦

3.1.3. Risk Allocation Policy

The decomposition of the joint chance constraint into single constraints

leads to the incorporation of nc new variables (the individual risks) in the
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problem, thus, the calculation of their value has to be addressed. In the

literature, two methods have been proposed to solve this issue: (i) fixed-risk

method [34], and (ii) optimal risk allocation method [30, 35]. The former

method assigns a pre-defined constant risk for each univariate constraint in

(19), typically following a uniform allocation strategy. The latter method

assumes the single risks as new decision variables to be optimised, what

improves the performance of the overall system but at the cost of more

computational burden due to the greater complexity and dimensionality of

the optimisation task. Therefore, as DWNs are often large-scale systems,

the uniform risk allocation policy is adopted here to avoid overloading of the

associated optimisation problem.

Consider the joint chance constraint (11) with a predefined allowed prob-

ability of violation given by the accepted maximal risk δζ . After the decom-

position of such constraint into nc individual chance constraints, the uniform

risk allocation policy assigns a fixed and equal value of risk to each constraint

as follows:

δζ,i =
δζ
nc
, ∀i ∈ Nnc

1 . (22)

In the case of the MPC strategy, the joint chance constraints may lead to a

large number of individual chance constraints because nc depends not only

on the number of constraints that are set up, but also on the prediction

horizon over which those constraints have to be evolved using the prediction

models. Then, the joint chance constraint (9d) in Problem 1 leads to nc×Hp

individual chance constraints. This fact reinforces the use of the fixed risk

distribution policy for DWNs control problems, in order to avoid the addition

of a large number of new decision variables to be optimised.
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Remark 2. The constraint bound 1 − δζ is usually assigned a priori by the

decision makers and represents the desired probability of maintaining the

feasibility of the optimisation problem. In general, high levels of risk δζ

associated with satisfying the constraints lead to obtain higher cost function

values. ♦

3.1.4. Deterministic Equivalent Constraints

A chance constraint is not suitable for algebraic solution, thus, after

decomposing the joint constraints into a set of individual constraints, the

deterministic equivalent of each separate constraint should be used. Re-

minding that this paper deals with additive uncertainty, such deterministic

equivalents are obtained following [36] and described below.

Consider (19) and the set of nc individual chance constraints expressed as

P
[
ζ(i) ≤ H(i)v

]
≥ 1− δζ,i , ∀i ∈ Nnc

1 , (23)

where ζ(i) is the i
th row of the separable random vector ζ with Gaussian un-

certainty ζ(i) ∼ N (ζ̄(i),Σζ(i)
), and H(i) is the ith row of the matrix

H ∈ Rnc×nv . Using the standardised variate of the random vector, i.e.,

Zζi =
ζ(i) − ζ̄(i)

Σ
1/2
ζi

, (24)

then (23) can be expressed as

P

[
Zζi ≤

H(i)v − ζ̄(i)

Σ
1/2
ζi

]
≥ 1− δζ,i ⇐⇒ Φ

(
H(i)v − ζ̄(i)

Σ
1/2
ζi

)
≥ 1− δζ,i, (25)

where ζ̄(i) and Σζi
are the mean and the variance of the ith element of ζ.

Moreover, Φ is the standard Gaussian cumulative distribution function and
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its inverse Φ−1 (the quantile function) allows to finally derive the determin-

istic equivalent of (23) in the form of

H(i)v ≥ ζ̄(i) + Φ−1
(
1− δζ,i

)
Σ

1/2
ζi
, ∀i ∈ Nnc

1 . (26)

In this way, the reformulated predictive controller solves the deterministic

equivalent FHOP stated below.

Problem 2 (Deterministic Equivalent CC-FHOP for DWNs).

min
ũ−→

∗
k

: E

 |O|∑
m=1

Hp−1∑
i=0

λmJm
(
xk+i+1|k, ũk+i|k,dk+i|k

) , (27a)

subject to:

x̄k+i+1|k = Ax̄k+i|k + B̃ũk+i|k + B̃dd̄k+i|k, (27b)

ũk+i|k ∈ Ũk+i|k, (27c)

G(j)x̄k+i+1|k ≤ g(j) − Φ−1

(
1− δx

cxHp

)
Σ

1/2
G(j)x,k+i+1|k ∀j ∈ Ncx

1 , (27d)

(x̄k|k, d̄k|k) = (xk,dk). (27e)

�

Remark 3. It turns out that most (not all) probability distribution functions

used in different applications, e.g., uniform, Gaussian, logistic, Chi-squared,

Gamma, Beta, log-normal, Weibull, Dirichlet, Wishart, among other distri-

butions, share the property of being log-concave. Then, their corresponding

quantile function can be computed off-line for a given risk acceptability level

and used within the MPC convex optimisation in a similar way than the

Gaussian quantile used in the paper. ♦
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3.1.5. Conservatism

The approach presented above to derive deterministic equivalents of joint

chance constraints, gives a conservative approximation of the original stochas-

tic problem. The impact of the conservatism on the quality of the solution

is discussed below.

Consider again that the satisfaction of each individual constraint is an

event Ci, ∀i ∈ Nnc
1 . A joint chance constraint requires that the conjunction

of all the individual constraints is satisfied with a desired probability level

1− δζ , i.e.,

P

[
nc⋂
i=1

Ci

]
≥ 1− δζ . (28)

Under the assumption that each individual constraint is probabilistically

independent, the probability of the joint constraint, considering the uniform

risk allocation policy in (22), is given by

P

[
nc⋂
i=1

Ci

]
=

nc∏
i=1

P [Ci]

=

nc∏
i=1

(
1− δζ,i

)
=

(
1−

δζ
nc

)nc
. (29)

Taking into account that using Boole’s inequality to upper bound the joint

constraint leads to (19), (20) and (21), it follows that(
1−

δζ
nc

)nc
≥
(
1− δζ

)
⇔ δζ ≥ 1−

(
1−

δζ
nc

)nc
. (30)

In this way, the approximated conservatism ∆̃ introduced by the CC-MPC

approach with individual constraints presented in this paper is given by

∆̃ = δ −
(

1−
(

1−
δζ
nc

)nc)
. (31)
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Remark 4. The level of conservatism without assumptions on the indepen-

dence of events, can be derived by using the inclusion-exclusion principle for

the union of finite events, Ei, ∀i ∈ Nnc
1 , which asserts the following equality:

Pr

[
nc⋃
i=1

Ei

]
=

nc∑
i=1

Pr [Ei]

−
∑

1≤i<j≤nc

Pr
[
Ei ∩ Ej

]
+

∑
1≤i<j<k≤nc

Pr
[
Ei ∩ Ej ∩ Ek

]
− · · · + (−1)nc−1 Pr

[
nc⋂
i=1

Ei

]
. (32)

Defining Ei , Cc
i , and subtracting (32) from (17), it follows that the conser-

vatism is given by

∆ =
∑

1≤i<j≤nc

Pr
[
Cc
i ∩ Cc

j

]
−

∑
1≤i<j<k≤nc

Pr
[
Cc
i ∩ Cc

j ∩ Cc
k

]
+ · · · − (−1)nc−1 Pr

[
nc⋂
i=1

Cc
i

]
. (33)

To evaluate the resulting expression requires the knowledge of the conditional

probability of the events, which might be even impractical to obtain. Hence,

(31) is used as an approximated indicator. ♦

4. Case Study: The Barcelona Drinking Water Network

4.1. General Description

The approach presented in this paper is assessed with a case study of

a real network, specifically the Barcelona DWN. This network is currently
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managed by AGBAR1 and it supplies drinking water to the Metropolitan

Area of Barcelona (Catalunya, Spain). In general, the water network operates

as a fully interconnected system driven by endogenous and exogenous flow

demands; different hydraulic elements are used to collect, store, distribute

and serve drinking water to the associated population.

The operational goals in the management of the Barcelona DWN are of

three kinds: economic, safety, smoothness, and are respectively stated as

follows:

1. To provide a reliable water supply in the most economic way, minimis-

ing water production and transport costs.

2. To guarantee the availability of enough water in each reservoir to satisfy

its underlying demand, keeping a safety stock to face uncertainties and

avoid stock-outs.

3. To operate the DWN under smooth control actions.

According to Section 2.1, this system can be generally described in state-

space form by (4). The states and control inputs are subject to the following

hard constraints:

xmin ≤ xk ≤ xmax, ∀k, (34a)

umin ≤ P̃M̃1ũk + P̃M̃2dk ≤ umax, ∀k, (34b)

where xmin ∈ Rnx and xmax ∈ Rnx denote the vectors of minimum and maxi-

mum volume capacities in tanks, respectively, given in m3; while umin ∈ Rnu

1Aguas de Barcelona, S.A. Company that manages the drinking water transport and

distribution in Barcelona (Spain).
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and umax ∈ Rnu denote the vectors of minimum and maximum flow capacities

through the system actuators, respectively, given in m3/s. Moreover, for

service reliability, the states are also subject to the following safety constraint:

xk ≥ dnet,k, ∀k, (35)

where dnet,k , |Bout

(
P̃M̃1ũk−1 + P̃M̃2dk−1

)
+ Bddk| ∈ Rnx is a vector

of net demands in m3, above which is desired to keep the reservoirs to

avoid stock-outs. The Bout

(
P̃M̃1ũk−1 + P̃M̃2dk−1

)
component represents

the immediate previous endogenous demands, i.e., the outflow of the tanks

caused by water requirements from neighbouring tanks or nodes, and the

Bddk component denotes the exogenous (customer) demands of tanks for a

given time instant k.

The Barcelona DWN flow-based model contains a total amount of 63

tanks and 114 manipulated actuators. Moreover, the network has 88 demand

sectors and 17 pipe intersection nodes. For further details about the DWN

modelling and specific insights related to this case study, the reader is referred

to [37].

4.2. CC-MPC Setup

Given the stochastic nature of water demands, the DWN prediction model

involves exogenous additive uncertainties, hence, the compliance of con-

straints for a given control input cannot be ensured. This means that, even

if the predictive controller finds a feasible solution to achieve the operational

goals, there is a certain probability that real outputs may violate constraints.

Therefore, it is appropriate to replace the original constraints that involve

stochastic elements, i.e., (34a) and (35), by probabilistic statements in the
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form of chance constraints. In this section, the DWN is considered as

a probabilistic constrained system subject to polytopic constraints on the

controls and linear joint chance constraints on the states. The source of

uncertainty in the system is assumed to be the forecasting error of the

measured demands. Then, the stochastic control Problem 1 for the case

study is stated as follows for i ∈ NHp−1

0 :

J∗ , min
ũ−→

∗
k

E

λ1

Hp−1∑
i=0

JE,k+i|k + λ2

Hp−1∑
i=0

J∆U,k+i|k

 , (36a)

subject to:

xk+i+1|k = Axk+i|k + B̃ũk+i|k + B̃ddk+i|k, (36b)

P
[
xk+i+1|k ≥ xmin

]
≥ 1− δx

2
, (36c)

P
[
xk+i+1|k ≤ xmax

]
≥ 1− δx

2
, (36d)

P
[
xk+i+1|k ≥ dnet,k+i+1|k

]
≥ 1− δs, (36e)

umin ≤ P̃M̃1ũk+i|k + P̃M̃2dk+i|k ≤ umax, (36f)

dnet,k+i+1|k = |Bout

(
P̃M̃1ũk+i|k + P̃M̃2dk+i|k

)
+ Bddk+i+1|k|, (36g)

(xk|k,dk|k) = (xk,dk), (36h)

where JE,k+i|k ,
∑Hp−1

i=0 αk+i|k|ũk+i|k| is the economic objective with

αk+i|k ∈ Rnu being the cost of water production and transport, and

J∆U,k+i|k ,
∑Hp−1

i=0 ‖P̃M̃1∆ũk+i|k + P̃M̃2∆dk+i|k‖2
2 is the smoothness ob-

jective that penalises the control signal variations. Moreover, δx and δs are

the accepted maximum risk for the state bounds and the safety constraint,

respectively. The objectives are prioritised with scalar weights λ1, λ2. The
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service reliability goal (i.e., demand satisfaction) is enforced by the constraint

(36e).

4.3. CC-MPC Reformulation

In order to solve the above DWN control problem, a tractable safe approx-

imation is derived following Section 3. The joint chance constraints (36c),

(36d) and (36e), are transformed into deterministic equivalent constraints as

shown in Appendix B. Thus, Problem 2 for the case study is stated as follows

for i ∈ NHp−1

0 and j ∈ Nnx
1 :

J∗ , min
ũ−→

∗
k, ξ−→

∗
k

E

λ1

Hp−1∑
i=0

JE,k+i|k + λ2

Hp−1∑
i=0

J∆U,k+i|k + λ3

Hp−1∑
i=0

JS,k+i+1|k

 ,
(37a)

subject to:

x̄k+i+1|k = Ax̄k+i|k + B̃ũk+i|k + B̃dd̄k+i|k, (37b)

x̄(j),k+i+1|k ≥ xmin(j) + Φ−1

(
1− δx

2nxHp

)
Σ

1/2
x(j),k+i+1|k, (37c)

x̄(j),k+i+1|k ≤ xmax(j) − Φ−1

(
1− δx

2nxHp

)
Σ

1/2
x(j),k+i+1|k, (37d)

x̄(j),k+i+1|k ≥ d̄net(j),k+i+1|k + Φ−1

(
1− δs

nxHp

)
‖Σ1/2

d,k+i+1|kB̃
T
d(j)‖2 − ξk+i+1|k,

(37e)

umin ≤ P̃M̃1ũk+i|k + P̃M̃2d̄k+i|k ≤ umax, (37f)

d̄net,k+i+1|k = |Bout

(
P̃M̃1ũk+i|k + P̃M̃2d̄k+i|k

)
+ Bdd̄k+i+1|k|, (37g)

(x̄k|k, d̄k|k) = (xk,dk). (37h)
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Notice that (37a) includes a new objective JS,k+i+1|k ,
∑Hp−1

i=0 ‖ξk+i+1|k‖2
2

that is related with the safety operational goal. This objective appears after

relaxing the safety deterministic equivalent constraint (37e) with the slack

decision variable ξ ∈ Rnx to guarantee feasibility of the optimisation problem

and to allow the trading between safety, economic and smoothness objectives.

Remark 5. After enforcing the chance constraints, some robust feasibility

guarantees are obtained with an optimal back-off from the nominal deter-

ministic constraints as a risk averse mechanism to face the non-stationary

uncertainty involved in the prediction model of the MPC. The states are

forced to move away from their limits before the disturbances have chance

to cause constraint violation. The Φ−1(·) terms represent safety factors for

each constraint, and especially in (37e), it denotes the optimal safety stock

of storage tanks. ♦

As it can be seen, the deterministic FHOP in (37) may be casted as

a second-order cone programming problem. However, uncertainty in states

is a function of the measured disturbances uncertainty only and is not a

function of the decision variables of the optimisation problem. Therefore,

the variance terms in each deterministic equivalent can be forecasted prior to

the solution of the optimisation problem to include them as constants in the

MPC formulation. This simplification results in a set of linear constraints

and the optimisation remains as a quadratic programming (QP) problem,

which can be efficiently solved.
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4.4. Demand Modelling

Regular forecasting of a vast number of univariate time series is an essen-

tial task to develop proper controllers for the operational management of the

DWN. The open-loop feed-forward uncertainty in the DWN can be modelled

by the relationship between predicted states and predicted disturbances, see

(B.2) and (B.3). In the dynamic model (1) of the DWN, randomness is

directly described by the uncertainty of customer demands, which can be

estimated from historical data. Figure 1 shows the histogram of a specific

water demand node in the Barcelona DWN for the same time instant in

different days during year 2007. It can be seen, in the envelope of the

histogram, that the uncertain demand obeys a probabilistic distribution close

to a Gaussian distribution (red curve). In addition, as shown in the last two

plots of Figure 2 and discussed in [14], the demand pattern presents two

seasonal cycles, one with a daily period and the other one with a weekly

period.

In order to compute the vector of future disturbances and its stochastic

properties required in the deterministic equivalent CC-MPC problem, this

paper follows the modified exponential smoothing state-space framework

developed in [38] for an automatic forecasting of complex seasonal time series

(see Appendix C), such as the ones related to water demands in the Barcelona

DWN. This framework extends traditional exponential smoothing models to

accommodate multiple seasonality. The forecasting model is named BATS,

which is an acronym for time-series models with Box-Cox transformation,

ARMA errors, Trend and Seasonality components. Taking the nd time series

of demands in the Barcelona DWN, and computing the BATS forecasting
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Fig. 1: Histogram of demand c176BARsud in the Barcelona DWN

method presented in [38], it is possible to define the elements that complete

the deterministic equivalent CC-MPC approach, i.e., the predicted mean

and covariance. Figure 3 shows an open-loop forecast of a demand along

a prediction horizon of four days, highlighting the effect of the propagated

uncertainty. The thick line is the expectation of future demand, while the

thin lines are the upper and lower bounds of the prediction interval for

different confidence levels. For more details about the prediction of time-

series uncertainty description, the reader is referred to the aforementioned

reference.
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4.5. Results

This section presents the results of applying the CC-MPC approach (the

deterministic equivalent) to the Barcelona DWN. The analysis has been

carried out over a time period of four days (96 hours) with a sampling time

of one hour. Demand scenarios correspond to real values reported between

July 23th and July 27th, 2007. Initial conditions, i.e., source capacities, initial

volume of water at tanks and starting demands, are set a priori according to

real data. The weights of the cost function (37a) are λ1 = 100, λ2 = 0.005,

and λ3 = 10. The tuning of these parameters has been chosen in a way

that the objective with highest priority is the economic cost, which should

be minimised while maintaining proper levels of safety volumes and control

action smoothness. The prediction horizon is selected as Hp = 24h, due to

the periodicity of disturbances. The simulation has been carried out using

the TOMLAB R© 7.6 optimisation package, and Matlab R© R2010b (64 bits),

running in a PC Intel R© Core
TM

E8600 at 3.33GHz with 8GB of RAM.

31



In order to assess the control enhancements developed in this paper, two

control strategies have been simulated:

• CE-MPC: It is a (certainty equivalent) perturbed deterministic MPC

that assumes predictions of demands as certain. This control strategy

allows the volume of water in tanks to decrease until the predicted

volume of future net demands, which is set as a hard constraint but

ignoring the influence of uncertainty.

• CC-MPC: It is the chance-constrained approach presented in this pa-

per, which considers and propagates the uncertainty of forecast de-

mands explicitly in the MPC design and, as a consequence, involves a

robust handling of constraints. To analyse the effect of the risk level

(δx) in this CC-MPC strategy, different scenarios have been simulated

for acceptable joint risks of 50%, 40%, 30%, 20%, 10%, 5% and 1%.

Table 1 presents the numeric assessment of aforementioned controllers through

different key performance indicators (KPIs), which are defined below:
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KPIE ,
1

ns

ns∑
k=1

αT
k |uk|∆t, (38a)

KPI∆U ,
1

ns

nu∑
i=1

ns∑
k=1

(
∆u(i),k

)2
, (38b)

KPIS ,
nx∑
i=1

ns∑
k=1

max
{

0, xs(i),k − x(i),k

}
, (38c)

KPID ,
nx∑
i=1

ns∑
k=1

max
{

0, dnet(i),k − x(i),k

}
, (38d)

KPIR ,

∑nx
i=1

∑ns
k=1 xs(i),k∑nx

i=1

∑ns
k=1 x(i),k

× 100%, (38e)

KPIO , topt,k, (38f)

where KPIE is the average economic performance of the DWN operation,

KPI∆U measures the smoothness of the control actions, KPIS is the amount

of water used from safety stocks, KPID is the volume of water demand that

is not satisfied over the simulation period, KPIR is the average percentage

of safety volume that is contained in the real water volume, and KPIO

determines the difficulty to solve the optimisation tasks involved in each

strategy accounting topt,k as the average time that takes to solve the FHOP.

The CE-MPC has been tuned with a safety stock for each tank equal to

its net exogenous demand. Therefore, the KPIS results equal to the KPID as

should be expected given their definitions. Regarding the comparison of the

KPIS between the CE-MPC and the CC-MPC, the results present greater

values for the CC-MPC cases. This trend is also an expected behaviour

given that reducing the risk probability generates a larger back-off of the

demand satisfaction constraint, i.e., more safety stock is stored to address
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Table 1: Comparison of the MPC strategies applied to the Barcelona DWN

Controller KPIE KPI∆U KPIS KPID KPIR KPIO

CE-MPC 2297.02 2.3586 3.8886 3.8886 19.41 4.82

CC-MPC@50% 2486.40 1.0747 695.54 0 27.79 4.72

CC-MPC@40% 2487.77 1.0767 750.06 0 27.86 4.83

CC-MPC@30% 2489.31 1.0795 819.82 0 27.95 4.79

CC-MPC@20% 2491.61 1.0835 920.36 0 28.07 4.71

CC-MPC@10% 2496.23 1.0964 1101.7 0 28.18 4.70

CC-MPC@5% 2500.52 1.1012 1298.9 0 28.18 4.89

CC-MPC@1% 2509.89 1.1131 1759.4 0 28.43 4.86

demand uncertainty. This latter fact, in addition with the tuning of the

multi-objective cost function, leads to higher KPIS (but lower or null KPID)

if so is required by the real demand scenario in order to guarantee a service

level. It can be observed that the CE-MPC is the cheapest control strategy

(lower KPIE) but the less reliable one given that the certainty equivalence

assumption leads to unsatisfying demands (higher KPID), especially when

the water volume in the tank is close to the expected demand. Thus, the

CE-MPC performance represents a strategy for the supply of drinking water

with a higher risk of failure. The different CC-MPC scenarios (those of

varying the risk acceptability level) have shown that reliability and economic

performance are conflicting objectives which have to reach a trade-off, i.e.,

the inclusion of safety mechanisms in the controller increases the reliability
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Table 2: Comparison of daily average economic costs of MPC strategies

Controller Water Cost Electric Cost Daily Average Cost

(e.u./day) (e.u./day) (e.u./day)

CE-MPC 2301.54 2719.53 5021.07

CC-MPC@5% 2298.03 2851.47 5149.50

e.u.: economic units.

of the DWN in terms of demand satisfaction (see Figure 4), but also the

economic cost of its operation. The main advantage of the CC-MPC is its

formal methodology that leads to obtain optimal dynamic constraints that

tackle uncertainties with a minimum cost to achieve also a global service

level of the DWN. Table 1 shows a smooth degradation of the economic

performance under the CC-MPC when varying the risk within a wide range

of acceptability levels. Therefore, the CC-MPC approach addressed in this

paper is a suitable mean to compute the proper amount of safety and the

proper control actions to assure a desired service level. Notice that the

computational burden (KPIO) of the CC-MPC is similar to the CE-MPC

given that the complexity of the FHOP is not altered, i.e., the number of

constraints and decision variables remain the same. The only extra load

that might be added is the computation of the variance of the disturbances

propagated in the prediction horizon. Consequently, the CC-MPC approach

is suitable for real-time control (RTC) of the Barcelona DWN.

Table 2 discloses details of the average production and operational costs

related to each strategy. Comparing the CE-MPC controller with the
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Table 3: Conservatism of the Deterministic Equivalent CC-MPC

Joint Chance Constraint Number of Individual Joint Risk Conservatism

Constraints of Approximation

State Hard Bounds

0.001 4.9967× 10−7

0.01 4.9817× 10−5

3024 0.03 4.4539× 10−4

0.05 1.2290× 10−3

0.1 4.8359× 10−3

Safety Constraint

0.001 4.9950× 10−7

0.01 4.9801× 10−5

1512 0.03 4.4524× 10−4

0.05 1.2286× 10−3

0.1 4.8344× 10−3

CC-MPC@5% controller (requiring a reliability of 95%), it can be noticed that

the dynamic safety stocks resulting within the stochastic approach might lead

to an increase of the operation, especially in the electric cost, mainly due to

the extra amount of water that is needed to be moved through the network

and allocated in tanks to guarantee that the water supply will be feasible

with a certain probability for future disturbance realisations.

The conservatism of reformulating the stochastic Problem 1 into the

tractable deterministic equivalent in (37) is shown in Table 3 for the chance

constraints (36c), (36d) and (36e), with different levels of maximum joint risk.

It can be observed that conservatism increases when the risk level increases

but remains almost constant despite the variation of the number of indi-
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vidual constraints. Hence, the goodness of the approximation using Boole’s

inequality is not affected, neither by the number of decision variables, nor by

the prediction horizon. Therefore, the addressed approach is advantageous

to be applied to any other DWNs or general flow networks.

5. Conclusions

This paper addresses a CC-MPC strategy that explicitly incorporates the

uncertainty information into a stochastic optimisation problem by replacing

hard constraints of states with joint probabilistic constraints and by replacing

the nominal cost function with its expected value in the MPC formulation.

Thus, the resulting decisions are robust and ensure the optimisation of the

dynamic performance and the reliability of remaining feasible. The analytical

approximation of joint chance constraints based on their decomposition into

individual chance constraints, these latter bounded by means of Boole’s

inequality, has shown to be suitable for large DWNs regarding that the

conservatism involved is not affected neither by the number of the inequal-

ities nor the prediction horizon of the MPC. The level of resultant back-off

is variable and depends on the volatility of the forecast demand at each

prediction step. In this CC-MPC approach, a BATS time-series model of the

disturbance stochastic properties was used in parallel with the MPC model.

The CC-MPC presented here focuses on robust performance of DWNs, where

additive disturbances (unbounded and stationary or non-stationary) consti-

tute the main uncertainty. The CC-MPC strategy enhances the robustness

of the baseline CE-MPC by performing a dynamic handling of constraints

in a systematic way instead of using heuristic fixed safety volumes as in the
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CE-MPC. The fact of non-bounded disturbances in the system, precludes the

guarantee of robust feasibility. Hence, the approach proposed in this paper

is based on a service level guarantee and a probabilistic feasibility. The case

study shows that the CC-MPC is suitable for the operational guidance of

DWNs due to its robustness, flexibility, modest computational requirements,

and ability to include risk considerations directly in the decision-making

process. Even when the CC-MPC increased the operational costs by around

2.5%, it allowed to improve service reliability by more than 90%. Future

research will be directed to incorporate parametric uncertainty and unmea-

sured disturbances in the model. Moreover, it is the interest of the authors

to extend the results and develop decentralised/distributed stochastic MPC

controllers for large-scale complex flow networks.

Appendix A. DWN variables reduction

The reduction of the model is based on the following assumption.

Assumption 3. There are more variables than algebraic equations, i.e.,

nq < nu. The matrix Eu in (1b) has maximal rank, i.e. rank (Eu) = nq,

and it can be expressed in a reduced staggered form by using Gauss-Jordan

elimination.

Consider (1b) in the following form:

[
Eu Ed

] u

d

 = 0. (A.1)

Assumption 3 guarantees that there exists a permutation P̃ of the first nu
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variables in (A.1) such that

Eu P̃ =
[
Inq M1

]
, M1 ∈ Rnq×(nu−nq), (A.2)

and [
Eu Ed

]
P =

[
Inq M1 Ed

]
, Ed ∈ Rnq×nd , (A.3)

where

P =

 P̃ 0

0 Ind

 . (A.4)

Then, it is possible to state that[
Eu Ed

] u

d

 = 0 ⇐⇒
[
Eu Ed

]
PPT

 u

d

 = 0. (A.5)

Defining  v

d

 = PT

 u

d

 =

 P̃Tu

d

 , (A.6)

where

v =

 ū

ũ

 , ū ∈ Rnq , ũ ∈ R(nu−nq), (A.7)

then it holds

[
Inq M1 Ed

]
ū

ũ

d

 = 0 =⇒ ū = −M1 ũ− Ed d, (A.8)

and

v =

 ū

ũ

 =

 −M1 ũ− Ed d

ũ


=

 −M1

I(nu−nq)

 ũ +

 −Ed

0nd

d. (A.9)
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Finally, being P a permutation matrix and therefore an orthogonal ma-

trix, i.e., P−1 = PT, and from P̃T u = v, the control parametrisation is as

follows:

u = P̃

 −M1

I(nu−nq)


︸ ︷︷ ︸

M̃1

ũ + P̃

 −Ed

0nd


︸ ︷︷ ︸

M̃2

d. (A.10)

Replacing (A.10) in (1), the system can be then modelled with the following

difference equation:

xk+1 = Axk + B̃ ũk + B̃d dk, (A.11)

where

B̃ = BP̃M̃1, B̃d = BP̃M̃2 + Bd. (A.12)

In the same way, constraint (3b) is transformed taking into account the

control parametrisation in (A.10). Therefore, the set of restricted input

constraints is defined as

Ũk , {ũk ∈ Rnũ |FP̃M̃1ũk ≤ f − P̃M̃2dk} ⊂ Rnũ , ∀k. (A.13)

Appendix B. DWN chance constraints convex approximation

Below is derived the deterministic equivalents of the individual chance

constraints that approximate the joint chance constraints in (36).

Lower Bound of States: The robust counterpart of the set of individual

chance constraints that approximates the joint constraint (36c) is derived as
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follows:

∀i ∈ NHp−1

0 ∧ ∀j ∈ Nnx
1 ,

P
[
x(j),k+i+1|k ≥ xmin(j)

]
≥ 1− δx

2nxHp

⇔ P
[
x(j),k+i+1|k < xmin(j)

]
≤ δx

2nxHp

⇔ P

x(j),k+i+1|k − x̄(j),k+i+1|k

Σ
1/2
x(j),k+i+1|k

<
xmin(j) − x̄(j),k+i+1|k

Σ
1/2
x(j),k+i+1|k

 ≤ δx
2nxHp

⇔ Φ

xmin(j) − x̄(j),k+i+1|k

Σ
1/2
x(j),k+i+1|k

 ≤ δx
2nxHp

,

⇔ x̄(j),k+i+1|k ≥ xmin(j) − Φ−1

(
δx

2nxHp

)
Σ

1/2
x(j),k+i+1|k. (B.1)

The mean and variance of x are computed over the random variable d, as

follows:

x̄(j),k+i+1|k = A(j)x̄k+i|k + B̃(j)ũk+i|k + B̃d(j)d̄k+i|k, (B.2)

Σx(j),k+i+1|k = A(j)Σx,k+i|kA
T
(j) + B̃d(j)Σd,k+i|kB̃

T
d(j), . (B.3)

The symmetry of the normal distribution allows to consider the equality

−Φ−1(p) = Φ(1 − p) for any probability level p ∈ (0, 1). In this way, the

equivalent of (36c) can be finally expressed, ∀ i ∈ NHp−1

0 and ∀j ∈ Nnx
1 , by

the following single constraints:

x̄(j),k+i+1|k ≥ xmin(j) + Φ−1

(
1− δx

2nxHp

)
Σ

1/2
x(j),k+i+1|k. (B.4)

Upper Bound of States: The same procedure used to derive the lower

bound of states yields the robust counterpart of (36d), which is expressed,
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∀i ∈ NHp−1

0 and ∀j ∈ Nnx
1 , as

x̄(j),k+i+1|k ≤ xmax(j) − Φ−1

(
1− δx

2nxHp

)
Σ

1/2
x(j),k+i+1|k. (B.5)

Safety Constraint of States: In the operational constraint (36e), both

sides of the inequality xk+i+1|k ≥ dnet,k+i+1|k contain random variables. This

fact could complicate the definition of a linear deterministic equivalent for

the probabilistic constraint, unless appropriate assumptions are made. As

it can be seen in (36b) and (36g), the uncertainty in variables xk+i+1|k and

dnet,k+i+1|k is directly associated with the stochastic variable in common: the

forecasted demand d, which appears in the definition of both sides of the

aforementioned inequality, but with a difference of one time instant between

each side. Therefore, taking into account that a disturbance prediction model

(e.g., time-series model) may allow to estimate the cumulative uncertainty for

a multiple-step forecasting process, it can be assumed that the uncertainty of

dk+i|k is already considered in the uncertainty of dk+i+1|k. This assumption

avoids overestimation of uncertainty and aims to reduce conservatism in the

controller performance.

The deterministic equivalent is derived as follows:

∀i ∈ NHp−1

0 ∧ ∀j ∈ Nnx
1 , P

[
x(j),k+i+1|k ≥ dnet(j),k+i+1|k

]
≥ 1− δs

nxHp

⇔ P
[
dnet(j),k+i+1|k − x(j),k+i+1|k ≤ 0

]
≥ 1− δs

nxHp

⇔ Φ

−E [dnet(j),k+i+1|k − x(j),k+i+1|k
]

Σ
1/2
dnet(j),k+i+1|k

 ≥ 1− δs
nxHp

⇔ x̄(j),k+i+1|k ≥ d̄net(j),k+i+1|k + Φ−1

(
1− δs

nxHp

)
Σ

1/2
dnet(j),k+i+1|k. (B.6)
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Appendix C. BATS Modelling of Water Demand

Demand time series model: Let dk, k ∈ N+, denote an observed time

series of any water demand, and d
(ω)
k the Box-Cox transformed observed

value at time k with the parameter ω. The transformed series d(ω)
k , is

then decomposed into an irregular component hk, a level component lk, a

growth component bk and possible seasonal components s(i)
k with seasonal

frequencies mi, for i = 1, . . . , P , where P is the total number of seasonal

patterns in the series. In order to allow for possible dampening of the trend,

a damping parameter φ is included. The irregular component hk is described

by an ARMA(p, q) process with parameters ϕi for i = 1, . . . , p and θi for

i = 1, . . . , q, and an error term εk which is assumed to be a Gaussian white

noise process with zero mean and constant variance σ2. The smoothing

parameters, given by αd, βd, γd,i for i = 1, . . . , P , determine the extent of the

effect of the irregular component on the states lk, bk, s
(i)
k respectively. The

equations for the models are

d
(ω)
k =


d
(ω)
k −1

ω
, ω 6= 0,

log (dk) , ω = 0,
(C.1)

d
(ω)
k = lk−1 + φbk−1 +

∑P
i=1 s

(i)
k−mi + hk, (C.2)

lk = lk−1 + φbk−1 + αdhk, (C.3)

bk = φbk−1 + βdhk, (C.4)

s
(i)
k = s

(i)
k−mi + γd,ihk, (C.5)

hk =
∑p

i=1 ϕihk−i +
∑q

i=1 θiεk−i + εk. (C.6)
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The above model receives the notation BATS(p, q,m1,m2, . . . ,mP ) and it

can be expressed in the following state-space form:

d
(ω)
k = wTxd,k−1 + εk, (C.7)

xd,k = Fxd,k−1 + gεk, (C.8)

where wT is a row vector, g is a column vector, F is a square matrix and

xd,k is the unobserved demand state vector at time k. The details on how

these vectors and matrices are defined can be found in [38].

Demand uncertainty propagation: Let ϑ be a vector of all parameters

to be estimated in the model (C.1-C.6), including the smoothing parameters

and the Box-Cox parameter. Moreover, let k be the actual length of a water

demand time series, n be the length of the desired demand forecast horizon,

and dk+n|k ,
{
dk+n|xd,k,ϑ

}
be a random variable denoting future values of

a demand series given the model, its calibrated parameters and the demand

state vector at the last observation xd,k. A Gaussian assumption for the

errors implies that d(ω)
k+n|k is also normally distributed, with mean d̄ (ω)

k+n|k and

variance Σ
(ω)
d,k+n|k given by

d̄
(ω)
k+n|k = wTFn−1xd,k, (C.9)

Σ
(ω)
d,k+n|k =

 σ2 if n = 1,

σ2
[
1 +

∑n−1
j=1 (wTFj−1g)2

]
if n ≥ 2.

(C.10)

As demonstrated in [38], point forecasts and forecast intervals are obtained

using the inverse Box-Cox transformation.

Taking the nd time series of demands in the Barcelona DWN, and comput-

ing the inverse transformation of (C.9) and (C.10) applied to each of them,
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it is possible to define the elements that complete the stochastic properties

of the DWN model as follows:

d̄k+n|k ,
[
d̄1,k+n|k, . . . , d̄nd,k+n|k

]T
, (C.11)

Σd,k+n|k , diag
(
Σd(1),k+n|k, . . . ,Σd(nd),k+n|k

)
, ∀n ∈ NHp

1 . (C.12)
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