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Abstract— This paper proposes an interval observer-based
sensor fault detection and isolation (FDI) approach for the
closed-loop systems. In this proposed approach, residuals are
defined in such a way that their components are independent
of each other at the time instant after fault occurrence, namely
kf + 1, where kf denotes the fault occurrence time instant. In
this way, it is guaranteed that at kf + 1 the changes in each
component of the residuals are only related to the fault in the
corresponding sensor. By detecting the threshold violation of
the corresponding residual interval components, the proposed
method can detect and isolate sensor faults at that time instant.
At the end of this paper, a numerical example is used to present
the effectiveness of the approach.

I. INTRODUCTION

Interval observers, appeared in the last decade, are a well-
known set-theoretic techniques for robust state estimation.
Generally, they can estimate bounds for the system states
and outputs enclosing the real ones at each time instant. This
property is widely used for fault detection (FD) [2], [5].

The principle of the interval observer-based FD approach
consists in propagating the effect of uncertainties by system
mathematical models to generate interval vectors for real
states and outputs at each time instant. Provided that the
system is healthy, the current outputs should be inside their
interval vectors estimated by the interval observer in real
time. When the system is affected by a fault, the fault is
indicated as long as the measured outputs take values out of
their estimated interval vector.

However, regarding fault isolation (FI), less work has
been done for the interval observer-based approach so far.
In practical applications, in order to isolate faults, interval
observers always turn to other techniques such as the fault
signature matrix. In the previous work [6], we proposed to
use a bank of interval observers for sensor FI. However, the
FDI conditions needed were conservative and the computa-
tional resources required were quite demanding. Thus, the
main motivation of this paper is to implement the interval
observer-based FD and FI without the help of other existing
FI techniques and improve the previous interval observer-
based sensor FDI strategy proposed in [6]. Additionally,
considering the balance among the expressional compact-
ness, computational precision and complexity, zonotopes are

F. Xu, V. Puig and C. Ocampo-Martinez are with the Institut de
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chosen as the containment set for uncertainties to propagate
their effect on interval observers, referring to [1] for the
applications of zonotopes in state estimation.

In this paper, the proposed interval observer-based sensor
FDI is different from the classical FD use of interval ob-
servers. Thus, in order to target the core of the problem, the
proposed approach is based on a closed-loop system scheme
presented in Figure 1, which encompasses a linear discrete
time-invariant plant, a reference system and a nominal inter-
val observer. By specifically designing the residuals for the
closed-loop system shown in Figure 1, faults in the sensor
outputs can be effectively detected and isolated.
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Fig. 1. Interval observer-based sensor FDI scheme

The main contribution of this paper is twofold. First,
the proposed technique uses interval observers in a novel
way to detect and isolate faults by testing whether residual
intervals violate their bounds instead of detecting whether
the zero vector is included by the residual intervals at each
time instant. Second, the approach proposes a simple way
to extend the use of interval observers into sensor FI and
performs sensor FD and FI at the same time instant, which
is also the advantage of the proposed method.

This paper is organized as follows. Section II introduces
the notion of zonotopes and invariant sets. Section III in-
troduces the closed-loop system shown in Figure 1. Section
IV introduces the classical interval observer-based approach
and the proposed interval observer-based FDI approach. In
Section V, the type of faults that the proposed technique can
detect and isolate are analyzed. In Section VI, a numerical
example is used to illustrate the results. In Section VII, some
conclusions are drawn.

II. PRELIMINARIES

In this paper, the notation ⊕ represents the Minkowski
sum of two sets, |.| denotes the elementwise absolute value,
Br is a r-dimensional unitary box and the inequalities are
interpreted elementwise.



A. Zonotopes

According to [1] and [2], several definitions and properties
related to zonotopes are introduced as follows.

Definition 2.1: The Minkowski sum of two sets A and B
is defined by A⊕B = {a+ b : a ∈ A, b ∈ B}. O

Definition 2.2: Given a vector p ∈ Rn and a matrix
G ∈ Rn×m(n ≤ m), a zonotope X with order m is defined
as X = p⊕GBm1. O

Definition 2.3: The interval hull �X of a zonotope
X = p ⊕ GBr ⊂ Rn is the smallest interval box that
contains X , i.e., �X = {x : |xi − pi| ≤‖ Gi ‖1}, where Gi
is the i-th row of G, and xi and pi are the i-th components
of x and p, respectively. O

Property 2.1: Given zonotopes X1 = p1 ⊕ G1B
r1 ⊂ Rn

and X2 = p2 ⊕ G2B
r2 ⊂ Rn, the Minkowski sum of them

is X1 ⊕X2 = {p1 + p2} ⊕ [G1 G2]Br1+r2 . �
Property 2.2: Given a zonotope X = p⊕GBr ⊂ Rn and

a compatible matrix K, the image of the zonotope by the
matrix is computed as KX = Kp⊕KGBr. �

Property 2.3: Given a zonotope X = p ⊕ GBr ⊂ Rn
and an integer s (with n < s < r), denote by Ĝ the matrix
resulting from the recording of the columns of the matrix G
in decreasing Euclidean norm. X ⊆ p⊕ [ĜT Q]Bs where
ĜT is obtained from the first s − n columns of matrix Ĝ
and Q ∈ Rn×n is a diagonal matrix whose elements satisfy
Qii =

∑r
j=s−n+1 | Ĝij |, i = 1, . . . , n. �

B. Invariant Sets

The linear discrete time-invariant dynamics

xk+1 = A◦xk +B◦δk (1)

is used to present the invariant set notions, where A◦ and B◦
are constant matrices and A◦ is a Schur matrix, δk belongs
to ∆ = {δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ constant.

Definition 2.4: A set X ⊂ Rn is called a robust positively
invariant (RPI) set for (1) if and only if A◦X⊕B◦∆ ⊆ X .O

Definition 2.5: The minimal RPI (mRPI) set of (1) is
defined as a RPI set contained in any closed RPI set and
the mRPI set is unique and compact. O

Theorem 2.1: [4] Considering (1) and letting A◦ =
V ΛV −1 be the Jordan decomposition of A◦,

Φ(θ) ={x ∈ Rn :
∣∣V −1x

∣∣ ≤ (I − |Λ|)−1
∣∣V −1B◦

∣∣ δ̄
+ θ} ⊕ ξ◦

is RPI and attractive for the trajectories of (1), with θ any
(arbitrarily small) vector with positive components, where ξ◦

is the center of the set with ξ◦ = (I −A◦)−1B◦δ
◦, where I

is the compatible identity matrix.
1) For any θ, the set Φ(θ) is (positively) invariant, that

is, if x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.
2) Given θ ∈ Rn, θ > 0, and x0 ∈ Rn, there exists k∗ ≥ 0

such that xk ∈ Φ(θ) for all k ≥ k∗. H

1In this paper, p and G are called the center and segment matrix of the
zonotope, respectively.

Proposition 2.1: [4] Considering (1) and denoting X0 as
a RPI initial set of (1), each of the set iterations

Xj+1 = A◦Xj ⊕B◦∆, j ∈ N,

where j denotes the j-th element of the set sequence and N
represents the set of natural numbers, is a RPI approximation
of the mRPI set. Furthermore, as j tends to infinity, the set
sequence converges to the mRPI set. N

III. PLANT AND INTERVAL OBSERVERS

A. Plant and Reference System

The linear discrete time-invariant plant is modeled as

xk+1 = Axk +Buk + ωk, (2a)
yk = GiCxk + ηk, (2b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant
parameter matrices, xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are
states, inputs and outputs, respectively, ωk and ηk represent
system uncertainties in states and outputs (including distur-
bances, noises, offsets, etc), respectively, k denotes the k-th
discrete time instant and Gi (i ∈ I = {0, 1, · · · , N}) is a q×q
diagonal matrix modeling the sensor-fault situations, where
N denotes the number of considered sensor faults and G0,
the identity matrix, represents that all sensors are healthy2.

All diagonal elements of Gi belong to [0, 1], where 0
and 1 represent the complete outage and health of the
corresponding sensors, respectively, and a value in (0, 1)
denotes partial performance degradation of the corresponding
sensors. ωk and ηk are defined to belong to

W = {ωk ∈ Rn : |ωk − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn},
V = {ηk ∈ Rq : |ηk − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq},

where ωc, ηc, ω̄ and η̄ are constant vectors. W and V can
be also rewritten as zonotopes

W =ωc ⊕Hω̄B
n, (3)

V =ηc ⊕Hη̄B
q, (4)

where Hω̄ ∈ Rn×n and Hη̄ ∈ Rq×q are diagonal matrices
with the diagonal entries ω̄ and η̄, respectively.

As shown in Figure 1, a reference system is designed for
the system, whose dynamics is given by

xref
k+1 = Axref

k +Buref
k , (5a)

yref
k = Cxref

k . (5b)

Assumption 3.1: The reference inputs uref
k belong to

Uref = {uref
k ∈ Rp :

∣∣uref
k − ucref

∣∣ ≤ ūref, u
c
ref ∈ Rp, ūref ∈

Rp}, where ucref and ūref are constant and, Uref is rewritten
as a zonotope U = ucref ⊕HūrefBp, where Hūref ∈ Rp×p is a
diagonal matrix with diagonal entries from ūref. �

The control objective of closed-loop system is to asymp-
totically track the reference model outputs, i.e,

lim
k→∞

yk − yref
k → 0.

2The number of rows in C represents that of sensors installed in the
system (each row corresponds to a sensor) and the status of the i-th sensor
is modeled by the numeric value of the i-th diagonal element of G.



Thus, the control law is designed as

uk = uref
k −K(yk − yref

k ), (6)

where K is the feedback gain used to implement the control
objective3. According to (2), (5) and (6), the closed-loop
dynamics of the system are derived as

xk+1 =(A−BKGiC)xk +Buref
k +BKyref

k

−BKηk + ωk, (7a)
yk =GiCxk + ηk, (7b)

Assumption 3.2: The closed-loop system (7a) can be sta-
bilized by the feedback gain matrix K, i.e., A−BKGiC in
(7a) is a Schur matrix for all Gi. �

B. Interval Observers

According to [2] and (2), the nominal interval observer is
designed as

X̂k+1 =(A− LC)X̂k ⊕ {Buk} ⊕ {Lyk}
⊕ (−L)V ⊕W, (8a)

Ŷk =CX̂k ⊕ V, (8b)

where X̂k and Ŷk are estimated state and output zonotopes
at time instant k, respectively,

Assumption 3.3: The interval observer gain L is chosen
to ensure the contractiveness of the set mapping in (8). �

According to (8) and the properties of zonotopes, the
center x̂ck+1 and segment matrix Ĥx

k+1 of X̂k+1, and the
center ŷck and segment matrix Ĥy

k of Ŷk are computed as

x̂ck+1 = (A− LC)x̂ck +Buk + Lyk − Lηc + wc, (9a)

Ĥx
k+1 = [(A− LC)Ĥx

k − LHη̄ Hω̄], (9b)
ŷck = Cx̂ck + ηc, (9c)

Ĥy
k = [CĤx

k Hη̄]. (9d)

Assumption 3.4: The initial state of the plant is repre-
sented as x0, the initial zonotope of the nominal interval
observer is denoted as X̂0 and x0 ∈ X̂0 holds. �

C. Classical Interval Observer-based FD

Generally, the interval observer-based FD approach con-
sists in testing if the real outputs of system are consistent
with their corresponding predictions estimated by the interval
observer at each time instant

0 ∈ �Rk, (10)

where Rk denotes residual zonotope defined as

Rk = {yk} ⊕ (−Ŷk). (11)

Remark 3.1: The interval hull is computed by Defini-
tion 2.3 and the order of zonotopes predicted by the interval
observer is controlled by Property 2.3. ♦

3The feedback gain can be designed by different control techniques such
as pole placement or LQR.

In real-time testing, if (10) does not hold, it indicates that
a fault is detected at time instant k. Otherwise, the system
is still assumed to be in healthy situation.

One should note that, despite the interval observer-based
approach can detect faults in this classical way of defining
residuals as seen in (10), it is difficult to isolate faults by the
same residual definition.

Thus, in order to implement the interval observer-based
sensor FI, a novel way to define the residuals by turning
to a reference system is proposed in this paper. Based on
this novel residual definition, the interval observer-based
approach can be extended to the case of sensor FI. The
technical details will be elaborated in next sections.

Since interval vectors are computed by interval hulls
of zonotopes, for simplicity, the following discussions are
directly based on zonotopes.

IV. INTERVAL OBSERVER-BASED SENSOR FDI

A. Relevant Zonotopes

In order to define proper residuals for the proposed tech-
nique, one considers

X̃ ref
k ={xref

k } ⊕ (−X̂k)

={xref
k − x̂ck} ⊕ Ĥx

kB
sk , (12)

where sk denotes the order of X̂k and X̃ ref
k , and xref

k − x̂ck
and Ĥx

k are notated by x̃ck and H̃ x̃
k , respectively.

According to (5), (6), (9) and (12), the center x̃ck+1 and
segment matrix H̃ x̃

k+1 of X̃ ref
k+1 are derived as

x̃ck+1 =(A−BKC)x̃ck + (BK − L)GiCxk + (BK − L)ηk

− (BK − L)Cx̂ck + Lηc − ωc, (13a)

H̃ x̃
k+1 =Ĥx

k+1 = [(A− LC)Ĥx
k − LHη̄ Hω̄]. (13b)

In the healthy situation, i.e., Gi = G0 in (13), X̃ ref
k+1 is

denoted as X̃0,ref
k+1 , whose expression is transformed into

x̃0,c
k+1 =(A−BKC)x̃0,c

k + (BK − L)C(xk − x̂ck)

+ (BK − L)ηk + Lηc − ωc, (14a)

H̃0,x̃
k+1 =Ĥx

k+1 = [(A− LC)Ĥx
k − LHη̄ Hω̄], (14b)

where x̃0,c
k+1 and H̃0,x̃

k+1 are the center and segment matrix
of X̃0,ref

k+1 , respectively. In order to describe xk − x̂ck in the
second summand (14a), a signal ˜̃xck is defined as

˜̃xck = xk − x̂ck,

and in the healthy situation ˜̃xck is denoted as ˜̃x0,c
k . Further-

more, according to (2) and (9a), the dynamics of ˜̃x0,c
k is

derived as

˜̃x0,c
k+1 = (A− LC)˜̃x0,c

k − L(ηk − ηc) + (ωk − ωc). (15)

According to Theorem 2.1, Proposition 2.1 and the bounds
of ηk and ωk (W and V ), an invariant set of ˜̃x0,c

k described
in (15) can be computed, which is denoted as ˜̃X0. According
to (3) and (4), it is known that both W and V are zonotopes,
thus, ˜̃X0 is also a zonotope whose center and segment matrix



are notated as ˜̃x0,c and ˜̃H0,x, respectively. One should note
that the invariant set ˜̃X0 provides the bound for ˜̃x0,c

k when
the system is in the healthy functioning.

By substituting ˜̃X0 and V into (14a) to respectively
replace xk − x̂ck and ηk and using the zonotope operations,
one can obtain a bounding zonotope denoted as X̌0,ref

k+1 that
bounds X̃0,ref

k+1 . Furthermore, according to (14), the center
x̌0,c
k+1 and segment matrix Ȟ0,x̃

k+1 of X̌0,ref
k+1 are derived as

x̌0,c
k+1 =(A−BKC)x̌0,c

k + (BK − L)C ˜̃x0,c

+BKηc − ωc, (16a)

H̄0,x̃
k+1 =[(A−BKC)H̄0,x̃

k (BK − L)C ˜̃H0,x

(BK − L)Hη̄], (16b)

Ȟ0,x̃
k+1 =[H̄0,x̃

k+1 (A− LC)Ĥx
k − LHη̄ Hω̄], (16c)

Assumption 4.1: In the healthy functioning, the initial
zonotope X̃0,ref

0 of (14) and the initial zonotope X̌0,ref
0 of

(16) satisfy the condition that X̃0,ref
0 ⊆ X̌0,ref

0 . �
Remark 4.1: As long as Assumption 4.1 is satisfied and

the system is healthy, the inclusion X̃0,ref
k ⊆ X̌0,ref

k always
holds for k > 0. ♦

B. Proposed Interval Observer-based Sensor FDI

According to (13), it is shown that sensor faults impact
X̃ ref
k through the term (BK − L)GiCxk. In order to de-

couple the impact of different faults on different residual
components, one turns to the Moore-Penrose inverse.

Property 4.1: Given a matrix F ∈ Cm×n and its Moore-
Penrose inverse F+ ∈ Cn×m, it is concluded that
• FF+ = Im ⇔ rank(F ) = m;
• F+F = In ⇔ rank(F ) = n,

where Im and In denote the identity matrices with the
dimension m×m and n× n, respectively. �

In (13), it is known that BK − L is a n × q matrix
whose Moore-Penrose inverse is denoted as (BK − L)+

with the dimension q × n. In the structure of BK − L, it
is known that both K and L are adjustable matrices, i.e.,
designing flexibility, which are determined by the designers.
Thus, according to Property 4.1, K and L can be properly
selected such that rank(BK − L) = q holds.

Assumption 4.2: For the system (2), the number of sensors
are not larger than that of system states, i.e., q ≤ n. �

Remark 4.2: As long as Assumption 4.2 is satisfied, and
K and L ensure rank(BK − L) = q, according to Prop-
erty 4.1, one has

(BK − L)+(BK − L) = Iq, (17)

where Iq is the identity matrix with the dimension q × q. ♦
In virtue of the aforementioned discussions, the residual

for this proposed sensor FDI approach is defined as

Rk = (BK − L)+X̃ ref
k , (18)

where Rk denotes the residual zonotope at time instant k,
whose center and segment matrix are denoted as rck and
Hr
k , respectively. Furthermore, according to (13) and (17),

the center rck+1 and segment matrix Hr
k+1 of the residual

zonotope Rk+1 at time instant k + 1 are derived as

rck+1 =(BK − L)+(A−BKC)x̃ck +GiCxk − Cx̂ck + ηk

+ (BK − L)+Lηc − (BK − L)+ωc, (19a)

Hr
k+1 =[(BK − L)+(A− LC)Ĥx

k − (BK − L)+LHη̄

(BK − L)+Hω̄], (19b)

It is seen that sensor faults do not impact the segment
matrix (or size4) of the residual zonotopes as described in
(19b) but affect the center as described in (19a) through the
term GiCxk.

It is assumed that a fault in the i-th sensor occurs at time
instant k. According to the structure of GiCxk in (19a), at
k the fault only impacts the i-th element of GiCxk and does
not affect its other elements. Further, it means that the fault
effect on the i-th element of GiCxk at k will be transmitted
into the i-th element of rck+1 at time instant k+1 but will not
affect any of the other elements of rck+1. It implies that at k+
1 only the i-th component of Rk+1 contains the information
of the fault in the i-th sensor and the other components of
Rk+1 will not be affected by the fault, which provides a way
to detect and isolate the sensor fault at the same time instant.

In order to detect and isolate sensor faults accurately, a
threshold for the residual zonotopes Rk should be generated.
Under Assumption 4.1 and according to (16), it is known
that X̌0,ref

k+1 always bounds X̃0,ref
k+1 , thus, the threshold of Rk

is defined as

Řk = (BK − L)+X̌0,ref
k+1 . (20)

When the system is healthy, Řk computed by (20) will
always bound Rk computed by (18), thus, the detection and
isolation of sensor faults consist in testing the relationships:

�Rik ⊂ �Řik, i = 1, 2, · · · , q, (21)

where �Rik and �Řik represent the i-th component of �Rk
and �Řk, respectively.

In practical testing, if the i-th relationship in (21) cor-
responding to the i-th sensor is violated, the i-th sensor is
marked as faulty at this time instant, otherwise the sensor
is still assumed to be healthy. In order to clarify the pro-
posed sensor FDI approach, a procedure is described by
Algorithm 1.

V. DETECTABLE AND ISOLABLE FAULTS

According to [3], for interval observers, faults are clas-
sified into three types: non-detectable faults, permanently
detected faults and non-permanently detected faults. This
fault classification is done according to the properties of the
faults. In the proposed sensor FDI approach, the detection
and isolation of faults are done at the same time whenever the
corresponding elementwise relationships in (21) are violated,
where similarly whether or not (21) is violated relies on the
properties of the faults.

4The size of a zonotope corresponds to of its interval hull width.



Algorithm 1: Sensor FDI algorithm

Require: X̂0 and sensor index i ∈ I = {1, 2, . . . , q};
Ensure: faulty sensor index set f ;

1: Initialize (8) and (16);
2: At time instant k: fault ← FALSE and f = Ø;
3: while fault 6= TRUE do
4: k ← k + 1;
5: Obtain xref

k , X̂k and X̌0,ref
k ;

6: Compute Rk and Řk;
7: for i ∈ I do
8: if �Rik 6⊆ �Řik then
9: f ← f ∪ {i};

10: end if
11: end for
12: if f 6= Ø then
13: fault ← TRUE;
14: end if
15: end while
16: return f;

According to (19a), this technique can guarantee reli-
able FI in case that the faults violate their corresponding
elementwise relationships one step after their occurrence,
i.e., at time instant kf + 1. However, after more than one
step, (i.e., k > kf + 1) all the components of residual
zonotopes will be affected by the faults that occur in those
sensors (as seen in (19a)). This implies that the effect of the
faults on the components of residual zonotopes can not be
completely decoupled from each other, i.e, a fault appearing
in one sensor may result in the violation of the components
corresponding to the other sensors. In light of this point,
when using this method to detect and isolate faults, one faces
three different possibilities:
• a fault occurs but Algorithm 1 can not detect the

violation of (21). It means the fault is not detectable
or isolable by the algorithm. This case is related to the
fault sensitivity of interval observers and is inherent to
the interval observer-based approach;

• a fault occurs and the elementwise relationship corre-
sponding to the fault in (21) is violated one step after the
fault occurrence. In this case, the fault can be detected
and isolated accurately. This type of faults is the main
target Algorithm 1 wants to detect and isolate;

• a fault occurs and the elementwise relationship corre-
sponding to the fault in (21) is violated more than one
step after the fault occurrence. In this case, since the
accurate FI condition aforementioned does not exist,
Algorithm 1 can only isolate a set of sensors where the
faulty sensor is included. However, the set of sensors
perhaps also include some healthy sensors.

Remark 5.1: Regarding the third type of faults, it is still
possible for Algorithm 1 to accurately isolate the faults but
it depends on the fault properties. The worst case for the
isolation of these faults is that Algorithm 1 considers that all
the sensors are faulty, which implies that Algorithm 1 may

not be able to accurately isolate the faulty sensors, but at
least it can reliably isolate all of them. ♦

According to the discussions, it is known that the proposed
method can accurately and reliably isolate the second type of
faults, and reliably but conservatively isolate the third type
of faults. In order to improve its effectiveness and reliability,
in practical applications one takes the following measures:
• only trust the earliest diagnostic alerts provided by

Algorithm 1 and ignore all its diagnostic results at the
following time instants,

• when one and only one elementwise relationship in (21)
is violated, Algorithm 1 decides that the corresponding
sensor is faulty,

• when more than one elementwise relationships in (21)
are violated, Algorithm 1 decides that all the corre-
sponding sensors are faulty, despite some of them may
be still healthy.

Note that the sensor faults generally affect the system
outputs quickly after their occurrence. Thus, in general, this
proposed technique should be useful for sensor FDI.

VI. NUMERICAL EXAMPLE

A numerical example with two sensors is considered,
whose dynamics are written as in (2) and i ∈ {0, 1, 2} is the
index of the sensor situations, where 0 represent the health
situation.

The nominal interval observer is designed as (8) and a
reference system is designed as (5). Besides, the residual
zonotope and its threshold are defined as (18) and (20). The
parameters of the numerical example are given as
• model parameters:

A =

[
0.8667 −1.2343
0.01 1

]
,B =

[
0.01 1

1 0.01

]
,

C =

[
0.5 0
0 1.5

]
,

• process disturbances: w̄ =

[
0.1
0.1

]
, wc =

[
0
0

]
,

• measurement noises: η̄ =

[
0.05
0.05

]
, ηc =

[
0.15
0.15

]
,

• observer gain: L =

[
0.3334 −0.8229
0.02 0.1333

]
,

• feedback gain: K =

[
0.0107 0.3111
1.0248 −0.8263

]
,

• fault magnitude: G1 =

[
0.8 0
0 1

]
, G2 =

[
1 0
0 0.5

]
,

• reference input (sinusoidal signal) set:

Uref =

[
2
2

]
⊕
[
0.2 0
0 0.2

]
B2,

• initial conditions:

x0 =

[
0
0

]
, X̂0 =

[
0
0

]
⊕
[
0.5 0 0
0 0 0.5

]
B3.

In the simulation, two faulty situations under the fault
1 and fault 2 are separately simulated. In both cases, the



scenarios are set as: for the fault in the first or second sensor,
from time instant 1 to 6 the system is healthy while at time
instant 7 the first or second fault occurs.
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Fig. 2. FDI of the fault in the first sensor
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Fig. 3. FDI of the fault in the second sensor

Correspondingly, the FDI results of the faults in the two
sensors are illustrated in Figure 2 and Figure 3. For the
fault in the first sensor, comparing the two pictures in
Figure 2, one can see that the fault can be accurately isolated.

Similarly, for the fault in the second sensor, comparing the
two pictures in Figure 3, it is clearly seen that one step
after the fault occurrence, the second component of the
residual interval vector violates its threshold while the first
component still respects its threshold, which implies that the
fault is detected and isolated accurately and reliably.

However, one should emphasize that in Figure 3 more
than one step after fault occurrence, the first component
corresponding to the healthy sensor also violates its thresh-
old. It is shown that the simulation results in Figure 2 and
Figure 3 are consistent with the theoretical analysis presented
in this paper, which presents the effectiveness of the proposed
sensor FDI approach.

VII. CONCLUSIONS

The paper proposes an interval observer-based sensor FDI
approach, which defines the residuals in a novel way different
from the classical residual definition of the interval observer-
based FD approach. Each component of the residuals only
corresponds to the fault in the corresponding sensor, which
allows the proposed approach to detect and isolate sensor
faults. The contribution of this paper mainly consists in that
the proposed technique extends interval observers for sensor
FI and can isolate faults one-step after fault occurrence. The
future research is to define the isolable faults mathematically
and establish guaranteed FDI conditions for this method.
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