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Abstract— In this paper, the relationship between two set-
theoretic fault detection (FD) approaches, the interval observer-
based and the invariant set-based approaches, is investigated. In
FD, interval observers monitor the system dynamic behaviorin
real time and generates adaptive intervals for system outputs.
Invariant sets focus more on steady state behavior of the system
rather than the transient behavior. This paper discusses these
two approaches, presents the relationship between them and
compares them in the FD task. At the end, a numerical example
is used to illustrate the relation between these two approaches.

I. I NTRODUCTION

Interval observer-based fault detection (FD) consists in
generating adaptive intervals for system outputs by consid-
ering the bounds of uncertainties, propagating their effect
through the mathematical models of the system and testing
the consistency between the predicted output intervals and
the corresponding measurements of outputs [4]–[6], [9], [10].

Another set-theoretic fault detection and isolation (FDI)
approach is to consider invariant sets. As known, a system
can switch among several modes (a healthy one and at least
a faulty one). For each mode, an invariant set for the residual
can be obtained [8], [11]. Once the system operates in steady
state, it is possible to confine the residual to one of these
invariant sets and, as long as all the invariant sets are disjoint,
FDI can be performed. Most importantly, in the case that the
invariant sets intersect, FD can still be done whenever the
residual exits its healthy invariant set [7], [8], [12], [13].

So far, the FI application of interval observers has been
blank in the scientific community, so the discussions of
this paper are restricted in FD. The main objective of this
paper is to establish the relationship between these two FD
approaches, analyze their relative strengths and weakness
and explore the advantages of combining both approaches
to implement more efficient fault diagnosis mechanisms.

The main contribution of this paper is twofold. First, it
presents the relationship between the two FD approaches.
Second, it analyzes and compares the relative advantages and
disadvantages of both approaches. It is considered that both
approaches have complementary roles during the transient
and steady state of the system, respectively.
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Taking into account the balance among the expressional
compactness, computational precision and complexity, this
paper will use zonotopes to represent and propagate uncer-
tainty in system states and outputs [1]–[3].

Section II introduces the notion of zonotopes and invariant
sets. Section III reviews the mathematical formulations ofthe
two set theoretic FD methods. The theoretical relationship
between both approaches is derived in Section IV. In Section
V, the comparison of the two methods is discussed. In Section
VI, a numerical example is used to comment the relationship.
Section VII draws the conclusions.

II. PRELIMINARIES

The notation⊕ represents theMinkowski sum, |.| denotes
the elementwiseabsolute value, B

r is a r-dimensional
unitary box and the inequalities are interpreted elementwise.

A. Zonotopes

According to [1], [3] and [4], several definitions and
properties related to zonotopes are introduced as follows.

Definition 2.1: The Minkowski sum of two sets A and B
is defined byA⊕B = {a+ b : a ∈ A, b ∈ B}. ▽

Definition 2.2: Given a vectorp ∈ R
n and a matrix

G ∈ R
n×m(n ≤ m), a zonotopeX with orderm is defined

asX = p⊕GB
m, wherep andG are called the center and

segment matrix of the zonotope, respectively. ▽

Definition 2.3: The interval hull �X of a zonotope
X = p ⊕ GB

r ⊂ R
n is the smallest interval box that

containsX , i.e.,�X = {x : |xi − pi| ≤‖ Gi ‖1}, whereGi

is the i-th row of G, andxi andpi are thei-th components
of x andp, respectively. ▽

Property 2.1: Given zonotopesX1 = p1 ⊕G1B
r1 ⊂ R

n

andX2 = p2 ⊕ G2B
r2 ⊂ R

n, the Minkowski sumof them
is X1 ⊕X2 = {p1 + p2} ⊕ [G1 G2]B

r1+r2 . �

Property 2.2: Given a zonotopeX = p⊕GB
r ⊂ R

n and
a compatible matrixK, KX = Kp⊕KGB

r holds. �

Property 2.3: (see [3]) Given a zonotopeX = p⊕GB
r ⊂

R
n and an integers (with n < s < r), denote byĜ the ma-

trix resulting from the recording of the columns of the matrix
G in decreasing Euclidean norm.X ⊆ p⊕[ĜT Q]Bs where
ĜT is obtained from the firsts − n columns of matrixĜ
andQ ∈ R

n×n is a diagonal matrix whose elements satisfy
Qii =

∑r

j=s−n+1
| Ĝij |, i = 1, . . . , n. �

B. Invariant Sets

The linear discrete time-invariant dynamics

xk+1 = A◦xk +B◦δk (1)



is used to present the invariant set notions, whereA◦ andB◦

are constant matrices andA◦ is a Schur matrix,δk belongs
to ∆ = {δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ constant.

Definition 2.4: A setX ⊂ R
n is called arobust positively

invariant (RPI)set for (1) if and only ifA◦X⊕B◦∆ ⊆ X .▽
Definition 2.5: The minimal RPI (mRPI)set of (1) is

defined as aRPI set contained in any closedRPI set and
the mRPI set is unique and compact. ▽

Theorem 2.1:(see [8]) Considering (1) and lettingA◦ =
V ΛV −1 be the Jordan decomposition ofA◦,

Φ(θ) ={x ∈ R
n :

∣

∣V −1x
∣

∣ ≤ (I − |Λ|)−1
∣

∣V −1B◦

∣

∣ δ̄

+ θ} ⊕ ξ◦,

is RPI and attractive for the trajectories of (1), withθ any
(arbitrarily small) vector with positive components, where ξ◦

is the center of the set withξ◦ = (I −A◦)
−1B◦δ

◦, whereI
is the compatible identity matrix.

1) For anyθ, the setΦ(θ) is (positively) invariant, that
is, if x0 ∈ Φ(θ), thenxk ∈ Φ(θ) for all k ≥ 0.

2) Givenθ ∈ R
n, θ > 0, andx0 ∈ R

n, there existsk∗ ≥ 0
such thatxk ∈ Φ(θ) for all k ≥ k∗. H

Proposition 2.1: (see [8]) Considering (1) and denoting
X0 as aRPI initial set of (1), each of the set iterations

Xj+1 = A◦Xj ⊕B◦∆, j ∈ N,

wherej denotes thej-th element of the set sequence andN

represents the set of natural numbers, is aRPI approximation
of the mRPI set. Furthermore, asj tends to infinity, the set
sequence converges to themRPI set. N

III. SET THEORETICMETHODS IN FD

A. Dynamical Models

The linear discrete time-invariant plant is modeled as

xk+1 = Axk +Buk + Eωk, (2a)

yk = Cxk + ηk, (2b)

whereA ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n andE ∈ R

n×r are
constant matrices,xk ∈ R

n, uk ∈ R
p andyk ∈ R

q are states,
inputs and outputs, respectively,ωk ∈ W and ηk ∈ V are
bounded disturbances and noises, respectively, andk denotes
the k-th discrete time instant.W andV are defined by

W = {ωk ∈ R
r : |ωk − ωc| ≤ ω̄, ωc ∈ R

r, ω̄ ∈ R
r}, (3)

V = {ηk ∈ R
q : |ηk − ηc| ≤ η̄, ηc ∈ R

q, η̄ ∈ R
q}, (4)

where ωc, ηc, ω̄ and η̄ are constant vectors. Due to the
structure shown in (3) and (4), the two sets are rewritten
as two zonotopes

W = ωc ⊕Hω̄B
r, (5)

V = ηc ⊕Hη̄B
q, (6)

where Hω̄ ∈ R
r×r and Hη̄ ∈ R

q×q are two diagonal
matrices with the diagonal entries from̄ω andη̄, respectively.

Remark 3.1:For the sake of discussional generality, the
centers ofW andV are not restricted to be at the origin.♦

B. Interval Observer-based FD

The plant (2) is monitored by a linear Luenberger interval
observer. The set-based form of the interval observer, based
on the nominal model of the plant, is designed as

X̂k+1 =(A− LC)X̂k ⊕ {Buk} ⊕ {Lyk}

⊕ (−L)V ⊕ EW, (7a)

Ŷk =CX̂k ⊕ V, (7b)

where X̂k and Ŷk are real-time predicted state and output
zonotopes at time instantk, respectively.

Assumption 3.1:The gain matrixL is chosen to assure
the set-mapping contractiveness of the interval observer and
the avoidance ofthe wrapping effect[6]. �

According to (7), the center̂xc
k+1

and segment matrix
Ĥx

k+1
of X̂k+1, and the center̂yck and segment matrix̂Hy

k

of Ŷk are computed as

x̂c
k+1 = (A− LC)x̂c

k +Buk + Lyk − Lηc + Ewc, (8a)

Ĥx
k+1 = [(A− LC)Ĥx

k − LHη̄ EHω̄], (8b)

ŷck = Cx̂c
k + ηc, (8c)

Ĥ
y
k = [CĤx

k Hη̄]. (8d)

Assumption 3.2:The initial state of the plant is denoted as
x0 andx0 belongs to the initial zonotopêX0 = x̂c

0⊕ Ĥ0B
s0

of the interval observer. �

In (8), ask increases, the order of segment matrices of
zonotopes grows dramatically. Thus, Property 2.3 is used to
reduce the order of̂Hx

k+1
. Besides, residual zonotopes of the

interval observer-based FD approach are defined as

Rio
k ={yk} ⊕ (−Ŷk)

={Cxk + ηk} ⊕ {(−CX̂k)⊕ (−V )}

=C{{xk} ⊕ (−X̂k)} ⊕ {ηk} ⊕ (−V ). (9)

According to [6], the interval observer-based FD consists
in checking if

0 ∈ �Rio
k (10)

is violated, where0 is the zero vector. Thus, if (10) is vio-
lated, it means that a fault occurs. Otherwise, it is considered
that the system is still in the healthy functioning.

C. Invariant Set-based FD

According to the invariant set-based approach [12], [13],
a Luenberger observer for (2) is designed as

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), (11a)

ŷk = Cx̂k. (11b)

and the residual for the invariant set-based FD is defined as

risk = yk − ŷk

= C(xk − x̂k) + ηk, (12)

wherexk − x̂k is the state estimation error notated asx̃k.
Considering (2) and (11), the dynamics ofx̃k is derived as

x̃k+1 = (A− LC)x̃k − Lηk + Eωk. (13)



Remark 3.2:For comparative convenience, the observer
gain of (11) is chosen to be equal to that of (7) and the
observer contractiveness is assured by Assumption 3.1.♦

According to Theorem 2.1 and Proposition 2.1, a RPI set
is constructed for (13). The resultant RPI set is denoted as
Φx̃ and the corresponding residual set is computed as

Ris = CΦx̃ ⊕ V. (14)

Wheneverx̃k is insideΦx̃, risk is insideRis. Thus, the
invariant set-based FD is to test whether the residual (12) is
located inside its healthy set (14) in real time. If the residual
exits its healthy invariant set, it indicates that a fault occurs.
Otherwise, it is assumed that the system is still healthy.

Since the computation of interval vectors is based on the
interval hull of zonotopes, in the sequel and for simplicity,
all the discussions are directly based on zonotopes.

IV. T HEORETICAL RELATIONSHIP

The relationship between the two FD approaches is derived
in this section. To the best of the authors’ knowledge, this
type of analysis is not available in the literature.

A. Bounds of Interval Observers

In order to describe residual zonotopes (9), a zonotope

X̃k ={xk} ⊕ (−X̂k)

=(xk − x̂c
k)⊕ Ĥx

kB
sk (15)

is defined, whereX̂k = x̂c
k ⊕ ĤkB

sk . By using x̃c
k andH̃k

to characterizexk− x̂c
k andĤx

k , respectively,X̃k is rewritten
as X̃k = x̃c

k ⊕ H̃kB
sk . Taking into account (2a), (8a) and

(8b), the center and segment matrix ofX̃k+1 are derived as

x̃c
k+1 = (A− LC)x̃c

k − L(ηk − ηc) + E(ωk − ωc), (16a)

H̃k+1 = Ĥx
k+1 = [(A− LC)Ĥx

k − LHη̄ EHω̄ ]. (16b)

According to Property 2.1 and Property 2.2, an equivalent
zonotope-based form of (16) is deduced as

X̃k+1 =(A− LC)X̃k ⊕ (−L)[(ηk − ηc)⊕Hη̄B
q]

⊕ E[(ωk − ωc)⊕Hω̄B
r]. (17)

According to (15), the left side of (17) is expressed as

X̃k+1 =x̃c
k+1 ⊕ H̃k+1B

sk+1

=(xk+1 − x̂c
k+1)⊕ Ĥx

k+1B
sk+1

=xk+1 ⊕ [(−x̂c
k+1)⊕ Ĥx

k+1B
sk+1 ], (18)

while the right side of (17) can be rewritten as

X̃k+1 =(A− LC)[(xk − x̂c
k)⊕ Ĥx

kB
sk ]⊕ (−L)[(ηk − ηc)

⊕Hη̄B
q]⊕ E[(ωk − ωc)⊕Hω̄B

r]

=(A− LC)xk ⊕ (A− LC)[(−x̂c
k)⊕ Ĥx

kB
sk ]

⊕ (−L)ηk ⊕ (−L)[(−ηc)⊕Hη̄B
q]

⊕ Eωk ⊕ E[(−ωc)⊕Hω̄B
r]. (19)

When (7) predicts state and output zonotopes, one only
uses the bounds of disturbances and noises. Thus, one uses
ω̌k ∈ W andη̌k ∈ V to describeW andV appearing in (7),

respectively. Thus, one has that (18) and (19) correspond
to xk+1 − x̂k+1 and (A − LC)(xk − x̂k) − Lηk + Eωk +
Lη̌k−Eω̌k, respectively. Finally, by usinğxk to characterize
xk − x̂k, one obtains the corresponding dynamics of (17)1

x̆k+1 = (A− LC)x̆k − Lηk + Eωk + Lη̌k − Eω̌k. (20)

UsingW andV to replaceω̌k andωk, and η̌k andηk in
(20), a set-based form of (20) is obtained as

X̆k+1 = (A−LC)X̆k⊕(−L)V⊕EW⊕LV⊕(−E)W, (21)

According to (21) and zonotope operations, the center
x̆c
k+1

and segment matrix̆Hk+1 of X̆k+1 are derived as

x̆c
k+1 =(A− LC)x̆c

k, (22a)

H̆k+1 =[(A− LC)H̆k − LHη̄ EHω̄ LHη̄ − EHω̄].
(22b)

By comparing (17) and (21), it is shown that zonotopes
predicted by (21) bound those predicted by (17) at each time
instant, as long as̃X0 ⊆ X̆0 holds.

Finally, according to (9) and (21), zonotopes bounding
residual zonotopes are derived as

R̆io
k = CX̆k ⊕ V ⊕ (−V ). (23)

B. Relationship in Terms of Residuals

1) Relationship of Intermediate Sets:A RPI set of (13)
can be constructed by Theorem 2.1, which is denoted asΦx̃

0

with centerξc0. By usingΦx̃
0 as an initial set according to

Proposition 2.1, another squeezed RPI set with arbitrarily
expected precision to the mRPI set of (13) is obtained by

Φx̃
j+1 = (A− LC)Φx̃

j ⊕ (−L)V ⊕ EW, j ∈ N, (24)

wherej represents thej-th element of this set sequence.
SinceW and V are zonotopes, the construction ofΦx̃

0

implies that it is also a zonotope. Thus,Φx̃
j+1 in (24) can be

unfolded into a similar form with (16), with centerξcj+1 and
segment matrixH x̃

j+1, where

ξcj+1 =(A− LC)ξcj − Lηc + Eωc, (25a)

H x̃
j+1 =[(A− LC)H x̃

j − LHη̄ EHω̄ ]. (25b)

According to Proposition 2.1, asj tends to infinity, the set
sequence (24) converges to the mRPI set of (13), denoted as
Φx̃

∞
with centerξc

∞
. Furthermore, according to (16), (22)

and (25), ask andj tend to infinity, one has

x̃c
∞

=[I − (A− LC)]−1[(Eω∞ − Lη∞)

− (Eωc − Lηc)], (26a)

x̆c
∞

=0, (26b)

ξc
∞

=[I − (A− LC)]−1(Eωc − Lηc), (26c)

‖ H̃∞i
‖1= ‖ H x̃

∞i
‖1≤‖ H̆∞i

‖1, (26d)

where i represents thei-th row of a matrix andω∞ ∈ W

andη∞ ∈ V .

1
xk − x̂k is different fromxk − x̂k in (12). The former corresponds to

interval observers while the latter is from invariant sets.In this paper,x̆k

and x̃k are used to distinguish them.



According to (26), the centers of̃X∞ andΦx̃
∞

have the
following mathematical relationship:

x̃c
∞

+ ξc
∞

= [I − (A− LC)]−1(Eω∞ − Lη∞),

where x̃c
∞

+ ξc
∞

are bounded. It is seen that in (26d) the
size2 of X̃∞ andΦx̃

∞
are the same and both are smaller than

that ofX̆∞. Considering (26a), (26b) and (26d),X̃∞ has the
same size but generally different centers withΦx̃

∞
.

2) Relationship based on Residuals:In the interval
observer-based FD, residual zonotopes defined in (9) can be
rewritten as

Rio
k = CX̃k ⊕ {ηk} ⊕ (−V ), (27)

whereRio
k are always bounded by̆Rio

k in (23), as long as
Rio

0 ⊆ R̆io
0 . According to (27), the centerrio,ck and segment

matrix Hio
k of Rio

k have the following expressions:

r
io,c
k = Cx̃c

k + (ηk − ηc), (28a)

Hio
k = [CĤx

k Hη̄]. (28b)

In the invariant set-based FD, substituting (24) and (25)
into (14), the healthy residual setRis

j is obtained as

Ris
j =CΦx̃

j ⊕ V, (29)

where j denotes the number of iterative steps indicated in
Proposition 2.1 instead of the time instant. Similarly, the
centerris,cj and segment matrixHis

j of Ris
j are derived as

r
is,c
j =Cξcj + ηc, (30a)

His
j =[CH x̃

j Hη̄]. (30b)

According to (26), (28b) and (30b), ask and j tend to
infinity, the size ofRio

k converges to that of the smallest
residual setRis

∞
corresponding to the mRPI setΦx̃

∞
. The

centers ofRio
∞

andRis
∞

are generally different but have a
mathematical relationship:

rio,c
∞

+ ris,c
∞

= C[In − (A− LC)]−1(Eω∞ − Lη∞) + η∞,

where it is known thatrio,c
∞

+ ris,c
∞

is bounded.
This implies that, ask tends to infinity,Rio

∞
will be a

set that has the same size but generally different center (as
indicated by (28) and (30)) withRis

∞
.

In the previous section, it is shown that residual zonotopes
predicted by the interval observer have bounding zonotopes,
i.e.,Rio

k ⊆ R̆io
k . However, one can not assure that at infinity

Ris
∞

is bounded byR̆io
∞

. But, according to (26a) and (26b),
a condition such thatRis

∞
⊆ R̆io

∞
is given as

2(Eωc − Lηc) ∈ EW ⊕ L(−V ). (31)

2In this paper, the size of a zonotope corresponds to the widthof its
interval hull.

C. Summarizing the Discussions

1) Summarizing the Relationship:Based on the residual
form (9) and (12), the mathematical relationship between
both FD approaches is briefly summarized as follows.

• The FD principle of both approaches is similar. In the
invariant set-based approach, the healthy invariant set is
fixed and determined offline but the residual is real-time
obtained, while in the interval observer-based approach
0 is fixed but residual zonotopes are computed online.

• As k tends to infinity, the size of residual zonotopes
predicted by the interval observer converges to that of
the smallest healthy residual setRis

∞
.

• The center ofRio
∞

has a mathematical relationship with
that ofRis

∞
.

• Rio
k is always bounded by̆Rio

k and, under the condition
(31), Ris

∞
is also bounded by̆Rio

∞
.

2) Faults Covered in the Study:Both FD approaches
detect faults by testing the mismatch between the current
and modelled system behavior.

Thus, once interval vectors predicted by the nominal inter-
val observer do not include0 or the residual exits the healthy
residual set, it is considered that a fault occurred, which
means that the aforementioned discussions are generally
suitable for all detectable faults by both approaches.

Note that the established relationship can also be extended
to the case of the faulty functioning, as long as both the
interval observer and the invariant set are designed and
computed according to the same faulty system model.

V. COMPARISON OF THE TWO METHODS

A. Comparison of Computational Aspects

The computational burden of the interval observer-based
approach is mainly from algorithms to compute intervals
and the type of containment sets to propagate the effect of
uncertainties on the system. In [10], interval observer algo-
rithms are classified intoregion-basedand trajectory-based
algorithms. Generally, the former have lower computational
burden than the latter and different types of containment sets
require different computational efforts. Besides, the interval
observer-based approach predicts state and output sets on
line, which massively increases the computational burden.

In the invariant set-based approach, since the key invariant
set is computed offline, the computational complexity of
invariant set does not play a decisive role in the approach.
During the runtime of the invariant set-based approach, its
computational cost reduces to simple on-line set membership
tests: check whether the residual exits its fixed healthy
invariant set. Thus, comparatively, the invariant set-based
approach has much lower computational burden.

B. Comparison of Conservativeness

Every type of sets used to enclose states or outputs
inevitably results in a different degree of conservativeness.
Besides, the interval observer algorithms also increase its
conservativeness. As reported in [10], theabsolute algo-
rithms are generally less conservative than therelative al-
gorithms.



For the invariant set-based approach, the conservativeness
is mainly from the size of invariant sets. According to [8], the
invariant sets for on-line FD can approximate the mRPI set in
arbitrarily expected precision. If a sufficiently small invariant
set is obtained, the conservativeness could be reduced.

Additionally, in the invariant set-based approach, there
are mainly two dynamic processes. The first one is the
residual movement from the outside of the healthy invariant
set to the inside while the second one is opposite. The
former corresponds to the initial transient state and system
recovery processes, while the latter corresponds to steady
state FD and fault isolation (FI) processes. Since the interval
observer-based FI has not been researched yet, this paper
only focuses on the initial transient state and steady state
FD, and omits system recovery and FI. In reality, since the
invariant set is fixed and does not have adjustable flexibility,
it is possible that the system initial condition is outside the
healthy invariant set, which results in that the invariant set-
based approach loses its effectiveness to detect faults during
the initial transition state. However, theoretically, interval
observers can reduce this conservativeness by arbitrarily
assigning its initial set under the physical constraints ofthe
system to contain the initial conditions.

It is shown that both approaches have their own advantages
and disadvantages. The interval observers can provide system
dynamic information during the whole process including the
initial state, the transient and steady state, while invariant sets
mainly reflect the system behaviors in steady state. Ideally,
their joint use will be useful for mitigating their respective
disadvantages and make use of their respective advantages.

VI. N UMERICAL EXAMPLE

The following plant with sensor faults is used to illustrate
the relationship between both approaches

xk+1 = Axk +Buk + wk,

yk = GiCxk + ηk,

whereGi is a diagonal matrix to model thei-th mode(i ∈
{0, 1}),G0 is the identity matrix modeling the healthy sensor
situation andG1 models the fault.

An interval observer designed as (7) is used to monitor
the system. The residual and the residual zonotopes for the
two approaches are defined as (9) and (12), respectively. The
parameters of the illustrative example are given as

• model parameters:A =

[

0.8667 −1.2343
0.01 1

]

,

B =

[

0.01 1
1 0.01

]

,C =

[

0.5 0
0 1.5

]

,

• disturbances:̄w =
[

0.1 0.1
]T

, wc =
[

0.1 0.1
]T

,

• measurement noises:η̄ =
[

0.1 0.1
]T

, ηc =
[

0.5 0.5
]T

,
• observer gain and fault magnitude:

L =

[

0.5334 −0.8229
0.02 0.2

]

, G1 =

[

0.95 0
0 1

]

,

• the control inputs, including two same components,
are sinusoidal signals with offsetuc =

[

2 2
]T

and

magnitudeHu =
[

0.2 0.2
]T

,
• initial conditions:

x0 =

[

0
0

]

, x̂c
0 =

[

0.1
0.1

]

, Ĥx
0 =

[

2 0 2
0 2 2

]

.

According to Theorem 2.1 and Proposition 2.1, one
can compute an initial invariant set and then iterate the
initial invariant set thirty steps to obtain a RPI approx-
imation to sufficiently approach the mRPI set for the
invariant set-based approach. The interval hull of the
thirty-step healthy residual set is computed offline as
�Ris

30 = ([0.4114, 1.2005], [−0.26, 1.16]), whose size is
(0.7891, 1.42). In the sequel, this healthy residual set is used
to illustrate the established relationships.

A. Relationships in Terms of Set Sizes

The relationship between residual zonotopes and the
healthy residual set is shown in Figure 1. It is seen that
residual zonotopes do not converge to the healthy residual
set but their size converges to that of the healthy residual
set. In the figure, after twenty-step on-line prediction, the
size of residual zonotopes reaches(0.7891, 1.42) consistent
with that of the healthy residual set.
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Fig. 1. Relationships in terms of set sizes

B. Relationships in Terms of Bounds

In Figure 2, the relationship among the healthy residual
set, residual zonotopes and their bounds are shown. It is
shown that residual zonotopes are always bounded by their
bounds, while the healthy residual set is bounded by the
bounds only under the conditions (31). Note that the center
of the noise set for this simulation isηc =

[

0.1 0.1
]T

.

C. Relationships in Transient and Steady FD

In Figure 3, the two approaches are used to detect the
same faults during the initial transient and steady states,
respectively. In Figure 3(a), the fault occurs at time instant
k = 3 and in Figure 3(b) the fault occurs at time instant
k = 30. It is seen that interval observers can detect the
faults during both the initial transient and steady states
while invariant set-based approach can only detect the fault
in steady state, which shows the advantage of the interval



observer in transient state FD and the similarity of the two
approaches in steady state FD. In Figure 3 the center of the
noise set and the observer gain areηc =

[

0.1 0.1
]T

and

L =

[

0.1334 −0.8229
0.02 0.0667

]

.
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(a) Residual set outside bounding intervals
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(b) Residual set inside bounding intervals

Fig. 2. Relationships in terms of bounds

VII. C ONCLUSIONS

This paper analyzes the interval observer-based and invari-
ant set-based approaches, whose FD principle is similar. The
former provides system information during the transient and
steady state phases, but with more computational complexity.
On the other hand, the latter focuses more on steady state
of the system with lower computational burden. The future
research is to explore the possibility of combining both
approaches for more efficient FDI.

ACKNOWLEDGMENT

The work of F. Xu, V. Puig and C. Ocampo-Martinez
has been supported by Spanish research projects WAT-
MAN (CICYT DPI2009-13744) and CICYT SHERECS
DPI-2011-26243 of the Science and Technology Ministry,
by the DGR of Generalitat de Catalunya (SAC group Ref.
2009/SGR/1491), by European Comission through contract
i-Sense (FP7-ICT-2009-6-270428), and by China Scholarship
Council (File No.2011629170).

REFERENCES

[1] T. Alamo, J.M. Bravo, and E.F. Camacho. Guaranteed stateestimation
by zonotopes. InDecision and Control, 2003. Proceedings. 42nd IEEE
Conference on, Maui, Hawaii, USA, December 2003.

[2] F. Blanchini and S. Miani.Set-theoretic Methods in Control. 2007.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

R
es

id
ua

l

 

 
1st component of residual intervals
1st component of residuals

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Time

R
es

id
ua

l

 

 

2nd component of residual intervals
2nd component of residuals

Fault occurs

Fault is detected

(a) FD in initial transient state

0 5 10 15 20 25 30 35
−2

−1

0

1

2

3

4

5

6

7

Time

R
es

id
ua

l

 

 

1st component of residual intervals

1st component of residuals

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

8

Time

R
es

id
ua

l

 

 

2nd component of residual intervals
2nd component of residuals

Fault is detected

Fault occurs

(b) FD in steady state

Fig. 3. Two approaches in FD

[3] C. Combastel. A state bounding observer based on zonotopes. In
European Control Conference, Cambridge, UK, 2003.

[4] P. Guerra, V. Puig, and M. Witczak. Robust fault detection with
unknown-input interval observers using zonotopes. InProceedings of
the 17th World Congress, The International Federation of Automatic
Control, Coex, Seoul, South Korea, July 2008.

[5] F. Mazenc and O. Bernard. Interval observers for linear time-invariant
systems with disturbances.Automatica, 47(1):140 – 147, 2011.

[6] J. Meseguer, V. Puig, and T. Escobet. Robust fault detection linear
interval observers avoiding the wrapping effect. InProceedings of
the 17th World Congress, The International Federation of Automatic
Control, Coex, Seoul, South Korea, July 2008.

[7] C. Ocampo-Martinez, J.A. De Doná, and M.M Seron. Actuator fault-
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