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Abstract— In this paper, the relationship between two set- Taking into account the balance among the expressional
theoretic fault detection (FD) approaches, the interval oberver-  compactness, computational precision and complexitg, thi

based and the invariant set-based approaches, is investigal. In ; _
FD, interval observers monitor the system dynamic behavioin pa.\perlwﬂl use zonotopes to represent and propagate uncer
tainty in system states and outputs [1]-[3].

real time and generates adaptive intervals for system outps. ] - ] ) )
Invariant sets focus more on steady state behavior of the siesn Section Il introduces the notion of zonotopes and invariant
rather than the transient behavior. This paper discusses thse sets. Section Il reviews the mathematical formulationthef

two approaches, presents the relationship between them and two set theoretic FD methods. The theoretical relationship
compares them in the FD task. At the end, a numerical example ,qveen both approaches is derived in Section IV. In Section
is used to illustrate the relation between these two approdes. . L .

V, the comparison of the two methods is discussed. In Section
VI, a numerical example is used to comment the relationship.
Section VII draws the conclusions.

Interval observer-based fault detection (FD) consists in
generating adaptive intervals for system outputs by censid
ering the bounds of uncertainties, propagating their effec The notation® represents th&linkowski sum|.| denotes
through the mathematical models of the system and testitige elementwiseabsolute valug B” is a r-dimensional
the consistency between the predicted output intervals anditary box and the inequalities are interpreted elemesgwi
the corresponding measurements of outputs [4]-[6], [¥].[1

Another set-theoretic fault detection and isolation (FDIf £ONnotopes
approach is to consider invariant sets. As known, a systemAccording to [1], [3] and [4], several definitions and
can switch among several modes (a healthy one and at lepsoperties related to zonotopes are introduced as follows.
a faulty one). For each mode, an invariant set for the residua Definition 2.1: The Minkowski sum of two sets A and B
can be obtained [8], [11]. Once the system operates in steaidydefined byA & B={a+b: a € A, b € B}. v
state, it is possible to confine the residual to one of these Definition 2.2: Given a vectorp € R™ and a matrix
invariant sets and, as long as all the invariant sets areidisj G € R"*"™(n < m), a zonotopeX with orderm is defined
FDI can be performed. Most importantly, in the case that thes X = p ® GB™, wherep andG are called the center and
invariant sets intersect, FD can still be done whenever ttegment matrix of the zonotope, respectively. v
residual exits its healthy invariant set [7], [8], [12], [13 Definition 2.3: The interval hull JX of a zonotope

So far, the FI application of interval observers has beeX = p @ GB" C R" is the smallest interval box that
blank in the scientific community, so the discussions ofontainsX, i.e.,0X = {x : |z, — pi| <|| G; |1}, whereG;
this paper are restricted in FD. The main objective of thiss thei-th row of G, andz; andp; are thei-th components
paper is to establish the relationship between these two Fid x andp, respectively. v
approaches, analyze their relative strengths and weaknes®roperty 2.1: Given zonotopes\; = p; ® G1B™ C R”
and explore the advantages of combining both approachasd X. = ps @ G2B™ C R", the Minkowski sunmof them
to implement more efficient fault diagnosis mechanisms. is X; ® Xo = {p1 + p2} ® [G1 G2]B" 72, ¢

The main contribution of this paper is twofold. First, it Property 2.2: Given a zonotope = p® GB” C R™ and
presents the relationship between the two FD approach@scompatible matrixx’, KX = Kp ® KGB" holds. ¢
Second, it analyzes and compares the relative advantages anProperty 2.3: (see [3]) Given a zonotop& = p&GB” C
disadvantages of both approaches. It is considered that bdt™ and an integes (with n < s < r), denote byGG the ma-
approaches have complementary roles during the transidrik resulting from the recording of the columns of the matri
and steady state of the system, respectively. G in decreasing Euclidean nordi. C p@[Gr  Q]B® where

G is obtained from the first — n columns of matrix(y
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I. INTRODUCTION

Il. PRELIMINARIES

Tpt1 = Aoz + Boly, (1)



is used to present the invariant set notions, whreand B,
are constant matrices amtl, is a Schur matrixy, belongs
to A={5: |§—6° <d} with §° andé constant.

Definition 2.4: A set X C R" is called arobust positively
invariant (RPI)set for (1) if and only ifA. X & BoA C X.V

Definition 2.5: The minimal RPI (mRPI)set of (1) is
defined as &RPI set contained in any closedPl set and
the mRPIset is uniqgue and compact. v

Theorem 2.1:(see [8]) Considering (1) and lettind, =
VAV~! be the Jordan decomposition 4f,,

o) ={zeR": [V le| < (I — AV IB| S
+0}®¢°,

is RPI and attractive for the trajectories of (1), withany
(arbitrarily small) vector with positive components, wléf?
is the center of the set witk? = (I — A,) "' B,6°, wherel
is the compatible identity matrix.

1) For any#, the set®(6) is (positively) invariant, that
is, if zgp € ®(0), thenzy, € &(0) for all & > 0.

2) Givenf € R™, 6 > 0, andxg € R", there existg™* > 0
such thatr, € ®(0) for all k > k*. v

Proposition 2.1:(see [8]) Considering (1) and denoting

Xy as aRPl initial set of (1), each of the set iterations

Xj+1 :AOXJ'@BOA, jGN,

where; denotes thg-th element of the set sequence aad
represents the set of natural numbers, RPA approximation
of the mRPI set. Furthermore, agtends to infinity, the set
sequence converges to theRPI set. A

I1l. SET THEORETICMETHODS INFD

A. Dynamical Models

The linear discrete time-invariant plant is modeled as
(2a)
(2b)
whered € R"*", B € R"*P, C' € R?*"™ andFE € R"*" are
constant matrices;, € R™, u, € R? andy, € R? are states,
inputs and outputs, respectively, € W andn, € V are

bounded disturbances and noises, respectivelykatehotes
the k-th discrete time instant}” and V' are defined by

Tyl = Azxy, + Buy + Ewy,
yr = Cxg + ng,

W={wr eR": |wp —w| <@,w*eR",©eR"},
V={n € RY: |np —n°| <q,n° € RY, 7y € R},

®)
(4)

where w®¢, n¢, @ and 77 are constant vectors. Due to the
structure shown in (3) and (4), the two sets are rewritten

as two zonotopes

W =w"® H;B",
V=ne HﬁBq,

(®)
(6)

B. Interval Observer-based FD
The plant (2) is monitored by a linear Luenberger interval
observer. The set-based form of the interval observer,dase
on the nominal model of the plant, is designed as
Xk+1 :(A — LC)Xk &) {Buk} &b {Lyk}
@ (=L)V @& EW,
Yk :CXk eV,

(7a)
(7b)

where X, andY;, are real-time predicted state and output
zonotopes at time instait respectively.

Assumption 3.1The gain matrixL is chosen to assure
the set-mapping contractiveness of the interval obsemeér a
the avoidance othe wrapping effecf6]. |

According to (7), the centeg , and segment matrix
Hp. | of X441, and the centegy and segment matrixf/
of Y}, are computed as

&5 = (A= LC)&y + Buy + Lyr, — Ln° + Ew®, (8a)

Hyy = (A= LO)H} - LH; EHg), (8b)
g, = O, + ", (8c)
HY = [CHY Hy). (8d)

Assumption 3.2The initial state of the plant is denoted as
0 andz, belongs to the initial zonotop&, = 25 ® HyB*
of the interval observer. |

In (8), ask increases, the order of segment matrices of
zonotopes grows dramatically. Thus, Property 2.3 is used to
reduce the order OH,fH. Besides, residual zonotopes of the
interval observer-based FD approach are defined as

1 ={yx} @ (~Y2)
={Cxp +m} ® {(_CXk) @ (=V)}
=C{{z}® (=X} @ {mt @ (-V). (9

According to [6], the interval observer-based FD consists
in checking if _
0 cORyY (10)

is violated, wherd) is the zero vector. Thus, if (10) is vio-
lated, it means that a fault occurs. Otherwise, it is considle
that the system is still in the healthy functioning.

C. Invariant Set-based FD

According to the invariant set-based approach [12], [13],
a Luenberger observer for (2) is designed as

Zpy1 = AZy + Bug + L(yr — Ciy),
Ik = Oy,

(11a)
(11b)

and the residual for the invariant set-based FD is defined as
T =y — Ok

= C(ap — &) + ks (12)

where H; € R™" and H; € R?*7 are two diagonal \yherey, — 7, is the state estimation error notated s

matrices with the diagonal entries framand, respectively.  considering (2) and (11), the dynamics@f is derived as
Remark 3.1:For the sake of discussional generality, the 13)
13

centers ofi¥’ andV are not restricted to be at the origi. Tpr1 = (A= LO)Zg — Ly, + Bwy.



Remark 3.2:For comparative convenience, the observerespectively. Thus, one has that (18) and (19) correspond
gain of (11) is chosen to be equal to that of (7) and th® z;11 — &1 and (A — LC)(xy, — &) — Ly + Ewy +
observer contractiveness is assured by Assumption 3(1. L, — FEwy, respectively. Finally, by using, to characterize

According to Theorem 2.1 and Proposition 2.1, a RPI set;, — i, one obtains the corresponding dynamics of ¥17)
is constructed for (13). The resultant RPI set is denoted as B . _ _

% and the corresponding residual set is computed as i1 = (A = LOVE — L, + Bug + Lije — By (20)
is & Using W and V' to replacew, andwy, and7, andny in
R¥=Co* V. 14 . .
@ (14) (20), a set-based form of (20) is obtained as

Wheneverzy, is inside ®%, ri* is inside R**. Thus, the fo (A LOVF INVOEWOLY BW. (21
invariant set-based FD is to test whether the residual @2) i k1 = (A-LO)X@(-L)VOEWSLVE(-E)W, (21)

located inside its healthy set (14) in real time. If the rasid According to (21) and zonotope operations, the center
exits its healthy invariant set, it indicates that a faulturs. 5., and segment matriilkﬂ of Xk+1 are derived as
Otherwise, it is assumed that the system is still healthy.

Since the computation of interval vectors is based on théi+1 =(4 — LO)Tg, (22a)

interval hull of zonotopes, in the sequel and for simpllcityjﬁj{,C+1 =[(A - LC)[?[,C — LH; EH; LH; - FEHg).

all the discussions are directly based on zonotopes. (22b)
IV. THEORETICAL RELATIONSHIP By comparing (17) and (21), it is shown that zonotopes

The relationship between the two FD approaches is derivdtjedicted by (21) bound those predicted by (17) at each time
in this section. To the best of the authors’ knowledge, thi§'stant, as long aslo € X, holds.

type of analysis is not available in the literature. Finally, according to (9) and (21), zonotopes bounding
residual zonotopes are derived as

A. Bounds of Interval Observers o o
Ry =CXroVa(-V). (23)

In order to describe residual zonotopes (9), a zonotope

Xy, ={zx} @ (- Xy) o .
- . STk 1) Relationship of Intermediate Set& RPI set of (13)
=(zx — 2}) ® Hy B (15 can be constructed by Theorem 2.1, which is denotedijas
is defined, whereX, = &¢ @ H,B**. By using#$ and with center&s. By using ®§ as an initial set according to
to characterize;, — ¢ andH,f, respectively,X;, is rewritten Proposition 2.1, another squeezed RPI set with arbitrarily

as X, = i¢ @ H,B®. Taking into account (2a), (8a) and expected precision to the mRPI set of (13) is obtained by
(8b), the center and segment matrix%f_ , are derived as O, = (A— LC)(I);*_C @ (-L)V@EW, jeN, (24)

1 T
Ty = (A= LO)I} — Lk — 1°) + E(wr — w°), (162) where;j represents thg-th element of this set sequence.
Hyp1 = Hiy = [(A- LC)HY —LH; FEH;). (16b)  Since W and V are zonotopes, the construction &f
implies that it is also a zonotope. Thug;; in (24) can be
nfolded into a similar form with (16), with centgf, ; and
segment matrix}, , where '

B. Relationship in Terms of Residuals

According to Property 2.1 and Property 2.2, an equivale
zonotope-based form of (16) is deduced as

Kot =(4— LOVX © Ll —17) @ HyB] €1 =(A - LOYE — Ly + Bw?, (25a)
® Bl(wr — ) & HoB'. (7) 7 =[(A—LC)H? —LH, EH,).  (25b)

According to (15), the left side of (17) i d . "
ceording to (15), the left side of (17) is expressed as According to Proposition 2.1, gstends to infinity, the set

Xit1 =I5, ® Hj, B+ sequence (24) converges to the mRPI set of (13), denoted as
_ ~c fre Rs o7 with center£S, . Furthermore, according to (16), (22)
=(x - ® Hp B+t oo 00
(@1 = &) © Hi and (25), as: andj tend to infinity, one has

7 =l = (A= LO) M [(Eweo — Lijoo)

(oo}

=Tpq1 ® [(—25,) © Hiy B, (18)

while the right side of (17) can be rewritten as

) ) — (Bw® = Ln°)], (26a)
X1 =(A = LO)[(zx — 2%) & HB* | & (—L)[(nk — n°) 7. =0, (26D)
® HyB] @ Bl(w, — o) © HaBT] & =[I = (A= LO) "M (Bwr — Lif),  (260)
=(A - LO)x & (A — LO)[(—}) © HyB*] | Heo, |h= || HE, 1< Heo, |1, (26d)

@ (—L)ne ® (—L)[(—n°) ® H;B]

wherei represents theé-th row of a matrix andv,, € W
andn,, € V.
When (7) predicts state and output zonotopes, one onl
h (b) P ds of di b pd . E)I'h ylxk — xy, is different fromz,, — 2, in (12). The former corresponds to
uses the bounds of distur a_-nces and noises. ] us' ON€ URfewal observers while the latter is from invariant sétsthis paper,z
w, € W andij, € V to describelV andV appearing in (7), andz, are used to distinguish them.

® Ewy, ® E[(—w°) ® HyB"]. (19)



According to (26), the centers of,, and ®?_ have the C. Summarizing the Discussions

following mathematical relationship: 1) Summarizing the RelationshifBased on the residual
. . . form (9) and (12), the mathematical relationship between
Too + 85 = I = (A= LO)]" (Bwoeo — Lieo), both FD approaches is briefly summarized as follows.

o The FD principle of both approaches is similar. In the
invariant set-based approach, the healthy invariant set is
fixed and determined offline but the residual is real-time

where z&, + ¢S, are bounded. It is seen that in (26d) the
sizé of f(oo and®Z_ are the same and both are smaller than
that OfX"O' Considering (2_6a), (26b) and (26dJ,,, has the obtained, while in the interval observer-based approach
same size .bUt ggnerally different cgnters with . . 0 is fixed but residual zonotopes are computed online.
2) Relationship based on Residualsn the interval | Ag k tends to infinity, the size of residual zonotopes
obse_rver-based FD, residual zonotopes defined in (9) can be predicted by the interval observer converges to that of
rewritten as the smallest healthy residual sit? .
, - « The center ofR? has a mathematical relationship with
Ry =CXp @ {net e (-V), (27) that of R .
« R is always bounded by and, under the condition
(31), R’ is also bounded byz%.
2) Faults Covered in the StudyBoth FD approaches
detect faults by testing the mismatch between the current
ioc e . and modelled system behavior.
TR Cx’j + (e = n°%), (282) Thus, once interval vectors predicted by the nominal inter-
Hj? = [CHE Hj). (28b) val observer do not include or the residual exits the healthy
residual set, it is considered that a fault occurred, which
In the invariant set-based FD, substituting (24) and (25neans that the aforementioned discussions are generally

where R are always bounded b in (23), as long as
Ri? C R{y. According to (27), the center,”“ and segment
matrix H;° of Ri® have the following expressions:

into (14), the healthy residual sﬁ;ﬁs is obtained as suitable for all detectable faults by both approaches.
Note that the established relationship can also be extended
R =C®T @V, (29) to the case of the faulty functioning, as long as both the

interval observer and the invariant set are designed and
where j denotes the number of iterative steps indicated inomputed according to the same faulty system model.
Proposition 2.1 instead of the time instant. Similarly, the

Pris i% ; i
center ;5 ¢ and segment matri¥/;* of R}* are derived as

V. COMPARISONOF THE TWO METHODS
A. Comparison of Computational Aspects

T;’,S»C =C¢& +1°, (30a) The corr_lputati_onal burden of_ the interval obser\(er-based
H;S :[C’Hf H,). (30b) approach is mainly fr_om algorithms to compute intervals
: and the type of containment sets to propagate the effect of
uncertainties on the system. In [10], interval observepalg
rithms are classified inteegion-basedand trajectory-based
algorithms. Generally, the former have lower computationa
burden than the latter and different types of containmetst se
require different computational efforts. Besides, therival
observer-based approach predicts state and output sets on
line, which massively increases the computational burden.
In the invariant set-based approach, since the key invarian
set is computed offline, the computational complexity of
invariant set does not play a decisive role in the approach.
. ; uring the runtime of the invariant set-based approach, its
.set. that has the same size byt gijsenerally different center mputational cost reduces to simple on-line set memhershi
indicated by (28) and (30)) Wit tests: check whether the residual exits its fixed healthy

In the previous section, it is shown that residual zonotopgs, ariant set. Thus, comparatively, the invariant setebas
predicted by the interval observer have bounding zonotop%proach has much lower computational burden.
i.e., R}’ C R;°. However, one can not assure that at infinity

Rs is bounded byRi®. But, according to (26a) and (26b), B- Comparison of Conservativeness

According to (26), (28b) and (30b), dsand j tend to
infinity, the size of R converges to that of the smallest
residual setR’ corresponding to the mRPI sétZ . The
centers of R and R are generally different but have a
mathematical relationship:

P i8¢ = O, — (A — LO) " (Bweo — LNoo) + Moo,
where it is known that%:¢ 4 r%:¢ is bounded.

This implies that, ast tends to infinity, R will be a

a condition such thak’: C Rf)g is given as Every type of sets used to enclose states or outputs
inevitably results in a different degree of conservatissne
2(Fw. — Ln.) € EW & L(-V). (31) Besides, the interval observer algorithms also increase it

conservativeness. As reported in [10], thbsolute algo-
2n this paper, the size of a zonotope corresponds to the vaitis rlthms are generally less conservative than te&tive al-
interval hull. gorithms



For the invariant set-based approach, the conservatisenese the control inputs, including two same components,

is mainly from the size of invariant sets. According to [8jet
invariant sets for on-line FD can approximate the mRPI set in
arbitrarily expected precision. If a sufficiently small amant

are sinusoidal signals with offset® = |2 2]T and
magnitudeH,, = [0.2 0.2]T,

« initial conditions:

set is obtained, the conservativeness could be reduced. 0 01l - 9 0 2
oy . . . 5C N X
Additionally, in the invariant set-based approach, there %o = [O},xo = [0'1},110 = {O 9 2} .
are mainly two dynamic processes. The first one is the
residual movement from the outside of the healthy invariant According to Theorem 2.1 and Proposition 2.1, one
set to the inside while the second one is opposite. TH&N compute an initial invariant set and then iterate the
former corresponds to the initial transient state and systeinitial invariant set thirty steps to obtain a RPI approx-
recovery processes, while the latter corresponds to steaidjation to sufficiently approach the mRPI set for the
state FD and fault isolation (FI) processes. Since theuater invariant set-based approach. The interval hull of the
observer-based FI has not been researched yet, this pafféity-step healthy residual set is computed offline as
only focuses on the initial transient state and steady statét5; = ([0.4114,1.2005],[—0.26,1.16]), whose size is
FD, and omits system recovery and Fl. In rea]ity, since th@.7891, 142) In the sequel, this healthy residual set is used
invariant set is fixed and does not have adjustable flexjbilitto illustrate the established relationships.
it is possible that the system initial condition is outsitie t
healthy invariant set, which results in that the invarieett s i ) )
based approach loses its effectiveness to detect faultsgdur 1n€ relationship between residual zonotopes and the
the initial transition state. However, theoretically,éntal healthy residual set is shown in Figure 1. It is seen that
observers can reduce this conservativeness by arbitrarfgSidual zonotopes do not converge to the healthy residual
assigning its initial set under the physical constraintshef Set but the|r_ size converges to that of the healthy_re&dual
system to contain the initial conditions. s_et. In the_ figure, after twenty-step on-line predlcyore th
Itis shown that both approaches have their own advantagéiZe Of residual zonotopes reach@s7891,1.42) consistent
and disadvantages. The interval observers can providersystWith that of the healthy residual set.
dynamic information during the whole process including the

A. Relationships in Terms of Set Sizes

initial state, the transient and steady state, while imrarsets o [ 8 s
mainly reflect the system behaviors in steady state. Ideall Loy Lo ol L2 o esidual se
their joint use will be useful for mitigating their respedi v a4

disadvantages and make use of their respective advantag OSF i s R TR R i o

Residual
Residual
o

VI. NUMERICAL EXAMPLE

-2

The following plant with sensor faults is used to illustrate oy b
the relationship between both approaches

-2t -6y

=2. -8
0 5 10 15 20 25 30 35 0 5 10 15 20 25
Time Time

30 35

Tip1 = Az + Bug + wy,

=G, Cxi + n,
Yk O T Nk Fig. 1.

Relationships in terms of set sizes
whereG, is a diagonal matrix to model theth mode(i €
{0,1}), Gy is the identity matrix modeling the healthy senso
situation andG; models the fault. _ ) ) _
An interval observer designed as (7) is used to monitor N Figure 2, the relationship among the healthy residual
the system. The residual and the residual zonotopes for tAgl: residual zonotopes and their bounds are shown. It is

two approaches are defined as (9) and (12), respectively. THROWN that residual zonotopes are always bounded by their

parameters of the illustrative example are given as bounds, while the healthy residual set is bounded by the
bounds only under the conditions (31). Note that the center
0.8667 —1.2343}

of the noise set for this simulation ig* = [0.1 0.1]T.
0.01 1

0.01 1 05 0
B_[1 0.01}0_[0 1.5}’
o disturbancesw = [0.1 0.1]T, w® = [0.1 O.l}T,

« measurement noiseg:= [0.1 0.1]T,77c =[0.5 O.5]T,
« observer gain and fault magnitude:

I [0.5334 —0.8229} Gy = [0.95 O}

B. Relationships in Terms of Bounds

o model parametersd = {
C. Relationships in Transient and Steady FD

In Figure 3, the two approaches are used to detect the
same faults during the initial transient and steady states,
respectively. In Figure 3(a), the fault occurs at time insta
k = 3 and in Figure 3(b) the fault occurs at time instant
k = 30. It is seen that interval observers can detect the
faults during both the initial transient and steady states
while invariant set-based approach can only detect the faul
in steady state, which shows the advantage of the interval

0.02 0.2 0 1



observer in transient state FD and the similarity of the twa
approaches in steady state FD. In Figure 3 the center of tr
noise set and the observer gain afe= [0.1 O.I}T and
I— {0.1334 —0.8229]

0.02 0.0667 |

. . . . 8
‘ - = = 1st component of residual m«ervaj

- = = 2nd component of residual intervals
+= 1= 2nd component of bounding intervals
- - 2nd of residual set

+= 1= 1st component of bounding interval
- - 1st of residual set

Residual
S o S
Residual

b
oy
-150
!
:
-2t
!
-2.5 -8
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time Time
(a) Residual set outside bounding intervals
25 8
\ = = = 1st component of residual intervals = = = 2nd component of residual intervals
2w == 1st component of bounding intervals| = =12nd component of bounding intervals|
n - - 1st component of residual set 6r, - - 2nd of residual set
1.5F % K
e
1 ‘\ * -~
- 05 oo -
2 2
B O i B
& - - &
-05 A *
“afpetT
¥
-15 II
!
i
=2+
!
-2 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 [3]

Time Time
4
(b) Residual set inside bounding intervals [4]
Fig. 2. Relationships in terms of bounds
(5]
VII. CONCLUSIONS [6]

This paper analyzes the interval observer-based and invari
ant set-based approaches, whose FD principle is simil&. Th
former provides system information during the transiertt an [7]
steady state phases, but with more computational complexit
On the other hand, the latter focuses more on steady sta
of the system with lower computational burden. The future
research is to explore the possibility of combining both
approaches for more efficient FDI. [
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(b) FD in steady state

Fig. 3. Two approaches in FD
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