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Abstract—In this paper we present an automated system
that is able to track and grasp a moving object within the
workspace of a manipulator using range images acquired with
a Microsoft Kinect sensor. Realtime tracking is achieved by
a geometric particle filter on the affine group. Based on the
tracked output, the pose of a 7-DoF WAM robotic arm is
continuously updated using dynamic motor primitives until a
distance measure between the tracked object and the gripper
mounted on the arm is below a threshold. Then, it closes its
three fingers and grasps the object. The tracker works in real-
time and is robust to noise and partial occlusions. Using only
the depth data makes our tracker independent of texture which
is one of the key design goals in our approach. An experimental
evaluation is provided along with a comparison of the proposed
tracker with state-of-the-art approaches, including the OpenNI-
tracker. The developed system is integrated with ROS and made
available as part of IRI’s ROS stack.

I. INTRODUCTION

In the field of robotics, many applications have been
tailored towards servoing using visual information. The goal
is to use information obtained from vision inside a servo
loop to control a mobile manipulator. Visual servoing is
broadly classified into two categories, i.e., image-based and
position-based [1]. Most of the servoing tasks require the
target to be stationary. Camera configurations such as eye-
in-hand [2] and eye-to-hand [3] have been used. Tracking is
often performed on the basis of color/grayscale images [4],
[51, [6]. However, if the objects to be tracked are only
weakly textured and do not contain distinctive color features,
tracking may fail.

Recent advancements in range sensing technology for
indoor scenes have lead to the development of a multitude
of practical vision applications, but only little work has been
done with respect to visual-servoing solutions based on range
images. In this paper, we present a novel approach for eye-
to-hand, moving target, position-based servoing using depth
as the only visual cue. This has the immediate advantage
that the performance of the tracker is independent of the
appearance of the objects in terms of color, and may thus
generalize better to different scenarios. Tracking is achieved
by a geometric particle filter on the affine group [7]. The
respective, estimated affine transformation is applied to a
bounding box placed in the range image, and a rigid trans-
form is used to compute the measurement function. In this
sense, tracking is entirely data driven, and no 3D object
model needs to be used, neither for tracking nor for grasping.
This also reduces the computational cost of the method. For
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Fig. 1. TIllustration of the experimental setup containing the Barret WAM
arm, the Kinect sensor mounted above the scene, and the 3D reconstruction
of the scene, including the target object.

the experiments, we use a Microsoft Kinect sensor callibrated
to a Barret WAM arm with 7-DoF as shown in Fig. 1. The
output from the tracker is efficiently coupled with the pose of
the end-effector. A smooth trajectory is created online from
the pose of the object which controls the joint angles of the
WAM arm, by using a robust inverse kinematics algorithm,
as in [8].

Potential applications include automatically picking up
objects from a moving conveyor belt, incremental learning
from demonstration, and human-robot interaction [9].

The paper is organized as follows. In Section II, we
provide a brief description of the existing work on tracking
and grasping of moving objects. The problem formulation
is provided in Section III. In Section IV, we present a
novel method for tracking with range images. Section V
describes how the tracked information is used for dynamic
repositioning of the end-effector. Results of our approach are
shown in Section VI-C, and discussed in Section VII.

II. RELATED WORK

In the past, many different approaches have been de-
veloped for tracking and grasping of moving objects [10],



[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. Most
of these methods use stereo images to compute the 3D
pose for grasping. Matching scores required for tracking
are usually computed from the color/grayscale features of
the object. For example, in [10], the 3D pose of a moving
object is computed using stereoscopic optic flow and used
to control the motion of the robotic arm until interception
and grasping is performed. The motion model employed to
control the positioning of the robotic arm is restricted to
planar trajectories, hence limiting the approach to grasping
objects moving on a planar surface only. Similar constraints
for motion in 2D have been employed in [11]. In [12], objects
move on a conveyor belt in a straight line, and the precise
trajectory of the objects could thus be provided.

Grasping a moving object using an eye-in-hand config-
uration has been performed in [14]. However, the method
presented therein is restricted to a single class of objects.
Also the motion of the object is restricted to translations.
A simulation of tracking and grasping a moving object
based on a CAD model along with the dynamic selection
of feature points has been presented in [15]. Based on
the tracked results a real-time motion planning method is
proposed. Simulation results have also been provided in [16]
for an integrated sensing and actuation system for grasping
a moving object.

A position-based and an image-based scheme for tracking
and grasping problem have been proposed and compared
using simulations in [17]. However, here it is assumed that
the pose of the object is already known.

Our setup closely resembles the one used in [19], but
the tracking algorithm used in that work is rather simple.
A blob detection algorithm based on the target image color
is employed which can easily fail under varying appearance
or lighting conditions.

Another possible approach to tracking using depth is to
directly determine the 3D rigid transform that the tracked
surface undergoes. This approach has been adopted in the
OpenNI tracker for the Kinect sensor in the Point Cloud
Library !, where the 6 parameters of the rigid transform are
predicted using a particle filter. Different to our approach,
no motion model is employed, resulting in less efficient
prediction of future states.

III. PROBLEM STATEMENT

Given an object moving in 3D space, we would like to
reposition the end-effector of the manipulator continuously,
until the distance between the moving object and the ma-
nipulator is smaller than a threshold. We assume that the
object remains inside the workspace of the manipulator and
it moves slow enough to be tracked and approached by the
manipulator.

IV. OBJECT SURFACE TRACKING

We track the object surface in the 2D image plane using a
bounding box supplied by the user in the initial image, en-
closing the pixel coordinates of the tracked surface template

! Available at: http://pointclouds.org/

in the image plane. To determine the pose of the surface at
each time instant ¢, we apply a geometric particle filter on the
affine group, yielding an estimate of the 2D affine transform
of the tracked surface in the image plane with respect to the
initial coordinates, as proposed in [7]. The estimator uses a
constant velocity model for the state dynamics i.e., the state
update equation is expressed as

X, = X, el 102X 5X 1)+ W] (1)

where X is the 3 x 3, 2D affine transformation matrix, a is
the autoregressive process parameter, and W is the Wiener
process noise with covariance Q € R%*6, owing to the 6
free parameters of the 2D affine group. The measurement
equation is expressed as

e = h[Xt7]t=0(P)] + v, 2

where 4 is the measurement function, P is the set of points
representing the pixel coordinates of the tracked template in
the image plane. / is the range image, i.e., for each p € P,
I(p) gives the actual range value (x,y,z), in the Euclidean
space and v is the the Gaussian noise with covariance R € R!.
Unlike [7], we have defined the measurement function as

h(X;,L=o(P)) = ||[l=o(P) = L/(F))]|, » 3)

where P/ is the set of pixel coordinates obtained after
transforming every p € P with X;. Since we are using
the range data, we cannot directly compute the difference
between I,_o(P) and I, (P/) as it is the case of color/grayscale
images [7]. This is because the range data provides the
Euclidean distances relative to the camera pose, hence we
first determine the rigid transform such that the distance
between I,_o(P) and I;(P/) is minimized in a least square
sense [21]. I'(P/) represents this set of points obtained after
applying the rigid transformation.

The surface template [, (P) is periodically updated every
five frames by computing the mean of the 3D shape that
has been tracked during this interval. Detailed description
for calculating the measurement likelihood p(y;|X;) for the
importance sampling step as well as the particle resampling
step can be found in [7], [22].

The affine transform encodes the deformation of a planar
shape moving in 3D space and acquired under an orthogonal
projection. In the case of non-planar surfaces with out-of-
plane rotations, the affine transformation cannot determine
exact point correspondences. However, extensive experimen-
tal results with non-planar surfaces have revealed that under
weak-perspective assumption such a transformation can be
approximated with a two-dimensional affine transform in
the image plane. Previously, this assumption has been made
in [22], [23], [24], [25] for color/grayscale images.



V. POSITIONING WAM END-EFFECTOR

We continuously update the goal position of the WAM
end-effector until the generalized Cartesian space error (in-
cluding position and orientation)

e = | %]

is below a threshold. Here e,, e, are the position and
orientation errors with respect to the desired pose of the
target object, as defined in Section 3.7 of [26], and § is a
small offset defined as half the length of the bounding box.

The position of the target is defined as the centroid of
the points in 3D space, enclosed within the bounding box.
In order to determine the orientation, we fit a plane to the
3D points, corresponding to three corners of the bounding
box and compute its angular displacement relative to the
camera axes. Once the error e is less than a threshold, the
gripper closes its fingers and grasps the object. Using a robust
Inverse Kinematics (IK) algorithm [8], we can convert the
generalized position of the object into a joint vector goal that
places the robot in the target.

Then, the robot’s goal can be updated online by using
Dynamic Motor Primitives (DMP) [27] at a joint level, where
a desired trajectory of the robot is computed with a second
order dynamic system:
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where q is the joint position, G the goal position, o, B,
are proportional-derivative constants, T a time constant, z =
q/7 a rescaled velocity, and f(¢) a shaping function of the
trajectory.

This characterization gives us a desired acceleration, ve-
locity and position at each time instant. For 8, = a/4, the
system is critically damped and these derived signals can be
sent to any controller to track the desired trajectory. In the
case of object tracking, the shaping function f(r) can be set
to zero to have a pure critically damped attractor to the goal
q = G, or used as an obstacle-avoidance term as in [27].

The DMP representation allows us to change the trajectory
goal online, while maintaining the continuity on the position
and velocity commands, and without needing to recompute
the whole trajectory (as we would have to if using splines).
Thus we can update the goal according to the movement
of the tracked object using an adequate inverse kinematics
algorithm and the default PID controller provided with
the arm. A general scheme of the whole tracking system
implemented can be seen in Fig 2.

VI. RESULTS
A. Pros and cons of using depth instead of color images

Depth data lacks texture information which could be es-
sential to constrain the affine transform. However, we found
that texture can also be a limiting factor during tracking, as
can be seen when looking at the example shown in Fig. 3.
During manipulation, the texture on the cup changes rapidly
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Fig. 2. General scheme of the experiment. The depth information from
the Kinect camera is used to obtain a 3D pose and is sent to the IK
algorithm, which computes a new goal. This goal is sent to the DMP,
which immediately updates the trajectory. Finally, the desired trajectory to
the current goal is sent to the controller.
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in the image because of its changing orientation and self-
occlusions, while the surface shape remains approximately
the same, allowing our tracker to succeed in cases where
others fail. This behavior has been observed in several cases.
We also tested texture-based trackers for gray-scale images
directly on range images, not surprisingly they failed as well.

Figure 4 shows a quantitative comparison using the root
mean square (RMS) error of the centroid of the bounding
box with respect to the ground truth at each time instant
for the video corresponding to Fig. 3. To generate the
closest possible ground truth, we first over-segmented the
video using the method proposed in [28], and then manually
relabeled the segments that belong to the tracked object.

It can be seen in Fig. 4 that the tracker from [7] and the
one from [25] eventually loose track (~ frame 169 and ~
frame 853, respectively), whereas ours successfully tracks
the object until the end.

B. Comparison with the OpenNI tracker

We compare our method with the OpenNI tracker for
the Kinect sensor in the Point Cloud Library. The OpenNI
tracker directly determines the 3D rigid transform from the
points on the tracked surface model and predicts the six rigid
transformation parameters using a particle filter.

In order to make a fair comparison, we omitted the color
information in the measurement function, yielding

h(p,q) =Y (1 + !pj—qj|2) , (6)
J

where j ranges over to all the points in the reference model,
p; is the 3D position of the predicted point, and ¢; is the

3D position of the nearest point in the input point cloud.
We conducted several experiments and observed that the
OpenNI tracker is more prone to failure due to occlusions
than ours, presumably because it does not employ a motion
model. Figure 5 shows two of the cases where the OpenNI
tracker failed to track the object while ours kept on tracking.

C. Tracking and Grasping of moving objects

Several experiments were conducted with objects of dif-
ferent shapes and appearances, e.g., a milk bottle, a carton
box, and a ball. In all experiments, the WAM arm was able to
successfully chase the object using the tracking information
and eventually grasp it. Selected frames are shown in Fig. 6
and Fig. 7.

Figure 6 shows a bottle that is being manipulated by
a human. This scene was recorded with a Kinect camera
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Fig. 3.  Comparison of different tracking algorithms for grayscale (a) and
range images (b). Our tracker (red rectangle) uses range data only, whereas
the tracker from [7] (blue rectangle) and the one from [25] (green rectangle)
use grayscale images. More results are provided in the accompanying video.

mounted above (the same as illustrated in Fig. 1). During the
experiment, the robot arm follows the motion of the bottle
and tries to minimize the distance between its gripper and the
bottle (see frames 401-1201). Once the distance is below a
threshold, the gripper closes and grasps the object (see frame
no. 1401). Similar results were obtained for other objects, see
Fig. 7. Figure 8 shows the trajectory of a box and the end-
effector of the manipulator during one of the experiments.

D. Tracking-speed analysis

The tracker is implemented in C++ and runs at ~ 20 fps
on an Intel Xeon quad core processor. We expect further
speedup by porting the code to a GPU. The maximum object
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Fig. 4. A comparison of RMS error of the centroid with respect to the

ground truth for our tacker (red color), the tracker of [7] (blue color) and the
tracker of [25] (green color). More results are provided in the accompanying
video.

speed with which our tracker can cope with depends on
factors such as the size of the object in the image plane, its
shape, and also the way it is being manipulated. In order to
get an idea of the speed that our tracker can handle during the
experiments, we tracked a cylindrical surface which moved
freely in 3D space at a speed that allowed correct tracking
of the object (see Fig. 9(a)). Figure 9(b) shows the distance
that the object covered within each second. The tracker was
able to track objects moving up to 21 cms/sec.

VII. CONCLUSIONS

This paper presents a complete system which is
able to robustly track and grasp moving objects in
3D space. Our code and complete videos are available
for download at http://www.iri.upc.edu/groups/
perception/#trackGrasp.

We demonstrated that reliable realtime tracking can be
achieved and used for robotic manipulation of moving ob-
jects using depth data alone. For this purpose, we developed
a novel method for tracking in depth images based on a geo-
metric particle filter on the affine group. This type of tracking
paradigm has been used before in color images [7], [22]. An
advantage of our method compared to color-based tracking is
that its performance is independent of the appearance of the
object in terms of color and texture (see Fig. 3). Compared to
the OpenNI tracker, our method showed equal performance
in most cases and even outperformed it in some cases (see
Fig. 5).

The system has some limitations which we plan to address
in the future. If the manipulator moves to a location where
it partially occludes the tracked object or if the object
undergoes self-occlusions, then the centroid may deviate
from the correct position, and the gripper may be moved
away from the desired grasping position. This limits the



Fig. 5. Comparison of ((a) and (c)) our tracker (red rectangle) with ((b) and
(d)) the tracker available in the Point Cloud Library (blue pixels). The color
images are shown here for illustration only and not used in the tracking
procedure. More results are provided in the accompanying video.

Fig. 6. Tracking and grasping of a moving bottle.

Fig. 7. Tracking and grasping of a moving carton box.
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Fig. 8. Object and end-effector trajectories during tracking and grasping
of a moving box.

workspace of the manipulator. In the future we plan to use a
setup with multiple range sensors to cope with this situation.

In situations where a user supplies a bounding box which
does not contain the entire surface to be tracked, our tracker
may fail. For instance, we cannot track a small planar patch
inside a plane. For the aforementioned reason, our tracker
requires that the four corners of the bounding box supplied
initially by the user lie on the edges of the surface that is to
be tracked.
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