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2 Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
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Abstract. We present a general approach for solving the point-cloud
matching problem for the case of mildly nonlinear transformations. Our
method quickly finds a coarse approximation of the solution by exploring
a reduced set of partial matches using an approach to which we refer to
as Active Testing Search (ATS). We apply the method to registration
of graph structures by branching point matching. It is based solely on
the geometric position of the points, no additional information is used
nor the knowledge of an initial alignment. In the second stage, we use
dynamic programming to refine the solution. We tested our algorithm on
angiography, retinal fundus, and neuronal data gathered using electron
and light microscopy. We show that our method solves cases not solved
by most approaches, and is faster than the remaining ones.

Keywords: point cloud matching, graph matching, image registration,
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1 Overview

In this manuscript we consider the problem of point-cloud to point-cloud (PTP)
matching. The problem consists of finding correspondences between two popu-
lations of points, related by a geometrical transformation. The transformation
is assumed to be non-linear but not far from affine. The correspondences can
be partial. We do not require an initial alignment nor any additional informa-
tion except the point coordinates. However, if such information is available (e.g.
local appearance or connectivity), it can be incorporated to reduce the search
problem.

The main difficulty of the PTP problem is the large set of possible matches.
The major challenge lies in the ability to formulate a search procedure that is
tractable and still provides an acceptable solution. This is particularly true when
the transformation between the two populations is non-rigid.

We consider this problem in the context of medical image registration. Three
important challenges lie in such registration tasks. First, the transformation



between curvilinear structures is generally non-rigid, which induces complex so-
lutions that are difficult to compute. Second, appearance based measures of sim-
ilarity (e.g. key point descriptors) cannot be used in some cases due to the fact
that registration may be between different modalities (e.g. Electron Microscopy
(EM) and Light Microscopy (LM)) [1]. Finally, registration may be at different
physical scales (e.g. nm and µm) and hence consists of registering one domain
to a substructure of another much larger structure.

In our approach, Active Testing Search (ATS) we take a Bayesian point of
view and consider the correspondences to be random. We use a sensor: a black
box function, which scores the quality any set of partial or complete point corre-
spondences. The probability of the correctness of the match given a sensor output
is given by a sensor model, which we learn from data. We make observations se-
quentially and integrate information received from the sensor by computing the
posterior probability of the correspondence correctness. We explore the space
of possible potential correspondences by performing a priority search based on
the information gain, adding one point match per step, similar to the Twenty
Questions game with noisy outputs [2–5].

2 Related Work

The difficulty of registering medical images lies on the nonlinearity between
structures and also high number of outliers, such as in the case of EM and
LM images. These structures can be interpreted as point clouds or as graphs. In
the first case, some authors have proposed transformation minimizations between
the sets [6, 7], which however fails when the sets are not roughly aligned or when
the number of outliers is too high. Another approach to this problem is to try
to find the correct correspondence between the points [8–10].

Another popular approach is ICP (Iterative Closest Point) [11], which iter-
atively calculates the closest distance between points, assigns correspondences
and calculates the rigid transformation between the sets until convergence. The
method and its variants [12, 13] also require the initial position of the sets to be
relatively close.

Local similarities such as geometric compatibilities and feature descriptors
could also help establish correspondences between points [14, 15]. However, in
the presence of shearing and nonrigid transformations, the approach proves to
be sensitive.

Using graph information can provide further constraints in the problem, such
as local connectivity and geodesic distance preservation [16, 1]. However, most
of these approaches are either not robust enough to solve harder cases [17] or
are not scalable [1].

3 Notation

Consider two sets of points XA = {xA1 , ..., xAN} and XB = {xB1 , ..., xBM} of size N
and M respectively, with xAi ∈ RDA and xBj ∈ RDB . We want to find a matching



Table 1. Summary of Notation

XA = {xA1 , ..., xAN} Source point cloud
XB = {xB1 , ..., xBM} Target point cloud
Y = (Y1, ..., YN ) Correspondences for XA

Y ∗ = (Y ∗1 , ..., Y
∗
N ) True correspondences

Y Space of feasible correspondences
A = {Y1 = y1, ..., Yd = yd} Partial assignment
Ad Set of partial assignments of length d
ψ(A) Sensor function
(θ1,θ0) Sensor noise model parameters
γ Minimum number of required assignments for ψ
SA Sensor response for set A
r(SA) Sensor likelihood ratio
K Total number of iterations
πk Assignment to evaluate at iteration k
π = (π1, ..., πK) Sequence of observations to make
CA Set of children of A

where each element xAi of XA maps to at most one element of XB , which is
represented by an index Yi ∈ {−1, 1, . . . ,M} to XB , with a virtual element of
index −1 meaning no match (an outlier). We consider Y = (Y1, ..., YN ) ∈ Y,
where Y is the space of all possible solutions, to be a discrete random vector,
with probability P (Y ) = P (Y1, ..., YN ). Note that the ordering of Y is important.
Our objective is to find Y ∗, the true correspondence between XA and XB .

A partial assignment is a vector A = (Y1 = y1, ..., Yd = yd), where we require
the correspondences to be determined in order. We denote Ad the set of all
possible partial correspondences of d elements.

The sets Ad can be organized hierarchically into a tree, where children are
formed from parents by adding one additional match. The children of A are
CA = {A ∪ {Y|A|+1 = y}}, with y ∈ {−1, 1, . . . ,M}, y 6∈ A.

A sensor is a task specific function ψ : A → R such that SA = ψ(A) evaluates
a partial correspondence A for |A| ≥ γ, where γ is the minimum number of
matches required to calculate ψ. Let π = (π1, ..., πK) be the sequence of subsets
observed throughout the algorithm, where πk ∈ A, is the kth set of partial
assignments to observe.

4 Objective

Our objective is to estimate Y ∗ from some observation Sπk
. To do this, we

consider solving the MAP,

Y ∗ = arg max
y∈Y

P (Y |Sπ1 , . . . , SπK
) = arg max

y∈Y

{
1

Z
P (Y )P (Sπ1

, . . . , SπK
|Y )

}

= arg max
y∈Y

{
1

Z
P (Y )

K∏
i=1

P (Sπk
|Y )

}
, (1)



where Z is a constant factor.
Clearly, considering all possible correspondences in π is intractable.

RANSAC [8] and MLESAC [9] can been viewed as solving Eq. 1 when π con-
tains only randomly chosen partial assignments of fixed size (i.e. ∀k, |πk| = const,
depending on the number of degrees of freedom of the transformation).

In our approach, we differ from RANSAC and MLESAC in two important
ways. First, πk are selected sequentially and on the fly, based on the previous
values observed from π1, . . . , πk−1. This makes our selection process adaptive and
fully data-driven. Second, to allow maximum flexibility with respect to the types
of possible correspondences (i.e. non-rigid transformations), we let |πk| vary; it
will typically increase as the transformation is refined and which is vital for
estimating correspondences for non-rigid transformations..

5 Active Testing Search

Our method attempts to approximately solve the MAP of Eq. 1. To do this,
we begin with a prior on Y , observe π1 using our chosen sensor ψ, compute
the posterior distribution of Y given the new information, Sπ1

, and select the
most promising new set π2 to evaluate based on the posterior distribution. This
process repeats K times and the best correspondence set, defined as the set with
the highest number of inliers, is retained.

5.1 Sensor and Sensor Model

As described previously, our sensor is a function ψ : A → R, with a random
response ψ(A) = SA. We assume the following model

P (SA = sA|Y ) =

{
ξ(SA = sA;θd1), if A ⊂ Y ∗

ξ(SA = sA;θd0), if A 6⊂ Y ∗
(2)

where d = |A|, ξ(SA = sA;θd1) and ξ(SA = sA;θd0) are respectively the pos-
itive and negative distributions and θd1 and θd0 its parameters. We also define
likelihood ratio

r(sA) =
ξ(SA = sA ;θd1)

ξ(SA = sA ;θd0)
. (3)

The sensor score implicitly characterizes the expected geometrical transforma-
tions and depends directly on the number of assignments d in A. For simplicity,
we will assume ξ(·;θd1) and ξ(·;θd0) to be Gaussian and we will describe in Sec. 7
how the parameters of these distributions can be obtained from training data.

Using the Gaussian Processes non-linear regression (GPR) described in [1],
we can estimate the position of a match of a point xAi in XA, which we denote
x̄Ai . The GPR models the geometrical transformation as affine with a small
random nonlinear component, which is spatially correlated and its amplitude
is controlled by a parameter σ2

n. Note that the prediction is based on a partial
assignment A.

We have used GPR to generate the following two sensors:



Assigned Distance We use the predictions from GPR to define the total cost of
assigning the points {x̄Ai } to XB

SA =

N∑
i=1

M∑
j=1

Hi,j · dist(x̄Ai , x
B
j ), (4)

where dist(x̄Ai , x
B
j ) is the Euclidean distance between x̄Ai and xBj and H is the op-

timal assignment matrix computed by the Hungarian algorithm [18] so that SA
is minimal. We make use of an assignment so that we penalize situations where
x̄Ai is positioned solely around a subset of small size of XB .

Number of inliers We also calculate the relative number of points consistent
with the GPR. This is calculated as the ratio over |XA| of the number of points
in XB which have some point {x̄Ai } closer than σ2

n,

SA =
|I|
|XA|

, I =
{
xBj ∈ XB | ∃x̄Ai ,dist(xBj , x̄

A
i ) < σ2

n

}
. (5)

5.2 Hierarchical search

In many datasets, we can select a smaller number of important points BA from
all points XA to be matched, BA � XA. For example, in a dataset created by
segmenting a dendritic tree, the branching points are structurally more impor-
tant than points on the edges connecting the branching points.

Our strategy then is to use the sensor SA = ψ(A) from (4) only on the ‘im-
portant’ points BA, for ‘small’ partial matches A where |A| < δ. For partial
matches bigger than δ, we switch to the sensor (5) evaluated on the full set
of points XA. This allows for a fast search at low depths of the search tree,
which constitutes most of the evaluated proposals πk, and a more discriminative
selection at higher depths.

5.3 Computing Posterior Probability Distributions

In this setting, aggregating observations can be achieved by using a Bayesian for-
mulation. We can compute the posterior distribution when πk has been observed
by

P (Y |Sπ1
, . . . , Sπk

) =
1

Z

[
r(Sπk

)1πk⊂Y + 1πk 6⊂Y

]
P (Y |Sπ1 , . . . , Sπk−1

), (6)

where
Z = r(Sπk

)P (πk) + 1− P (πk) (7)

and r(Sπk
) is defined in Eq. 3. There are two important aspects of (6). First, it

is recursive, allowing the posterior P (Y | Sπ1 . . . Sπk
) to be computed from the

previous posterior. This allows online integration of new information. Second,
the normalization factor Z is independent on Y and can therefore be ignored
when comparing the likelihood of different hypotheses Y .



5.4 Implementation and Algorithm

The search method is given in Algorithm 1. The probabilities P (Y |Sπ1
, . . . , Sπk

)
are stored in a priority queue Q (line 1). Initially, this queue will hold all the ele-
ments of the subspace Aγ with the same likelihood ε = 1/ |Aγ | of being contained
in the true set of correspondences (i.e. uniform prior on Y ). The priority queue
is ordered by the likelihood ε that a partial assignment is correct.

Algorithm 1 Active Testing Search (XA, XB ;K,ψ,θ1,θ0, γ)

1: Initialize Priority Queue: Q← Push(A, 1/|Aγ |), ∀A ∈ Aγ
2: for k = 1 . . .K do
3: {πk, εk} = pop(Q); //choose the most likely πk
4: Sπk = ψ(πk)
5: for y ∈ Cπk do
6: Q← Push(πk ∪ {Y|πk|+1 = y}, εkr(Sπk )/|Cπk |)
7: end for
8: end for
9: return π∗ = arg max{π1,...,πK} Sπk

For each iteration k, we select the partial assignment with the biggest likeli-
hood εk. We use the sensor and compute the noisy score Sπk

= ψ(πk). At this
point we must compute the posterior distribution given this new observation.
To do this, we first generate children Cπk

of πk and insert them into the queue
using (6) (line 6). The queue maintains an unnormalized posterior distribution
to avoid unnecessary computational costs. This process is repeated K times, at
which point we return the assignment π∗ which scored the highest. Our method
does not perform a breadth-first, or depth-first search as in traditional search
strategies. Rather, it is an adaptive strategy which allows constant backtracking
and avoids hand-tune pruning of the search space.

6 Fine alignment

Depending on the choice of K, Algorithm 1 will find only a subset of all inliers.
A fine alignment can be added as a post-processing stage, to identify remaining
inliers and if possibly slightly modifies the transformation. An algorithm such as
the coherent point drift [7] is very well suited for this task. We use the approach
described in [1], which locally finds assignment of the yet unassigned points by
the Hungarian algorithm [18], using the already assigned points as constraints.
The GPR transformation model is updated and the process is iterated until
convergence.

7 Learning the distributions

Given a specific sensor ψ, as described in Sec. 5.1, we need to learn the sensor
model parameters. To reduce the number of degrees of freedom, we assume that



(a) (b) (c)

Fig. 1. Example for values of distributions taken from (a) true correspondences sam-
ples, (b) false correspondences and (c) ratio between the true and false distributions.
The sensor used to compute this example was the number of inliers – described in Eq. 5

Fig. 2. Processing time required by RANSAC and NLGP in comparison to our method
as a function of the number of points

it does not depend on the number of points M of XB , at least when M is of
the same order of magnitude as N .

In general, for a given sensor ψ, an outlier ratio RO and a point set size N , we
learn the parameters θd1 and θd0 as follows: we generate L point clouds XA and
L random affine transformations, together with a nonlinear deformation to each
point from which we compute XB and for which we know the correspondence
Y ∗ – generating a set {{XA}l, {XB}l, Y ∗l }Ll=1. Then, for γ ≤ d ≤ N , we sample
assignments A ∈ Ad such that A ∈ Y and compute SA. Once all N − γ scores
on all L generated sets are computed, we estimate the Gaussian distribution
parameters {θd}Nd=γ = {µd, σd}Nd=γ . The learned probability densities can be
seen in Fig. 1(a).

For the distribution of false correspondences we follow a similar sampling
approach. However, especially for larger correspondences deeper in the tree, we
will mostly encounter correspondences composed of mostly true correspondences,
except for the last one. Therefore, we sample many random false correspondences



(a) (b)

(c) (d)

Fig. 3. Light and electron microscopy neuronal trees. (a): Segmented electron mi-
croscopy data. (b): Segmented light microscope data. (c): Registration of structures
using ATS. (d): Registration using CPD

at lower depths and false correspondences close to the true ones at higher depths.
An example of such distribution can be seen in Fig. 1(b).

In Fig. 1(c), we can see the likelihood ratio between the distributions for true
and false correspondences. This shows that the sensor gets more discriminative
as the size of the partial correspondence being tested increases.

8 Experiments

We present a number of experiments to illustrate the performance of our method
(Active Testing Search – ATS) against state of the art approaches in point
matching, with or without additional structure information. We have tested:
Non-Linear GP (NLGP) [1], Coherent Point Drift (CPD) [7], Iterative Closest
Point [11] and RANSAC [8]. For RANSAC, we test affine transformations from
the random branching points, applying the result on all the nodes.

8.1 Experiments on synthetic data

We generated random two dimensional point data sets with random affine trans-
formation. For the NLGP that requires connection information, a Minimum
Spanning Tree was found. Observe that the processing time (Fig. 2) increases
much faster with both NLGP and RANSAC, while for ATS it stays manageable.



(a) (b) (c)

Fig. 4. Blood vessels in brain tissue. (a): Segmented two photon microscopy data. (b):
Segmented bright-field optical microscopy data. (c): Registration of structures using
Active Testing Search

Fig. 5. Matching and registration of heart angiograms. Left and center: Original
data. Right: Registration of structures using Active Testing Search.

8.2 Experiments on real data

A variety of datasets from medical imaging was collected. The graphs were ex-
tracted through a semi-automatic approach using the Fiji4 platform and its
plugins. In Tables 2 and 3, we can see the error obtained and times elapsed,
respectively, for every method tested. The computed error is the mean distance
of each point to its nearest neighbor in the original data to which the graph was
matched. For ATS and NLGP, we show the coarse and fine alignment algorithm
times separately.

Fig. 3 shows 3D neuronal structures from electron (EM) and light (LM)
microscopy, where electron microscopy data is a nonlinearly deformed subset
of the data light microscopy. The intended application is to automatically lo-
calize the EM volume in the LM volume. Only ATS and NLGP are able to
correctly align the structures. CPD obtains a numerically small error, but as
seen in Fig. 3, the alignment is not correct and the resulting deformation is not

4 http://pacific.mpi-cbg.de



(a) (b)

(c) (d)

Fig. 6. Retinal fundus tree images. (a) and (b): Original data. (c): Registration of
structures using Active Testing Search, (d): Registration using CPD

realistic. The great advantage of ATS over NLGP is the much shorter elapsed
time (Table 3).

In Fig. 4, a blood vessels network in brain tissue is imaged. One of the 3D
image stacks is acquired using a two photon microscope and the other using
bright-filed microscopy after excision and fixation.

In Fig. 5 and Fig. 6, we show 2D datasets of heart angiograms and retinal
fundus images. The angiograms present a nonlinear transformation which is
correctly recovered by the approach. The retinal fundus images present a high
number of outliers in both images. Nonetheless, the algorithm correctly identifies
the alignment. For the data from retinal fundus, the remaining methods do not
recover correctly the alignment, although CPD and ICP present a small error
(Table 2).

Error (pixels)

Dataset (Fig.) ATS NLGP CPD ICP RANSAC

Neuronal ( 3 ) 0.161 0.181 0.563∗ 2.995∗ 0.449∗

Brain tissue ( 4 ) 0.159 0.171 0.164 0.851∗ 0.606∗

Angio. (5 Top) 1.361 1.178 1.232 1.430 12.487∗

Angio. (5 Bottom) 2.072 2.074 2.195 2.122 35.384∗

Retina ( 6 ) 5.587 5.613 5.503∗ 6.524∗ 10.762∗

Table 2. Real data error for ATS and other state of the art methods. * Not correctly
aligned (see Fig. 3(d) or Fig. 6(d) for example)



Elapsed time (seconds)

ATS NLGP
Dataset (Fig.) (coarse+fine) (coarse+fine) CPD ICP RANSAC

Neuronal ( 3 ) 42.4 + 15.8 116.1 + 18.2 22.2 28.2 606.9

Brain tissue ( 4 ) 593.7 + 55.5 15029.1 + 19.9 37.1 30.9 570.7

Angio. (5 Top) 307.8 + 129.4 1240.9 + 162.8 144.3 8.1 1608.1

Angio. (5 Bottom) 167.9 + 77.2 112.0 + 95.4 68.8 5.0 346.5

Retina ( 6 ) 1293.3 + 406.4 5998.9 + 336.8 580.2 24.3 8901.5

Table 3. Processing time for each method and each dataset, in seconds

9 Conclusion

We presented a general approach for the exploration of a tree of possible corre-
spondences between two sets of points, using partial assignments and a Bayesian
model. We have shown how we can include graph constraints to reduce the num-
ber of points, allowing for a faster search. We have also shown that our method
is able to correctly align biological structures that are nonlinearly transformed
and extracted with different techniques. These structures need not to be pre-
aligned. Our method finds the correct alignment for all considered datasets and
is faster than NLGP and RANSAC. It allows a considerably faster exploration
of correspondences over the method which correctly finds a solution for harder
datasets.
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