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Abstract— Industrial environments are rarely static and often
their configuration is continuously changing due to the material
transfer flow. This is a major challenge for infrastructure free
localization systems. In this paper we address this challenge
by introducing a localization approach that uses a dual-
timescale approach. The proposed approach - Dual-Timescale
Normal Distributions Transform Monte Carlo Localization (DT-
NDT-MCL) - is a particle filter based localization method,
which simultaneously keeps track of the pose using an apriori
known static map and a short-term map. The short-term
map is continuously updated and uses Normal Distributions
Transform Occupancy maps to maintain the current state of
the environment. A key novelty of this approach is that it does
not have to select an entire timescale map but rather use the
best timescale locally. The approach has real-time performance
and is evaluated using three datasets with increasing levels of
dynamics. We compare our approach against previously pro-
posed NDT-MCL and commonly used SLAM algorithms and
show that DT-NDT-MCL outperforms competing algorithms
with regards to accuracy in all three test cases.

[. INTRODUCTION

Localization is an essential enabling component of mobile
robotic systems. The importance of accurate positioning is
crucial in modern logistics application scenarios, which rely
on precise and repeatable trajectory following using Auto-
matically Guided Vehicles (AGV). An AGV typically has to
achieve positioning accuracy of under 3 cm, especially dur-
ing loading operations. Moreover, as AGVs are typically non-
holonomic platforms where side position errors are difficult
to correct at destination points, sufficient accuracy has to be
maintained throughout the trajectory. These requirements are
especially hard when the operating environment is dynamic.
A typical logistics application is depicted in Fig. 1, where
autonomous vehicles are used for material transport. Here the
environment dynamics consists of other vehicles and people.
In addition, the configuration is continuously changing due
to semi-static objects, that is, objects that change their
position slowly, e.g. trolleys that are temporarily placed into
the storage area. For this type of environments localization
cannot rely solely on a static map. Current SLAM solutions
are not robust and accurate enough in long-term operation to
be accepted by the industry. Consequently, industry is still
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Fig. 1. An example of the real-world application challenges for localization.
The dynamics of the environment includes people, moving vehicles, and
semi-static layout.

using positioning methods that rely on fixed infrastructure.
This has drawbacks in terms of increased installation costs
and the limited reconfigurability of the system, thus there is
a demand for more flexible solutions.

We build on our previous work in [1]: Normal Distri-
butions Transform Monte-Carlo Localization (NDT-MCL).
It employs the Normal Distributions Transforms (NDT)
representation for an MCL implementation. The NDT is a
piecewise continuous representation, which represents the
space as a set of normal distributions [2, 3]. It is a compact
representation allowing to model the environment with a
significantly lower number of cells than occupancy grid
maps. Moreover, NDT is by nature a likelihood model, which
makes it an ideal candidate to be utilized in MCL. In [1]
it was shown that NDT-MCL provides superior performance
over the occupancy grid-MCL, where occupancy grids cannot
represent the environment accurately, especially in presence
of sensor noise. Moreover, NDT-MCL showed potential
to meet the industrial requirements for both accuracy and
repeatability. However, it was also shown that the accuracy
of the algorithm decreased in a dynamic environments with
semi-static objects.

In this paper we formulate an extension of NDT-MCL
that is designed to provide an accurate and reliable pose
estimate in the presence of substantial structural changes
caused by semi-static obstacles, as illustrated in Fig. 1.
Our approach to the problem is a dual-timescale update



formulation for the NDT-MCL. The first timescale uses the
static map of the environment and the second timescale uses
a short-term NDT Occupancy Map (NDT-OM) [4]-[6] that
is continuously updated based on the expected pose returned
by the algorithm.

We evaluate our approach with several test scenarios with
increasing difficulty: from a stationary environment to one
that undergoes substantial structural changes. The results
show that the dual-timescale NDT-MCL provides equal
performance as the previously proposed NDT-MCL in sta-
tionary environments and superior performance in dynamic
environments with semi-static objects. We also show that our
approach outperforms commonly used SLAM algorithms and
that these algorithms do not provide sufficient accuracy for
industrial requirements.

The main contribution in this paper lies in the proposed
localization algorithm that tolerates substantial changes in
the environment and yet provides superior position accuracy
in real-time. Another key novelty is that our approach does
not have to select an entire timescale map but rather use the
best timescale locally.

The rest of this paper is organized as follows. Sec. 2
presents related work. Sec. 3 describes our extension to NDT-
MCL. Sec. 4 presents the test setup and analyzes the obtained
results. Lastly, Sec. 5 concludes the paper.

II. RELATED WORK

There are several contributions that deal with localization
in dynamic environments. Some of them use static maps
while considering dynamic objects as outliers, e.g. [7, 8].
Although it works well in some applications, it is not
effective if the environment is changing.

An alternative to improve the localization is to use two
maps to distinguish between static and dynamic objects
in the environment. Wolf and Sukhatme [9] propose an
approach that labels every cell into a dynamic map, which
has been detected to change state. In our experiments, this
approach would have rendered most of the space to be
dynamic. Hihnel et. al [10] use an Expectation Maximization
algorithm to classify the outliers from the complete dataset.
The approach is not real-time and focuses on the extraction
of dynamic objects.

Meyer-Delius et. al [11] proposed to use a combination
of temporary maps and a static map for localization in a
dynamic parking lot environment. Localization is done with
a particle filter and the empty parking lot map is used as
static map. Temporary maps are created using scan matching,
which are then kept consistent by using a graph SLAM
approach. The position of the robot is always computed
against the static map, if the observation is explained by
it well enough. If not, then the localization is done with
a temporary map. This method is similar to ours, with an
exception that our approach does not have to select an entire
timescale map but rather use the best timescale locally.
Moreover, we do not have a separate approach for keeping
track of the short-term map, which can be a source of error
as well.

Walcott-Bryant et. al [12] introduced a dynamic pose
graph model, which extends the pose graph model by an-
notating the observations in the nodes. This representation
allows to detect low-dynamic objects, such as a box that
was moved, and to determine if certain nodes are not needed
anymore because of the dynamics. While this approach is
appealing in theory, the resulting accuracy reported in [12] is
low: 3.4-13.3 cm in a fairly simple setup, with low dynamics.
Moreover, the runtime of the algorithm depends on the
number of nodes, which is always the case with pose-graph
based approaches.

An alternative way to deal with the dynamics in the
environment was introduced by Biber and Duckett [13]. They
introduced a spatio-temporal map where the environment
is represented at multiple timescales simultaneously. They
showed that this approach can be used for long-term local-
ization. The major disadvantage of this approach is the need
to store and update large amount of data for the map. Our
approach uses only two timescales, maintained as a compact
NDT-OM representation [4, 5], which has lower memory
requirements. Moreover, unlike [13], the approach introduced
in this paper does not assume that a current observation
belongs to one timescale or another. It always attempts to
employ the static map when possible, but relies on the short-
term map for the parts that are not explained by the static
map.

A. Monte Carlo Localization

Monte Carlo Localization (MCL) [14] is among the most
popular localization approaches in the robotics community.
MCL is a probabilistic, map based localization approach that
has been shown to be robust in real-world scenarios [14]—
[16].

MCL estimates the posterior of the robot pose
p(x¢|ug, z¢,m), given a map m, a sequence of controls

ug = {ul,...,u'}, and a sequence of observations z; =
{21, ..., 2}, ie.,

p(@e | ug, 2, m) = np(2¢ | we,m)
fr,,_l p(ay | we, we—1)p(@e—1 | Ze—1, up—1, m)day

(D

with 7 a scaling factor, p(2;|x¢, m) the measurement model,
p(x¢|ug, x4—1) the motion model, and p(x;—1|z¢—1, ut—1, m)
the posterior of the previous state.

MCL uses a particle filter to solve Eq. 1, estimating the
pose posterior with a set of N weighted particles:

AN
p(me | ue, 2e,m) o< {af, wi}, (2)

where z¥ is one pose sample and wf is a weight associated

to it. In this work we consider localization in the 2D-plane,
so a pose z¥ € R3 is represented with (z,y) the position
and the heading of the robot.

MCL estimation consists of three steps: 1) prediction, 2)
update and 3) resampling. The prediction step implements
the motion model by applying the control for each particle
and generating noise according to the model. We use the
so called odometry model, i.e. given two odometry readings

x¢_, and 29 we compute the differential motion dz{_; with



respect to z¢_,, so that zf = z¥ ,®dzi_,, where & is
the 2D pose compounding operator [17]. Since dzt ; is
affected by noise in the odometry measurement, a normally
distributed noise vector o, € R3, proportional to relative
motion, is added for each particle. In this work we use 10%
odometry error to simulate such a noise. The prediction is
done by transforming each particle pose according to Eq. 3:

o =af o (dat |+ o). 3)

Next, in the update step, the measurement model is used
to evaluate the likelihood of observations given a state.
Finally, a resampling step is needed in order to avoid particle
divergence [18, 19].

However, in prior contributions, MCL has not been re-
ported to reach the precision requested by industrial ap-
plications [14]-[16]. Rowekamper et al. in [16] analyzed
the accuracy of an MCL localization system with KLD-
sampling and reported mean MCL errors of approx. 6 cm in
a repeatability test. Their solution for improving the accuracy
was to perform scan matching alignment to reach accurately
the final pose. Unfortunately this approach only works for
holonomic vehicles, while the majority of AGVs are non-
holonomic and cannot reliably correct their position and ori-
entation over a short trajectory. Moreover, it is unclear how
well ICP type of scan matching performs if the environment
changes substantially.

III. DUAL-TIMESCALE NDT-MCL
A. NDT-MCL

Normal Distribution Transform Monte-Carlo Localization
(NDT-MCL) was introduced in [1]. It employs NDT [2, 3] to
represent both, the map and the measurements. NDT assumes
that a measurement is represented in the sensor coordinate
frame with a set of N, points z! = {pi}ﬁvztl, where p; € R?
or p; € R®. In this paper we assume that a measurement
corresponds to a 2D laser scan. Thus, such a measurement
is transformed to an NDT representation by accumulating the
range points in a regular grid and then computing the mean
and covariance estimates for each grid cell containing points.
As a result, the measurement is represented with a set of
N normal distribution parameters z; = {;, Ei}f\f{, where
typically NV,; < N;. The result describes the probability of
a point being measured at a particular physical location and
thus can directly serve as a likelihood model.

An NDT map is a regular grid containing the estimated
normal distribution parameters of the mapped environment.
We used the recursive implementation described in [4] to
build an NDT map. The map is maintained in a grid repre-
sentation for an efficient access to the Gaussian components,
however, for sake of notation we can assume that the map is
a set of normal distribution parameters m = {y;, %; };V:’"l

We now consider a particle pose ¥, represented as a rota-
tion matrix Ry and translation ¢; with respect to the global
frame of reference. Now, the likelihood of a measurement
Z;, given the map m and the state z¥, can be given as the
Ls-likelihood [20],

L5(z | xf,m) =
N = Na -
S Sl diewp(— % pl (RS RE 4 55) ™ i)

where p;; = Ry + ti, — iy, and dy and dy are scaling
parameters. Eq. 4 computes the likelihood over measurement
Z; and all map components. In practice we approximate Eq. 4
by finding the cell from the map that corresponds to the mean
i = Ry u; + t, and search the local neighborhood in order
to find the closest normal distribution to zi;. The update step
computes the weights for each particle as:

4

1
wy = 71105 L5 (5)

We use a basic resampling approach [19], which is trig-
gered when the variance of the weights grows over a given
threshold. To obtain the final pose estimate we use the
maximum aposteriori estimate over the particles.

In this work we do not consider global initialization and
thus the filter is initialized to a known initial location with
a given variance.

B. Dual-Timescale NDT-MCL

The original formulation of NDT-MCL uses a static map
for measurement updates. This means that when the environ-
ment changes, the correspondence between the map and the
observation is reduced. In severe cases this results in wrong
associations between map and observation, which causes the
pose distribution to diverge. On the other hand, in [1] it was
shown that the maximum aposteriori estimate of NDT-MCL
is very accurate in static environments. The accuracy also
decreased minimally in the presence of dynamic objects (e.g.
moving persons). This gives us a reason to assume that if the
environment, within a certain time interval, is not completely
altered, we can use the pose estimate of the NDT-MCL to
build a consistent map. This “short-term map” describes the
current state of the environment and is used in this paper to
improve localization.

The localization process is divided into two parts: 1)
localization with a known map and 2) mapping with a known
pose. We use both maps in the measurement update step,
however, unlike in [13], we do not assume that our current
observation belongs to one timescale or another. Instead, we
always use the static map if possible and the short-term map
only for the parts that are not sufficiently explained by the
static map. This provides the advantage to ground the pose
estimates against the static map reference frame whenever
possible. This gives us a continuous “loop-closing”, which
keeps the short-term and the static map aligned.

An overview of the Dual-Timescale NDT-MCL is given
in Algorithm 1.

C. Short-Term Mapping
We use the Normal Distribution Transform Occupancy
Map (NDT-OM) representation [4]-[6] for the short-term

map. NDT-OM is an NDT map, which also models the oc-
cupancy of the space. It has been shown to be robust against



Algorithm 1: Dual-Timescale NDT-MCL pseudocode

Prediction (Eq. 3)
Build a local NDT map from the observation
forall Particles p; do
L2 ~—0
Transform local NDT map according to p;
forall NDTs in Local map, i = 1...N do

12; « L2(STATIC MAP, N DT5)

if 12; < & then

| {2; - L2(SHORT-TERM MAP, NDT;)p(c; = 1)

Ly = Lo+ 124

Normalize

Resample

Compute current pose

if trace(Xposition) < 7y then
| Update short-term map

dynamic changes [4] and provides a good performance in
long-term operations [5].

We use the maximum aposteriori pose estimate directly
obtained from the particle filter for updating the NDT-OM.
However, we only update the map when the pose estimate
is reliable enough. One measure of pose uncertainty is
the determinant of the pose covariance. However, as noted
in [21], the covariance might easily become ill defined, with
one or more eigenvalues near 0. Instead, we chose to use
the trace of the covariance of the position estimate. Thus,
confidence in the pose estimate in this paper is based on
thresholding the trace with an experimentally selected value
(see Sec. IV-B).

For every timestep ¢ the short-term NDT-OM is repre-
sented with a set of N,,, Gaussian components:

my = {ij Zjvpj }jvzmlt > (6)
where p; and X; are the current mean and covariance
estimates and p; is the occupancy probability, which rep-
resents the confidence of existence attached to the normal
distribution parameters.

In [6] and [5] two parameters were introduced that affect
the behavior of NDT-OM in dynamic environments. The first
one is an occupancy clamping limit, which in effect limits
the maximum and minimum confidence that a cell can have.
The second parameter is the so called covariance adaptation
weight, which sets the rate for the covariance recency weight-
ing. In our tests, we found that these parameters have a minor
effect on localization accuracy as long as the occupancy limit
is set high enough (>100) and the covariance adaptation
weight is also set to a large enough value (> 250).

D. Measurement update using two timescales

The measurement update process for dual-timescale NDT-
MCL follows closely that of NDT-MCL, with the exception
of the timescale selection. That is, the update step computes
the weights for each particle as

wf o wfﬁng(Zt | xf,ms,mt), 7

where L5(z; | aF ms,m;) is the observation likelihood
between Zz; given both the static map ms and the short-term
map mg.

To compute the observation likelihood the measurement
is projected according to the predicted pose of the corre-
sponding particle. After the projection, the observation is a
set of N,; normal distribution parameters z; = {u;, E,}fvzz{
transformed with respect to the global map. Then, for each
observed NDT c,;, we search for the closest normal distribu-
tion ¢4, from the static map and evaluate the L2-likelihood
between them,

L2(Czivcmi) =
—\Mzi — Mme T Pzi va' -1 zt — Hme
ey (Lt (P Bo) s =)

where p,; and P,; are the mean and the covariance of c,;
and pi,,; and P,,; are the mean and covariance of c¢,,;. If the
obtained likelihood is above a given value, we choose the
component to belong to the static timescale, otherwise we
repeat the procedure with the short-term map.

When an observation is selected to belong to a short-term
map, we also observe the occupancy value, p(c; = 1), of the
short-term map cell ¢;. Thus, for this case, our observation
model is defined as follows,

plezives =1 af,me) = pless |t mo)ple; = 1|y, my)

X L2(Czia Cmti)p(ci = 1)7

where c¢,,; is the normal distribution from the short-term
map closest to c.;. The occupancy describes the confidence
of existence of an NDT within that cell. Therefore, if an
NDT in the short-term map has low confidence, it should
have a small effect in the measurement update.

Thus, the observation likelihood in Eq. 7 becomes

Lg(zt ‘ xf’mmmt) =

i=1 LQ(Cziycmf,i)p(ci == 1)

if L2(02i7crni) > ¢
, otherwise

@

where ¢, ; 15 the normal distribution from the static map
closest to c,;.

The value for £ can be chosen adaptively, e.g., based on
the mean observation likelihood. However, in our tests we
found that a fixed value (0.4) is sufficient to provide good
performance in all tested conditions (See IV-B).

IV. TESTS AND RESULTS
A. Test Setup

All evaluation data were collected using a commercial
Automatically Guided Vehicle (AGV) system from Koll-
morgen'. This allows us, apart from collecting odometry
and laser scans (SICK S300), to obtain pose estimates with
a reflector based localization system [22], which are used
as ground truth. The platform has the same kinematics as
normal forklift based AGV’s but is smaller in size, see

"http://www.kollmorgen.com



(a
(a) The trajectory used in all test scenarios in the evaluation (red). The ellipses (yellow) encodes the NDT representation for occupied cells,
which in this figure was obtained using the static dataset. (b) Two snapshots taken during the dynamic scenario. (c) Two snapshots taken during the boxes
scenario, in the beginning (top) and in the middle (bottom).3

Fig. 2.

Fig. 2c. All different test scenarios used the same predefined
trajectory, which was executed by the AGV system at 1m/s
for most parts, see Fig. 2a.

The output of each localization method was compared to
the ground truth reflector based pose estimate. The metric
used is the Absolute Trajectory Error (ATE) [23]%. All
datasets were recorded in a basement at Orebro Univer-
sity (referred to as “basement” hereafter) of a size ap-
prox. 25 x 25 meters. In the area we mounted 22 pre-
mapped reflectors in order to assure accurate ground truth
pose information with position error < 1 cm and orientation
errors < 0.005 rad.

Three test scenarios were selected for the evaluation: 1)
static, 2) dynamic and 3) boxes. The static test was performed
without any additional obstacles or moving people. The
dynamic test contains additional obstacles and people that
moved around in the vicinity of the vehicle. The obstacles
were moved around throughout the experiments (see Fig-
ure 2b). During the boxes scenario, four persons spread boxes
around the basement making the layout to gradually change
substantially (see Figure 2c). At the end of the experiment
the boxes were gradually removed, such that the final state
of the basement was identical to the initial configuration®.
The trajectory lengths in the three scenarios were: 298.8 m
(static), 298.9 m (dynamic) and 1135.9 m (boxes).

In all experiments we used 150 particles for the filter. A
single core implementation of DT-NDT-MCL was found to
run at a rate of 30-40HZ with a 0.4m map resolution when
processed with an Intel Core i7 CPU at 1.60GHz.

B. Parameter Analysis and Selection

DT-NDT-MCL introduces two parameters: The value for
the L2 threshold, &, in Eq. 9, and the value for the pose co-
variance trace, v, in Algorithm 1. The parameter & determines
how much we trust the static map. Setting £ high means that
the observation and the static map components must be a

2ATE implementation from the Rawseed Project
(http://www.rawseeds.org) was used
3A video of the experiment is available at:

http://www.youtube.com/watch?v=07q1v960ZgE
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Fig. 3. The effect of DT-NDT-MCL parameters to localization accuracy.
The x-axis is the L2 threshold £ in Eq. 9, the y-axis is the position accuracy
threshold « in Algorithm 1, and the z-axis is the ATE. The large flat area
indicates that the accuracy stays low for a large range of parameters values.

nearly perfect match. Setting £ low allows components to be
matched even if they are far from each other. The parameter ~y
is used to prevent map updates when the pose is uncertain.
Too low values of « require the pose to be very accurate and
may prevent the short-term map to be updated. Too high
values may cause the map to be updated with uncertain pose
information and cause inconsistency in the short-term map.

Fig. 3 illustrates the effect of these parameters in a
localization test. The test was conducted by running the
boxes dataset with several parameter combinations. Fig. 3
shows that the algorithm is not very sensitive to . Any
value between 0.005 and 0.015 provides similar performance.
For parameter &, values between 0.2 to 0.4 gave the best
performance according to Fig. 3. For all tests we selected
¢ =04 and v = 0.01.

C. Accuracy Test for Different Map Resolutions

This test is conducted by running each dataset using a
wide variety of resolutions, i.e. varying the size of the NDT-
OM cells. This evaluation serves two purposes: 1) to verify
that the previous approach NDT-MCL is insufficient in the



TABLE I
MINIMUM MEAN ERRORS IN ACCURACY TESTS.

[ Dataset_| NDT-MCL [ DT-NDT-MCL ]
Static 1.6cm Q@ resolution: 0.2m 1.5cm @ resolution: 0.3m
Dynamic | 1.7cm @ resolution: 0.4m | 1.8cm @ resolution: 0.6m
Boxes 11.2cm @ resolution: 1.6m | 2.2cm @ resolution: 0.5m
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Fig. 4. Resolution tests with the static dataset
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Fig. 5. Resolution tests with the dynamic dataset

case where we have semi-static objects, and 2) to check the
sensitivity of the method with respect to map resolution.

Both, Fig. 4 and Fig. 5 show that the performance of
DT-NDT-MCL and NDT-MCL is comparable in a static
environment and in a crowded environment over a wide range
of resolutions.

Fig. 6 shows the results of the boxes dataset. With this
dataset it becomes clear that using only a static map is not
sufficient, when the layout changes substantially. DT-NDT-
MCL on the other hand maintains its performance even in
these conditions. This is further confirmed in Table I, which
summarizes the best mean error values in the experiments.

D. Comparisons with SLAM algorithms

DT-NDT-MCL utilizes two maps, a static and a short-
term map. Another approach would be to dispose off the
static map and completely work with a continuously updated
short-term map, i.e. use SLAM. This section evaluates the
performance of the three test scenarios for different SLAM

0.51~ DT-NDT-MCL |
NDT-MCL

041 _— - 7

I~
0.1 | T

I~

06 07 08 09 1 L1213
Map resolution (m)

L 4+ I
02 03 04 05

Fig. 6. Resolution tests with the boxes dataset

methods: gmapping [24]*, mapping and tracking based on the
NDT-2-NDT registration [20] and a ROS implementation of
Pose SLAM [257]°.

The first approach, gmapping [24] is a particle filter based
SLAM approach that is widely used and known to be robust.
The second approach, the NDT-2-NDT mapping and tracking
approach uses a maximum likelihood principle to build a
map incrementally by matching the current observation to the
map [6, 26]. In addition we implemented a false matching
detection based on the odometry noise model to prevent false
matches, due to the heavily crowded environments, to be
added to the map. The third approach, Pose SLAM [25] is a
variant of SLAM where only the robot path is estimated and
where landmarks are only used to produce relative constraints
between robot poses. In Pose SLAM a probabilistic estimate
of the robot pose history is maintained as a sparse graph
using an information filter. Graph links indicate relative geo-
metric constraints between robot poses, and the density of the
graph is rigorously controlled using information measures.
To enforce sparseness in Pose SLAM, only the non redundant
poses and the highly informative links are added to the
graph. A new pose is considered redundant when it is too
close to another pose already in the trajectory and not much
information is gained by linking this new pose to the map.
However, if the new pose allows to establish an informative
link, both the link and the pose are added to the map. The
Pose SLAM implementation used for this paper uses the
odometric data from the platform and the Iterative Closest
Point (ICP) [27] registration method in the front-end.

The comparison is depicted in Figure 7 and summarized
in Table II. The boxes scenario clearly showed to be the
most difficult one. Gmapping handled the boxes dataset
comparably well, which could be explained due to the
multiple hypotheses entailed in the filter. The NDT-2-NDT
mapping and tracking works well for the static and crowded
environments, but clearly fails in the boxes experiment. Pose
SLAM behaved comparably well during the three scenarios
and for the boxes dataset it notably obtained the best per-
formance compared to the rest of the mapping approaches,

4We used the ros—fuerte-slam-gmapping package.
Swiki.ros.org/iri_poseslam



TABLE I
MEAN ERROR VALUES IN SLAM COMPARISON.

[ Method | Static | Dynamic | Boxes |

Gmapping 4.88cm 8.36cm 11.7cm

NDT2NDT 1.66cm 3.27cm 66.1cm

Pose SLAM 6.59cm 8.30cm 9.59cm

DT-NDT-MCL | 1.56cm 1.58cm 2.35cm

0.9
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0.6 DT-NDT-MCL i

Eosf ,

j4a)

2 04f B
03f 1
02f I ,
01F T ,

0 STATIC DYNAMIC BOXES
Datasets
Fig. 7. Comparisons with SLAM algorithms

being able to sustain such a cluttered environment given its
large path length. In all tests, DT-NDT-MCL provides the
best performance, being constant despite the large change
of the conditions. For all other methods the error grows
substantially when compared to the static test. DT-NDT-
MCL, however, provides an excellent 2.35cm mean ATE
even with the boxes dataset.

V. CONCLUSIONS

In this paper we introduced a localization algorithm that
tolerates substantial changes in the environment. The pro-
posed DT-NDT-MCL algorithm uses two maps to achieve
this; a static map and a short-term map, which is contin-
uously updated. We showed that the algorithm maintains
accuracy in extremely dynamic environments where current
state-of-the art methods fail. We also analyzed the parameters
used by the algorithm and showed that the algorithm is not
particularly sensitive to parameter selection.

In future work the algorithm will be tested in scenarios
where also long-term effects play a role (such as when a
part belonging to a static map is removed completely). Such
events also require adaptation of the static map, and possibly
introduce a need for more than two times cales.
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