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Abstract: Water systems are a challenging problem because of their size and exposure to
uncertain influences such as the unknown demands or the meteorological phenomena. In this
paper, two different stochastic programming approaches are assessed when controlling a drinking
water network: chance-constrained model predictive control (CC-MPC) and tree-based model
predictive control (TB-MPC). Under the former approach, the disturbances are modelled as
stochastic variables with non-stationary uncertainty description, unbounded support and quasi-
concave probabilistic distribution. A deterministic equivalent of the related stochastic problem
is formulated using Boole’s inequality and a uniform allocation of risk. In the later approach,
water demand is modelled as a disturbance rooted tree where branches are formed by the most
probable evolutions of the demand. In both approaches, a model predictive controller is used to
optimise the expectation of the operational cost of the disturbed system.
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1. INTRODUCTION

The management and control of water systems is a
challenging problem due to different sources of uncertainty.
The availability of historical data allows to accurately
predict the behaviour of the system disturbances over
large horizons but still a meaningful degree of uncertainty
is present. Besides uncertainty, water systems often
exhibit other complicating features such as multi-variable
interactions, transport delays, hard constraints on the
system variables, or multiple conflicting control goals.
Due to all these problems, model predictive control
(MPC) has been proposed as a suitable technique to
control water systems, see a further discussion in Ocampo-
Martinez et al. [2013]. By using MPC, it is possible to
explicitly incorporate the aforementioned features into an
optimisation problem in a systematic manner. To this end,
a mathematical model of the system is used to predict its
future behaviour, which is optimised in a receding horizon
fashion according to a given performance index over a
certain prediction horizon [Maciejowski, 2002].
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(FP7-ICT-2011-8-31855), the EU Network of Excellence Highly
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This paper focuses on the way that uncertainty can be
faced from an MPC framework in the control of drinking
water networks (DWN). The simplest way to do this is
by ignoring the explicit influence of disturbances or using
their expected value. Unfortunately, this approach may
lead to poor control performance or frequent constraints
violation. As discussed in Cannon et al. [2007], alternative
approaches of MPC for stochastic systems are based on
min-max MPC, tube-based MPC, and stochastic MPC.
The first two consider disturbances to be unmeasured but
bounded in a predefined set, which is more conservative
and reduces the control performance due to the worst-case
nature of the schemes. On the other hand, the stochastic
MPC considers a more realistic description of uncertainty,
which leads to less conservative control approaches at the
expense of a more complex modelling of the disturbances.
The stochastic approach has a mature theory in the field of
optimisation [Calafiore and Dabbene, 2006], but a renewed
attention has been given to the stochastic programming
techniques as powerful tools for control design, see, e.g.,
Calafiore et al. [2011] and references therein.

From the wide range of stochastic MPC methods, this
paper focuses on tree-based MPC (TB-MPC) and chance-
constrained MPC (CC-MPC). Regarding TB-MPC, see,
e.g., Raso et al. [2009] and Lucia et al. [2013], uncertainty



is addressed by considering simultaneously a set of
possible disturbance scenarios modelled as a rooted tree,
which branches along the prediction horizon. On the
other hand, CC-MPC [Schwarm and Nikolaou, 1999] is
a stochastic control strategy that describes robustness
in terms of probabilistic (chance) constraints, which
require that the probability of violation of any operational
requirement or physical constraint is below a prescribed
value, representing the notion of reliability or risk of the
system. By setting this value properly, the operator/user
can trade conservatism against performance. Relevant
works that address the CC-MPC approach in water
systems can be found in Geletu et al. [2013], Ouarda and
Labadie [2001] and references therein.

The main contribution of this paper consists in the design
and assessment of TB-MPC and CC-MPC controllers
applied for the operational management of a drinking
water network (DWN), discussing their advantages and
weakness in the sense of applicability and performance.
The particular case study is related to the DWN of
Barcelona (Spain).

The reminder of the paper is organised as follows. Section
2 states the control problem, describing its formulation
within both TB-MPC and CC-MPC frameworks addressed
in this paper. Section 3 describes the case study consisting
in a small DWN, where the proposed approaches are
evaluated. Section 4 highlights the concluding remarks and
some future research directions.

2. STOCHASTIC MPC FORMULATIONS

2.1 Problem Statement

MPC uses a mathematical model to calculate the optimal
control actions according to a given cost function [Macie-
jowski, 2002]. In this paper, it is assumed that the system
behaviour can be described at each time instant k ∈ Z by
the following discrete-time difference equation:

xk+1 = Axk +Buk + Ewk, (1)
where xk ∈ Rnx is the state of the system, u ∈ Rnu is
the vector of manipulated variables, and w ∈ Rnw is a
vector of measurable disturbances. Moreover, A,B, and
E are time-invariant matrices of proper dimensions. It is
also considered that the system is subject to hard state
and input constraints, which can be posed as

x ∈ X , {xk ∈ Rnx | Gxk ≤ g, ∀k}, (2a)
u ∈ U , {uk ∈ Rnu | Fuk ≤ f, ∀k}, (2b)

where X and U are closed polyhedra defined by a system
of linear inequalities. In this sense, G ∈ Rcx×nx , g ∈ Rcx ,
F ∈ Rcu×nu , f ∈ Rcu , being cx and cu the number of state
and input constraints, respectively.

The control goal is to minimise a convex (possible
multi-objective) cost function `(x, u) : X × U → R,
which might bear any functional relationship to the
operating cost of the system. From the model in (1), let
w[k:k+N−1] ,

(
wk, wk+1|k, . . . , wk+N−1|k

)
be the sequence

of disturbances over a fixed time prediction horizon
N ∈ Z+. The first element of the sequence is measured,
while the rest of the elements, i.e., wk+i|k, denote estimates
of future disturbances computed by an exogenous system

and available at each time instant k. Hence, the MPC
controller design is based on the solution of the following
finite horizon optimisation problem (FHOP):

min
ū[0:N−1]

N−1∑
i=0

`(x̄i, ūi) (3a)

subject to:
x̄i+1 = Ax̄i +Būi + Ew̄i, (3b)
x̄i+1 ∈ X , (3c)
ūi ∈ U , (3d)
x̄0 = xk, w̄0 = wk, (3e)

w̄i = wk+i|k ∀i ∈ ZN−1
1 , (3f)

where vectors x̄,ū, and w̄ denote the predicted value of the
states, inputs and measured disturbances at the prediction
step i. Notation Zba expresses the set of integer numbers
from a to b, both limits included, i.e., {a, a+ 1, . . . , b}.
Assuming that (3) is feasible, i.e., there exists a non-empty
solution given by the optimal sequence of control inputs
ū∗[0:N−1] , (ū∗0, ū

∗
1, . . . , ū

∗
N−1), then the receding horizon

philosophy commands to apply the control action
uk = κmpc(xk, w[k:k+N−1]) = ū∗0, (4)

and disregards the rest of the sequence of the predicted
manipulated variables. At the next time instant k, the
FHOP (3) is solved again using the current measurements
of states and disturbances and the most recent forecast of
these latter over the next future horizon.

Given the stochastic nature of future disturbances, the
prediction model (3b) involves exogenous additive uncer-
tainty, hence, the compliance of constraints for a given
control input cannot be ensured. This means that, even if
the predictive controller finds a feasible solution to achieve
the operational goals, there is a certain probability that
real outputs may violate constraints. Therefore, the use
of SMPC strategies may allow to establish a trade-off
between robustness and performance.

2.2 CC-MPC

As pointed out before, the optimal solution to (3) does
not always imply feasibility of the real system due to
the stochastic nature of disturbances. Therefore, it is
appropriate to relax the original constraints in (2a) with
probabilistic statements in the form of chance constraints.
In this way, state constraints are required to be satisfied
with a predefined probability to manage the reliability of
the system as follows:

P [xk ∈ X ] ≥ 1− δx, ∀k ∈ Z+, (5)
where P denotes the probability operator and δx ∈ (0, 1)
is the risk acceptability level of constraint violation for the
states. Let (5) be rewritten as

P
[
G(j)xk ≤ g(j), ∀j ∈ Zcx1

]
≥ 1− δx, ∀k ∈ Z+, (6)

where G(j) and g(j) denote the jth row of G and g,
respectively. Hence, this probabilistic constraint is in the
form of the so called joint chance constraint, which requires
that the cx element-wise inequalities have to be jointly
fulfilled with the given probability at each time instant i.

In general, joint chance constraints lack from analytic
expressions due to the involved multivariate probabil-
ity distribution. Nevertheless, sampling-based methods,



numeric integration, and convex analytic approxima-
tions exists, see e.g., Calafiore and Dabbene [2006] and
references therein. In this paper, (6) is approximated
following the results in Prékopa [1995] and Nemirovski
and Shapiro [2006] by upper bounding the joint constraint
and assuming a uniform distribution of the joint risk
among a set of individual chance constraints that are
later transformed into equivalent deterministic constraints
under the following consideration:
Assumption 1. Each disturbance in w follows a log-
concave univariate distribution, which stochastic descrip-
tion is known.

Given the dynamic model in (1), the stochastic nature of
the disturbances w makes the states x to be also stochastic
variables. Then, it follows for all time instants that

FGx(g) = P
[{
G(1)x ≤ g(1), . . . , G(cx)x ≤ g(cx)

}]
. (7)

Defining the events Cj ,
{
G(j)x ≤ g(j),

}
, ∀j ∈ Zcx1 , and

their complements Ccj ,
{
G(j)x > g(j),

}
, then it follows

that
FGx(g) = 1− P

[
(Cc1 ∪ . . . ∪ C

c
cx

)
]
≥ 1− δx. (8)

Taking advantage of the union bound, the Boole’s inequal-
ity allows to bound the probability of the second term in
the left-hand side of (8), stating that the probability that
at least one event happens is no longer than the sum of the
individual probabilities [Prékopa, 1995]. Hence, it follows
that

cx∑
j=1

P
[
Ccj
]
≤ δx ⇔

cx∑
j=1

(
1− P

[
Cj
])
≤ δx. (9)

At this point, a set of constraints arise from previous
result as sufficient conditions to enforce the joint chance
constraint (6), by allocating the joint risk δx in cx separate
risks δx,j , j ∈ Zcx1 . These constraints are:

P
[
Cj
]
≥ 1− δx,j , ∀j ∈ Zcx1 , (10)

cx∑
j=1

δx,j ≤ δx, (11)

0 ≤ δx,j ≤ 1, (12)
where (10) forms the set of cx resultant individual
chance constraints, which bounds the probability that each
inequality of the receding horizon problem may fail; and
(11) and (12) are conditions imposed to bound the new
single risks in such a way that the joint risk bound is not
violated. Any solution that satisfies the above constraints,
is guaranteed to satisfy (6). Assigning, e.g., a fixed and
equal value of risk to each individual constraint, i.e.,
δx,j = δx/cx, satisfies (11) and (12) [Nemirovski and
Shapiro, 2006].

After decomposing the joint constraints into a set of
individual constraints, the deterministic equivalent of
each separate constraint may be used given that the
probabilistic statements are not suitable for algebraic
solution. Such deterministic equivalents might be obtained
following Charnes and Cooper [1963]. Assuming a known
(or approximated) quasi-concave probabilistic distribution
FEw(b) = P[Ew ≤ b] for the effect of the stochastic
disturbance in the dynamic model (1), then it follows that

P
[
G(j)xk+1 ≤ g(j)

]
≥ 1− δx,j

⇔ G(j) (Axk +Buk) ≤ g(j) − zδx,j
, (13)

where zδx,j
, F−1

G(j)Ewk
(1− δx/cx) is the quantile function

of G(j)Ewk. Given that the state x is also a stochastic
variable, the above deterministic equivalent should be
considered in terms of the expectation of the variables. In
this way, the original constrained set X is contracted with
the effect of the cx deterministic equivalents and replaced
in (3c) with the stochastic feasibility set Xs given by

Xs , {x̄ ∈ Rnx | ∃u ∈ U ,
G(j) (Ax̄k +Būk) ≤ g(j) − zδx,j

}, ∀j ∈ Zcx1 . (14)

The reformulated predictive controller solves the following
deterministic equivalent FHOP for the expectation E[·] of
the cost function in (3a):

min
ū(0:N−1)

N−1∑
i=0

E [`(x̄i, ūi)] (15a)

subject to: (3b), (3d), (3e), (3f),
x̄i+1 ∈ Xs. (15b)

2.3 TB-MPC

The deterministic equivalent CC-MPC proposed before
might be still conservative if the probabilistic distributions
of the stochastic variables are not well characterized or
do not lie in a log-concave form. Therefore, this section
presents a TB-MPC strategy that relies in scenario-trees to
approximate the original problem, dropping Assumption 1.
The approach followed by TB-MPC is based on modelling
the possible scenarios of the disturbances as a rooted tree.
This means that all the scenarios start from the same
expected disturbance value. From that point, the scenarios
must remain equal until the point in which they diverge
from each other, which is called a bifurcation point. For
instance, consider two scenarios a and b defined by the
sequences wa[0:N−1] and w

b
[0:N−1] and let kbp be the moment

in which they diverge, then wak = wbk for k ≤ kbp and
wak 6= wbk for k > kbp.

Notice that before a bifurcation point, the evolution
followed by the disturbance cannot be anticipated because
different evolutions are possible. For this reason, the
controller has to calculate control actions that are valid
for all the scenarios in the branch. Once the bifurcation
point has been reached, the uncertainty is solved and the
controller can calculate specific control actions for the
scenarios in each of the new branches. Hence, the outcome
of TB-MPC is not a single sequence of control actions, but
a tree with the same structure of that of the disturbances.
As in standard MPC, only the first element of this tree
is applied (the root) and the problem is repeated in a
receding horizon fashion.

The easiest way to understand the optimisation problem
that has to be solved in TB-MPC is to solve as many
instances of Problem (3) as the number Ns of scenarios
considered. Due to the increasing uncertainty, it is neces-
sary to include non-anticipativity constraints [Rockafellar
and Wets, 1991] in the MPC formulation so that the
calculated input sequence is always ready to face any
possible future bifurcation in the tree. More specifically,
if ua[0:N−1] and ub[0:N−1] are the input sequences that
correspond respectively to the scenarios a and b calculated



Figure 1. Topology of the Three-tanks DWN example

according to Problem (3), then the non-anticipativity
constraint uak = ubk has to be satisfied whenever wak = wbk
in order to guarantee that the set of inputs uj[0:N−1] with

j ∈ ZNs
1 forms a tree with the same structure of that of

the disturbances.

In this way, the TB-MPC controller has to solve the
following FHOP, accounting for the Ns ∈ Z+ scenarios,
each with probability pj ∈ [0, 1] and

∑Ns

j=1 pj = 1:

min
ū
j

[0:N−1]

Ns∑
j=1

(
pj

N−1∑
i=0

`(x̄ji , ū
j
i )

)
(16a)

subject to:
x̄ji+1 = Ax̄ji +Būji + Ew̄ji , (16b)

x̄ji+1 ∈ X , (16c)

ūji ∈ U , (16d)

x̄j0 = xk, w̄j0 = wk, (16e)

w̄ji = wjk+i|k, ∀i ∈ ZN−1
1 , (16f)

ūai = ūbi if w̄ai = w̄bi , ∀a, b ∈ ZNs
1 . (16g)

Remark 1. The number of scenarios used to build the
rooted tree should be determined regarding the compu-
tational capacity and the probability of risk that the
manager is willing to accept. ♦

3. A DRINKING WATER NETWORK CASE STUDY

3.1 Case Study Description

This section briefly describes a motivational example
useful to assess SMPC approaches to solve multi-objective
control problems attained to DWNs subject to stochastic
disturbances and constraints. The case study consists of
a small but representative example of a DWN that has
to supply certain water demands by making optimal use
of water sources and network components in order to
minimise economic costs and guarantee service reliability.
In general, the DWN operation is driven by the electricity
prices and the exogenous and endogenous demands. The
system under study is a portion extracted from the
Barcelona DWN reported in Ocampo-Martinez et al.
[2013]. In Fig. 1, a schematic representation of the DWN

example is shown, which contains two water sources, three
tanks, six manipulated actuators, four demand sectors and
two intersection nodes.

3.2 Control-oriented Model

Consider a directed graph abstracted from Fig. 1. Setting
the volume in storage tanks as the state variables x ∈ Rnx ,
the flow through the actuators as the manipulated inputs
u ∈ Rnu , and the demanded flows as additive measured
disturbances d ∈ Rnd , then the control-oriented model
of the network may be abstracted from the connectivity
analysis and described by the following set of discrete
difference-algebraic equations for all time instant k ∈ Z+:

xk+1 =Axk +Buk +Bpdk, (17a)

0 =Euuk + Eddk, (17b)
where (17a) and (17b) describe the mass balance equations
for storage tanks and intersection nodes, respectively.
Moreover, A, B, Bp, Eu and Ed, are time-invariant
matrices of dimensions dictated by the network topology.
Assumption 2. The states in x and the demands in d are
observable at time k, and the pair (A,B) is controllable.
Assumption 3. The realisation of disturbances at the
current time instant k may be decomposed as

dk = d̄k + ek, (18)
where d̄k ∈ Rnd is the vector of expected disturbances,
and ek ∈ Rnd is the vector of forecasting errors with non-
stationary uncertainty and a known (or approximated)
quasi-concave probability distribution D. Therefore, the
stochastic nature of each jth row of dk is described by
d(j),k ∼ Di(d̄(j),k,Σ(e(j),k)), where d̄(j),k denotes its mean,
and Σ(e(j),k) its variance.

The system is subject to hard state and input constraints
given by the following convex and closed polytopic sets:

X , {xk ∈ Rnx |xmin ≤ xk ≤ xmax}, ∀k, (19a)
U , {uk ∈ Rnu |umin ≤ uk ≤ umax}, ∀k, (19b)

where xmin ∈ Rnx and xmax ∈ Rnx denote the
vectors of minimum and maximum volume capacities
in tanks, respectively, given in m3; while umin ∈ Rnu

and umax ∈ Rnu denote the vectors of minimum and
maximum flow capacities through the system actuators,
respectively, given in m3/s. Moreover, for safety and
supply service reliability, the states are subject to the
following management soft constraint:

xk ≥ sk − ξk ≥ 0, ∀k, (20)
where sk ∈ Rnx

+ is a positive vector of base stocks (minimal
volume in each tank to avoid stock-outs) and ξk ∈ Rnx

+ is
a vector of positive slack variables to be minimised, which
represent the amount of water volume in tanks that is
allowed to go below the desired base stocks.

3.3 Demand Modelling and Scenario Generation

In DWNs, the uncertainty is generally introduced by the
unpredictable behaviour of water consumers. Therefore,
a proper demand modelling is required to achieve an
acceptable water supply service level. For the case study of



this paper, time series forecasting based on auto-regressive
integrated moving average (ARIMA) models is used due
to its ability to capture complex linear dynamics from
historical data [Box et al., 1994]. Once these models
are calibrated, they are used here to generate a large
number of possible demand scenarios by Monte Carlo
sampling for a given prediction horizon N ∈ Z+. For
the CC-MPC approach the mean demand path is used,
while for the TB-MPC approach a set of scenarios is
selected. A large number of scenarios might improve
the robustness of the TB-MPC approach but at the
cost of additional computational burden and economic
performance losses. Hence, a trade-off must be achieved
between performance and computational burden. To this
end, a representative subset of scenarios may be chosen
using scenario reduction algorithms. In this paper, the
backward reduction algorithm in Heitsch and Römisch
[2009] is used to reduce a specified initial fan of Ns equally
probable scenarios into a rooted tree of Nr scenarios.

3.4 Control Problem Formulation

The formulation of the SMPC problems for the above
case study should address the design of a control law
uk = κ

(
xk, d[k:k+N−1]

)
that minimises, in a receding

horizon fashion, the following cost function:
`k , λ1`

e(uk, αk) + λ2`
s(ξk) + λ3`

∆(∆uk), (21)

where `e(uk, αk) , α>kWe uk ∈ R≥0 represents the
economic cost of network operation that depends on a
time-of-use pricing scheme given by αk ,

(
α1 + α2,k

)
∈

Rnu , which takes into account a fixed water production
cost α1 ∈ Rnu and a time-varying water pumping cost
α2,k ∈ Rnu that changes according to the electric tariff;
`s(ξk) , ξ>k Wsξk ∈ R≥0 is a performance index that
penalises the amount of volume ξ going below from
the s threshold; and `∆(∆uk) , ∆u>kW∆u∆uk ∈ R≥0

represents the penalisation of control signal variations
∆uk , uk − uk−1, to extend actuators life and assure
a smooth operation. Furthermore, We, Ws, W∆u are
diagonal positive definite matrices that weight each
decision variable in their corresponding cost function, and
λ1, λ2, λ3 are positive scalar weights that allow to prioritise
the impact of each involved objective on the overall
performance of the system. These weights are assumed
to be fixed by the managers of the DWN. Regarding
constraint (20), the minimal volume of water required in
a tank is given by its net demand, hence, the minimal
value of x should be ideally given by sk = −Bpdk. For the
TB-MPC approach, this minimal volume applies for each
j ∈ ZNs

1 prediction model, i.e., x̄ji ≥ −Bpd̄
j
i − ξ

j
i for all i

prediction steps. In this approach, robustness comes from
the fact of considering Ns scenarios simultaneously. In
contrast, the deterministic equivalent CC-MPC approach
automatically computes a minimal volume given by the net
predicted demand plus a robustness factor that depends
on the forecast variance and the risk acceptability level as
shown in (14).

3.5 Results

Numeric results of applying the deterministic equivalent
CC-MPC and TB-MPC discussed in Section 2 to the

Table 1. Assessment of the CC-MPC and
TB-MPC applied to the DWN case study.

CC-MPC TB-MPC

δ Φ1 Φ2 Φ3 Φ4 Φ1 Φ2 Φ3 Φ4 Nr Ns

0.3 58535.80 0 0 1.246
58397.14 0 0 0.940 5

1958280.69 1 0.510 1.607 10
58279.95 1 4.155 2.373 14

0.2 58541.19 0 0 1.208
58482.14 3 0.183 1.178 7

2958903.63 0 0 2.326 14
58452.41 0 0 4.048 21

0.1 58558.29 0 0 1.252
58610.32 0 0 2.570 14

5958630.20 0 0 6.655 29
58656.56 1 0.178 13.466 44

0.01 58612.28 0 0 1.253
- - - - 149

599- - - - 299
- - - - 449

0.001 58667.85 0 0 1.255
- - - - 1499

5999- - - - 2999
- - - - 4499

DWN case study are summarised in Table 1. Simulations
have been carried out over a time period of eight days,
i.e., ns = 192 hours, with a sampling time of one hour.
The patterns of the applied demands considered in this
paper were synthesised from real values reported for this
consumption nodes in the Barcelona DWN between July
23th and July 27th, 2007. Initial conditions, i.e., source
capacities, initial volume of water at tanks and starting
demands, are set a priori according to real data. The
weights of the cost function (21) are λ1 = 100, λ2 =
10, and λ3 = 1. The prediction horizon is selected as
N = 24hours, due to the periodicity of disturbances. The
formulation of the optimisation problems and the closed-
loop simulations have been carried out using MATLAB
R2012b (64 bits) and CPLEX solver, running in a PC Intel
Core E8600 at 3.33GHz with 8GB of RAM.

The key performance indicators used to assess the afore-
mentioned controllers are defined as follows:

Φ1 ,
24

ns

ns∑
k=1

`k, (22a)

Φ2 , |
{
k ∈ Zns

1 | xk < −Bpdk
}
|, (22b)

Φ3 ,
ns∑
k=1

nx∑
i=1

max{0,−Bp(i)dk − xk(i)}, (22c)

Φ4 ,
1

ns

ns∑
k=1

tk, (22d)

where Φ1 is the average daily multi-objective cost with `k
given by (21), Φ2 is the number of time instants where
water demands are not satisfied (for this, | · | denotes
the cardinal of a set of elements), Φ3 is the accumulated
volume of water demand that was not satisfied over the
simulation horizon, and Φ4 is the average time in seconds
required to solve the MPC problem at each time instant
k ∈ Zns

1 . The effect of considering different levels of
joint risk acceptability was analysed for the CC-MPC
approach, using δ = {0.3, 0.2, 0.1, 0.01, 0.001}. In the
same way, the TB-MPC approach was applied consid-
ering different sizes for the initial set of scenarios, i.e.,



Ns = {19, 28, 59, 599, 5999}. The size of this initial set
was computed following the bound proposed in Schildbach
et al. [2013] taking into account the risk levels involved in
the chance constraints. This initial set was reduced later
by a factor of 0.25, 0.50, and 0.75 to obtain different rooted
trees with Nr scenarios.

As shown in Table 1, the different CC-MPC scenarios
highlight that reliability and control performance are con-
flicting objectives, i.e., the inclusion of safety mechanisms
in the controller increases the reliability of the DWN in
terms of demand satisfaction, but also the cost of its
operation. The main advantage of the CC-MPC is its
formal methodology, which leads to obtain optimal safety
constraints that tackle uncertainties and allow to achieve
a specified global service level in the DWN. Moreover, the
deterministic equivalent CC-MPC robustness is achieved
with a low computational burden given that the only
extra load (comparing with a nominal formulation) is
the computation of the stochastic characteristics of dis-
turbances propagated in the prediction horizon. In this
way, the deterministic equivalent CC-MPC approach
is suitable for real-time control of large-scale DWNs.
Regarding the TB-MPC approach, numeric results show
that considering higher Ns increments, in average, the
stage cost while reducing the volume of unsatisfied
water demand. Nevertheless, this latter observation is not
applicable for the different Nr cases within a same Ns.
This might be influenced by the quality of the information
that remains after the scenario generation and reduction
algorithms that affect the robustness of the approach and
will be subject of further research. The main drawback
of the TB-MPC approach is the solution average time
and the computational burden. In this case study, the
implementation for all cases taking Ns = {599, 5999}
was not possible due to memory issues. Hence, some
simplification assumptions as those used in Lucia et al.
[2013] or parallel computing techniques might be useful.

4. CONCLUSIONS

In this paper, two stochastic control approaches have been
assessed to deal with the management of a DWN. Accord-
ing to the preliminary results obtained with the considered
case study, both techniques show a relatively similar
performance. However, it seems clear that CC-MPC is
more appropriate when requiring a low probability of
constraint violation, because the use of TB-MPC demands
the inclusion of a higher number of scenarios, which may
be an issue for the application of the latter to large-
scale DWNs. Future work should include a more detailed
study regarding number of scenarios contained in the tree.
Likewise, distributed computation could be used in order
to relieve the scaling problems of TB-MPC when the
number of scenarios is too high. Finally, the assessment of
stochastic techniques should be enhanced with the study
of other alternatives.
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