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Abstract— This paper addresses the management of drinking
water networks (DWNs) regarding a multi-objective cost func-
tion by means of economically-oriented model predictive control
(EMPC) strategies. Specifically, assuming the water demand
and the energy price as periodically time-varying signals, this
paper shows that the EMPC framework is flexible to enhance
the control of DWNs without relying on hierarchical control
schemes that require the use of real-time optimisers (RTO)
or steady-state target optimisers (SSTO) in an upper layer.
Four different MPC strategies are discussed in this paper:
a hierarchical two-layer approach, a standard EMPC where
the multi-objective cost function is optimised directly, and
two different modifications of the latter, which are meant to
overcome possible feasibility losses in the presence of changing
operating patterns. The discussed schemes are tested and
compared by means of a case study taken from a part of the
Barcelona DWN.

I. INTRODUCTION

Drinking Water Networks (DWNs) form the link between
urban water supply systems and drinking water consumption
nodes. These networks are vital for the normal functioning of
modern society and maintaining a truly sustainable service is
a must in these systems. The management of DWNs involves
optimising systematically and simultaneously a collection
of (generally conflicting) heterogeneous performance crite-
ria while being subject to different control specifications,
constraints and disturbances, which are affected by the
dynamism of the economic markets, the social behaviour and
the local/regional legislations.

The complexity of DWNs, (i.e., dimensionality, non-
linearities, infrastructure constraints, uncertainties), the
stronger requirements for water transport service quality
and the need for a sustainable exploitation of the avail-
able resources make the management of these systems a
challenging control problem that has caught the attention
of the scientific community, see e.g., [2]–[5], [10], [16],
[18]. As discussed in the aforementioned references, several
approaches are reported in the literature to address the oper-
ation of DWNs, ranging from heuristics and expert systems
to more advanced mathematical modelling and optimisa-
tion techniques, hierarchical-decompositions, combinatorial

*This work has been partially funded by the EU Project EFFINET (FP7-
ICT-2011-8-31855) and the DGR of Generalitat de Catalunya (SAC group
Ref. 2009/SGR/1491).

1J. M. Grosso, C. Ocampo-Martinez and V. Puig are with the Advanced
Control Systems Research Group (SAC), at the Institut de Robòtica i
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de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de
Ingenieros, Camino de los Descubrimientos s/n 41092, Sevilla, Spain. E-
mail: {dlm,mpereiram}@us.es

schemes, and more recently, model predictive control (MPC).
This latter one has proven to be one of the most effective and
accepted control strategies for large-scale complex systems
due to its flexibility to manage constraints and to optimise
multi-objective problems as the ones encountered in the
management of water systems [13]. The basic idea of MPC
is to exploit a model of the network to simulate its future
evolution over a prediction horizon and compute an optimal
control action (with respect to a predefined cost function)
by solving at each time instant an open-loop optimisation
problem in a receding horizon fashion [12].

Within the active research on MPC strategies for economic
operation of systems, the predominant approach is to con-
sider a hierarchical control structure [17], where standard
MPC controllers are designed for tracking operational set-
points that are computed usually in an upper layer (i.e.,
RTO, SSTO) with complex non-linear stationary models and
with larger sampling times than the regulatory MPC layer.
Nevertheless, as discussed in [7], model inconsistencies, set-
point changes, time-varying parameters, disturbances, and
time-scale differences may lead the system to unreachable
set-points, suboptimal economic performance and feasibility
loss. In order to tackle some of the main drawbacks of
the typical hierarchical scheme and take more economic
profit from the transitory behaviour of the system, some
authors have proposed to integrate the economic optimisation
within the MPC using either a two-layer approach, see,
e.g., [6], [19], or a single-layer approach, i.e., the so called
economic MPC (EMPC) [15]. It has been shown in the
aforementioned references that closed-loop stability and/or
average asymptotic performance can be guaranteed under
some form of dissipativity, duality or convexity assumptions.
Nevertheless, as shown in [11], the feasibility of the overall
problem might be lost if the economic criteria changes
(either under the mentioned one-layer or two-layer schemes),
therefore, modified single-layer based controllers that inherit
the feasibility guarantee of tracking MPC and the optimality
of EMPC have been proposed in this latter reference.

Recent studies on control of DWNs are focused on the
design of MPC controllers that directly optimise a (non-
standard) economic cost function, see e.g., [13], [14], not
to obtain steady-state set-points but target trajectories for
low-level PID controllers. This latter is the case of interest
of this paper, where a stationary operation is not beneficial
and possible periodicity of time-varying parameters can be
exploited for economic profitability. Despite the good prac-
tical performance reported in the aforementioned references,
stability and feasibility conditions were not considered.

The main contribution of this paper is the comparison



of several economically-oriented MPC schemes applied to
the management of DWNs. Moreover, assuming the water
demand and the energy price as periodically time-varying
signals, this paper uses the results in [9], [11], [15], [20],
and adds periodic terminal constraints to the MPC controller
developed in [14] to equip it with guarantees of recursive
feasibility and convergence. Even when this paper uses a
small-scale case study, the proof of concept may be poten-
tially extended to large-scale DWNs.

The paper is organized as follows. Section II describes a
control-oriented flow-based model for DWNs and states the
control objective. Section III formulates the MPC strategies
to be compared for the economic management of DWN.
Section IV describes the case study and presents the results
of applying four EMPC schemes. Section V highlights the
concluding remarks that can be drawn from the results
presented in this paper as well as some future research
directions.

II. PROBLEM STATEMENT

A. Control-Oriented Modelling

This paper considers a general DWN being represented
by a directed graph G(V, E), where a set of elements, i.e.,
ns sources, nx storage tanks, nq intersection nodes, and
nd sinks, are represented by v ∈ V vertices, which are
connected by a ∈ E directed links. Due to the network
function, water is transported along the links by nu flow
actuators (i.e., pipes and valves), passing through reservoirs
or tanks, from specific origin locations to specific destination
locations. The network is subject to several capacity and
operational constraints, and to measured stochastic flows to
sinks driven by customers water demand.

Setting the volume in the storage tanks as the state
variable xk ∈ Rnx , the flow through the actuators as the
manipulated inputs uk ∈ Rnu , and the demanded flow as
measured disturbances dk ∈ Rnd , then the nominal control-
oriented model of the DWN G(V, E) may be abstracted
and described by the following set of linear discrete-time
difference-algebraic equations for all time instant k ∈ N:

xk+1 = Axk +Buk +Bddk, (1a)
0 = Euuk + Eddk, (1b)

where the difference equations in (1a) describe the dynamics
of the storage tanks, and the algebraic equations in (1b)
describe the static relations (i.e., mass balance at junction
nodes) in the network. Moreover, A, B, Bd, Eu, Ed, are
time-invariant matrices of suitable dimensions dictated by
the network topology.

The states and control inputs are subject to hard constraints
due physical and operational limits, i.e.,

xmin ≤ xk ≤ xmax, ∀k ∈ N (2a)
umin ≤ uk ≤ umax, ∀k ∈ N (2b)

where xmin and xmax are vectors in Rnx of the minimum
and maximum volume of water that the tanks are able to
store, and similarly, umin and umax are vectors in Rnu of

the minimum and maximum allowable water flow through
actuators. Moreover, for safety and supply service reliability,
the states are subject to the following management soft
constraint:

xk ≥ s− ξk, ξk ≥ 0, ∀k ∈ N (3)

where s ∈ Rnx
+ is a positive vector of base stocks (minimal

volume in each tank to avoid stock-outs) and ξk ∈ Rnx
+

is a vector of positive slack variables to be minimised,
which represents the amount of water volume in tanks that
is allowed to go below from the desired base stocks.

Assumption 1: The state xk and the demand dk are mea-
sured at any time instant k, and the pair (A,B) is con-
trollable. Furthermore, all elements operate with a common
review period ∆t and all storage tanks are subject to the
same replenishment policy.

Assumption 2: Water demands are non-stationary and
present a cyclic pattern with known period T ≥ 1, hence,
dk+T = dk for all k ∈ N. The admissible demands lie
in a polytopic convex set, i.e., dk ∈ W ⊂ Rnd for all
k ∈ N. The periodic trajectory of this exogenous signal,
i.e., dk = {di}

k+T−1
i=k , will be assumed as perfectly known

when designing the nominal predictive controllers.

B. System Management Criteria

The management of a DWN is a multi-objective op-
timisation problem. In this paper, three operational goals
with different nature are considered, i.e., economic, safety,
and smoothness objectives. Therefore, the control task is to
design a control law uk = κ (xk,dk) that minimises the
following cost functions:

`ek , α>k We uk , (4a)

`sk , ξ>k Wsξk , (4b)

`∆k , ∆u>kW∆u∆uk, (4c)

where `ek ∈ R≥0 represents the economic cost of network
operation that depends on a time-of-use pricing scheme
given by αk ,

(
α1 + α2,k

)
∈ Rnu

+ , which takes into
account a fixed water production cost α1 ∈ Rnu

+ and a
time-varying water pumping cost α2,k ∈ Rnu

+ that changes
every time instant k according to the dynamic electric tariff.
The cost `sk ∈ R≥0 penalises the amount of water volume
that goes below from the pre-specified security threshold s
in (3), i.e., ξk = xk − s if xk ≤ s, otherwise ξk = 0.
The cost `∆k ∈ R≥0 represents the penalisation of control
signal variations ∆uk , uk − uk−1, which assures a smooth
operation and extends actuators life. Furthermore, We, Ws,
W∆u are diagonal positive definite matrices that weight each
decision variable in their corresponding cost function.

Assumption 3: The pricing in the economic cost is as-
sumed to be periodic, i.e., αk = αk+T for all k ∈ N.

To achieve the control task, the above predefined objec-
tives are aggregated in a weighted sum stage cost function

Vk(x, u) , λ1`
e
k + λ2`

s
k + λ3`

∆
k , (5)



where λ1, λ2, λ3 are positive scalars that allow to prioritise
the impact of each involved objective on the overall perfor-
mance of the system. Ideally, the resultant control strategy
should fill the tanks during the periods of lower energy cost
with water taken from the cheapest sources, and deplete
them when compensating demands. Given Assumptions 2
and 3, the optimal nominal behaviour of the system for a
known period T ≥ 1 is defined by the T -periodic sequences
x? = {x?i }

T−1
i=0 and u? = {u?i }

T−1
i=0 , which result from

solving the following finite horizon optimisation problem
(FHOP):

J?
p , min

x
?
u

?
ξ
?

T−1∑
k=0

Ṽk(xk, uk) (6a)

subject to (1), (2), (3) ∀k ∈ N[0,T−1] and

xT = x0, (6b)

where Ṽk(xk, uk) , Vk(xk, uk) + δ‖xk‖
2. This last term,

i.e., δ‖xk‖
2 with δ ∈ R+ and sufficiently small, is a convex

regularisation term added to enforce the uniqueness of the
solution to (6) given that the cost function (5) is originally
not convex with respect to x. Defining the weighting matrices
Ws and W∆u in (4) to be positive definite, then Ṽk(xk, uk)
is bounded and strictly convex by design with respect to
(x, u, ξ). Hence, (6) has a unique solution for a given nomi-
nal periodic sequence of water demand dk = {di}

k+T−1
i=k and

economic pricing αk = {αi}
k+T−1
i=k . Therefore, the equality

(x?k, u
?
k, dk) = (x?k+cT , u

?
k+cT , dk+cT ) holds for any positive

integer c ≥ 0. These conditions allow to apply different
EMPC strategies for the control of DWNs.

III. ECONOMIC MPC STRATEGIES FOR THE
MANAGEMENT OF DWNS

In this section, different EMPC strategies are stated for
the DWN control problem in order to be compared. These
schemes are: a two-layer architecture where an economic
planner and a tracking MPC are interacting, a standard
EMPC with terminal state constraint, and two one-layer
EMPC strategies that account for changes in the economic
criteria.

A. Hierarchical EMPC

This is a two-layer optimal controller, where a separation
of objectives, models and/or time-scales may be performed.
Below are stated the optimisation problems involved in this
hierarchical approach.

1) Upper layer EMPC: In this layer, an RTO is used to
compute at the beginning of each operating cycle the opti-
mal time-varying state and input trajectories using current
measurements. The associated FHOP is stated as

min
x
r
zu

r
zξ

r
z

z+H
u
p−1∑

k=z

Ṽk(xk, uk) (7a)

subject to (1), (2), (3) ∀k ∈ N[z,z+H
u
p−1] and

xz+H
u
p

= xz, xz = x̄z, (7b)

where Hu
p ∈ N is the prediction horizon, x̄z ∈ Rnx

is the measured initial state at time instant z ∈ N, and
xr?
z , {x?k}

z+H
u
p−1

k=z and ur?
z , {u?k}

z+H
u
p−1

k=z are the optimal
state and input trajectories calculated from (7) to govern
the lower layer MPC. Defining, xrk , x?k and urk , u?k for
k ∈ N[z,z+H

u
p−1], a lower layer MPC is designed as follows.

2) Lower layer Tracking MPC: In this layer, a conven-
tional MPC is used to enforce the system to track the pre-
computed optimal trajectories. The associated FHOP is stated
as

min
utξt

t+H
l
p−1∑

k=t

‖xk − x
r
k‖

2
Qx

+ ‖uk − u
r
k‖

2
Qu

(8a)

subject to (1), (2), (3) ∀k ∈ N
[t,t+H

l
p−1]

and

x
t+H

l
p

= xr
t+H

l
p
, xt = x̄t, (8b)

where H l
p ∈ N is the prediction horizon of the lower

layer, x̄t ∈ Rnx is the measured initial state at time
instant t ∈ N, and Qx and Qu are appropriate positive
definite weighting matrices. Following the receding horizon
technique, the control law derived under this hierarchical
scheme is given by κ (x̄t,dt) = u?t (x̄t,dt), i.e., only the
first control action of the optimal input sequence obtained
in (8) is applied to the system. If asymptotic convergence
to the upper layer trajectory is desired, the tracking problem
can be reformulated in terms of the error ek = xk − xrk,
leading to a set-point (origin) stabilization problem of the
error dynamics; see, e.g., [8].

Note that the prediction horizon Hu
p of the upper layer

must be large enough to cover the nominal operating cycle
T and the prediction horizon H l

p of the lower layer, i.e.,
Hu

p ≥ T + H l
p. Furthermore, the upper layer may have an

equal or larger sampling time than the one of the lower layer,
i.e., ∆t1 ≥ ∆t2. The main drawback of this two-layer MPC
approach for the management of DWNs is that if the energy
price schedule or the water demand pattern changes in time
with a high rate, then the transitory periods will be so that
the interaction between layers will lead to a possible loss of
feasibility or to an economic performance degradation.

B. Standard EMPC

The main feature of this approach, in contrast with the
hierarchical scheme, is that even when the two-layers may
work with the same sampling time, the standard EMPC
considers the global cost function directly as the stage cost
of the controller objective and avoids penalising the tracking
error to the targets. The associated FHOP for the periodic
operation of DWNs is stated as

min
ut,ξt

t+Hp−1∑
k=t

Ṽk(xk, uk) (9a)

subject to (1), (2), (3) ∀k ∈ N[t,t+Hp−1] and

xt+Hp
= x?mod(t+Hp,T ), xt = x̄t, (9b)



where x̄t ∈ Rnx is the measured initial state at time instant
t ∈ N, and x?mod(t+Hp,T ) is the optimal periodic value
obtained in (6) that corresponds to the time instant t. As
shown in [1], the standard EMPC is capable of enhancing
the economic performance of the system and achieving an
asymptotic average cost, which is at least as good as that
of the best periodic trajectory. Moreover, convergence can
be enforced with the EMPC strategy if the cost function
is modified to be dissipative with respect to the optimal
periodic trajectory (by adding, e.g., convex regularization
terms as done in [1]). The stability of the closed-loop
system around the feasible optimal operating cycle can be
guaranteed following the results in [20] for periodic systems.

Even when this EMPC controller improves the average
economic performance of the DWN, its main weakness is
also a possible loss of feasibility, especially if the parameters
affecting the cost function, i.e., water and energy prices or
priority weights, change the optimal cycle or the target state
to unreachable values for the given prediction horizon.

C. EMPC for DWNs with Changing Operating Patterns

In order to overcome the possible loss of feasibility due
to changing operating patterns caused by the parameters
of the cost function or by the demands, two approches
following the ideas in [9] and [11] are here proposed to be
solved in a one-layer architecture. These schemes integrate
in different ways the optimal trajectory problem (6) with
the standard EMPC in (9).

1) Option A: Enlargement of the prediction horizon:

min
ut,ξt

t+Hp+T−1∑
k=t

Ṽk(xk, uk) (10a)

subject to (1), (2), (3), and

xk+Hp+T = xk+Hp
, xt = x̄t. (10b)

Note that in this option, slight changes of the EMPC
framework are required, i.e., the terminal constraint in (10b)
is associated to a periodic trajectory that results from the
same prediction model used in the optimisation problem
rather than to a precomputed trajectory, and the prediction
horizon is extended to cover the period of the process
dynamics.

2) Option B: Inclusion of a pseudo-reference to track:

min
ukx

s
k,u

s
k,ξk

t+H
s
p−1∑

k=t

γOṼk(xsk, u
s
k)

+

t+Hp−1∑
k=t

γT

(
‖xk − x

s
k‖

2
Qx

+ ‖uk − u
s
k‖

2
Qu

)
(11a)

subject to (1), (2), (3) ∀k ∈ N[t,t+Hp] and

xsk+1 = Axsk +Busk +Bddt+k, ∀k ∈ N[t,t+H
s
p−1] (11b)

Euu
s
k + Eddt+k = 0, ∀k ∈ N[t,t+H

s
p−1] (11c)

εxmin ≤ x
s
k ≤ εxmax, ∀k ∈ N[t,t+H

s
p ] (11d)

εumin ≤ u
s
k ≤ εumax, ∀k ∈ N[t,t+H

s
p ] (11e)

xk ≥ s− ξk, ξk ≥ 0, ∀k ∈ N[t,t+H
s
p ] (11f)

xst+H
s
p

= xst , (11g)

xt+Hp
= xst+Hp

, (11h)

xt = x̄t, (11i)

where Qx and Qu are positive definite matrices, γO and
γT are positive scalars introduced to establish a trade-off
between economic and tracking performance, and ε ∈ (0, 1)
is a tightening factor included to avoid active constraints at
the optimal pseudo-reference. The prediction horizons should
be selected such that Hs

p ≥ Hp.
Remark 1: Controllers (10) and (11) are not enforcing

convergence to the precomputed optimal trajectory obtained
in (6). Instead, they are meant to retain feasibility under
possible changes of the economic parameters in the cost
function and to find new optimal trajectories for the current
conditions. To guarantee asymptotic stability to the trajectory
obtained in (6), either when using (10) or (11), the results
in [9] and [11] can be applied, respectively, considering
the error dynamics (regarding the target periodic trajectory)
under the assumptions of controllability of the system and
the boundedness and convexity of the constraints and cost
function involved.

IV. CASE STUDY
A. Description

This section briefly describes a motivational example
useful to develop EMPC approaches to solve multi-objective
constrained optimisation problems that may appear in the
control of DWNs. In general, the DWN operation is driven
by the energy prices and the exogenous and endogenous
demands. The system under study is a portion extracted from
the Barcelona DWN reported in [13]. In Fig. 1, a graphical
representation of the DWN example is shown, which contains
2 water sources, 3 tanks, 6 manipulated actuators, 4 demand
sectors and 2 intersection nodes.

The matrices and vectors that define the system and
constraints are the following:

A =

 1 0 0
0 1 0
0 0 1

 , B =

 0 0 0 1 1 0
0 0 0 0 0 1
0 0 1 0 0 0

∆t,

Bd =

 -1 0 0 0
0 0 -1 0
0 0 0 -1

∆t,

E =

[
1 -1 -1 0 0 -1
0 1 0 0 -1 0

]
, Ed =

[
0 0 0 0
0 -1 0 0

]
,

xmin =
[

0 0 0
]>

,

xmax =
[

470 960 3100
]>

,

umin =
[

0 0 0 0 0 0
]>

,

umax =
[

1.2970 0.0500 0.1200 0.0150 0.0317 0.0220
]>

.



Fig. 1. Topology of the Three-tanks DWN example

B. Results

This section presents the results of applying the EMPC
approaches described in Section III to the aforementioned
case study. The sampling time is ∆t = 3600 seconds. The
simulation horizon is sixteen days (N = 384 hours) for
each strategy. The weights of the aggregate user-defined cost
function are λ1 = 100, λ2 = 10, and λ3 = 0.005. For
the tracking terms, the weighting matrices (Qx and Qu)
are set up as identity matrices of proper dimensions. The
prediction horizon has been selected as Hp = 24h, due to
the periodicity of both water demands and electricity prices.
For the hierarchical controller, the upper layer is executed
every 24h as usually done in water distribution scheduling,
while the lower layer runs in an hourly basis as in the other
economic MPC strategies. The initial common state for all
simulations is x?0 = [160.44, 646.23, 633.89]> in m3 and
the security threshold is s = [42, 18.0, 270]> in m3. The
simulations have been carried out using CPLEX 12.5 and
Matlab R© R2010b (64 bits), running in a PC Intel R© Core

TM

E8600 at 3.33GHz with 8GB of RAM. The closed-loop
performance of each controller has been assessed using the
following average key performance indicators (KPI) for the
economic, safety and smoothness objectives, respectively:

KPIE ,
1

N

N∑
k=1

(α1 + α2,k)>|uk|∆t, (12)

KPIS ,
1

N

N∑
k=1

nx∑
i=1

ξ(i),k, (13)

KPI∆U ,
1

N

N∑
k=1

‖∆uk‖
2. (14)

Results are summarised in Table I. The safety indicator
has been omitted in this table given that, for all simulated
scenarios and strategies, KPIS = 0, which means that all
of the MPC controllers decided not to use water from
the safety-stocks for the given periodic demand. Note that
for each strategy the enforcement of terminal constraints
implies an increment of the economic cost. This decrease in

TABLE I
COMPARISON OF CONTROLLER PERFORMANCE

Controller KPIE KPI∆U

Ideal scheduling (Problem (6)) 28.6056 2.06 × 10
−3

HEMPC(1) 28.4347 2.14 × 10
−3

HEMPC(2) 28.6114 2.08 × 10
−3

EMPC(1) 28.4124 8.89 × 10
−7

EMPC(2) 28.6080 8.89 × 10
−7

EMPCT-A(1) 28.4124 8.89 × 10
−7

EMPCT-A(2) 28.6041 8.89 × 10
−7

EMPCT-B(1)@{γO=1, γT=1} 28.5165 2.17 × 10
−3

EMPCT-B(1)@{γO=1, γT=10} 28.4493 2.35 × 10
−3

EMPCT-B(1)@{γO=1, γT=100} 28.4178 2.34 × 10
−3

EMPCT-B(1)@{γO=10, γT=1} 28.8128 2.29 × 10
−3

EMPCT-B(2)@{γO=1, γT=100} 28.6120 2.43 × 10
−3

Subindex (1) indicates non-periodic behaviour enforced while (2)
indicates that the periodic constraint is enforced.

TABLE II
COMPARISON OF DAILY AVERAGE COSTS OF EMPC STRATEGIES

Controller Water Cost Electric Cost Daily Cost
(e.u./day) (e.u./day) (e.u./day)

EMPC(2) 577.24 110.04 687.28

HEMPC(2) 610.02 134.13 744.15

EMPCT-A(2) 577.79 109.56 687.35

EMPCT-B(2) 577.75 109.79 687.54

e.u.: economic units.

performance is the price for gaining in stability. Furthermore,
Table II discloses details of the production and operational
costs related to each strategy starting from a non-optimal
state x0 = [92.45, 905.82, 504.14]> in m3, and compares the
daily average economic performance (DAP = 24 × KPIE)
of the controllers enforcing their corresponding periodic
terminal constraints. For the standard EMPC(2), the terminal
constraint is set up in relation to a pre-calculated optimal
cycle obtained from (6). In the HEMPC(2), the reference
trajectory is computed by the upper layer every 24h. For
controllers EMPCT-A(2) and EMPCT-B(2), no pre-calculated
trajectory is needed. It can be seen how the HEMPC(2) cost
degrades notoriously the performance in comparison with the
other MPC strategies due to the time-scale separation in its
layers. Even when feasibility issues were not found for any
of the strategies in this case study, these results reaffirm the
current tendency of improving the economic performance by
migrating to one-layer EMPC which are robust to changes
in the cost function.

In order to further highlight the performance of the EMPC
controllers described in Section III-C that copes with chang-
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Fig. 3. Price-of-use for actuators u4, u5 and u6 in economic units (e.u)

ing economic criterion, the price parameter of the economic
term in (4) has been affected switching the price profile
at different time instants but keeping the same period, see
Fig. 3. As it can be seen in Fig. 2 for the evolution of
the states, both controllers maintain the recursive feasibility
and stabilise at similar trajectories. Even so, the approach in
(11), which includes a pseudo reference and tracking terms,
presents a slightly higher cost with respect to the approach in
(10). This behaviour might be due to the regularisation terms
that decrease the economic performance if design parameters
are not properly tuned.

V. CONCLUSIONS

In this paper, the potential of economic MPC for the
management of DWNs has been verified on a proof of
concept case study. A multi-objective cost function was
considered and different EMPC formulations were analysed
and extended for controlling a supply water nominal system,
where water demands were considered periodic and perfectly
known. Especially, the single-layer EMPC approaches re-
sulted to be of great utility for the control of DWNs due
to their capacity to cope with changes in the economic
parameters of the cost function. Future research lines are the
stochastic EMPC formulations to enhance robustness with
the minimum performance degradation, the tuning of the
EMPC that affects the DWN performance, and the extension

of the feasibility, stability and convergence results when deal-
ing with large-scale systems decomposed for decentralised or
distributed control.
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