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A hybrid linear model for real-time optimization-based control of a combined sewer network 
has been developed to be used for the minimization of pollution during storm events. The 
model takes into account delays and attenuation in sewers together with piecewise linear 
approximations for flow over weirs, overflows in junctions and flow re-entering the network 
after overflows. Using the proposed model, an Optimal Control Problem (OCP) is formulated, 
which can be efficiently solved by means of a mixed integer linear or quadratic programming 
problem. The performance of a Model Predictive Control (MPC) strategy solving consecutive 
OCPs is assessed by means of closed-loop simulations using a physically-based complex model 
as virtual reality. 
 
INTRODUCTION  
 
Combined sewer systems carry both storm-water and wastewater together. These infrastructures 
are designed to convey all the water to wastewater treatment plants (WWTP), where it is 
treated before being released to the natural environment. However, heavy rain episodes may 
cause the network capacity to become overloaded, forcing untreated water discharges to the 
natural environment (combined sewer overflows, CSO) and flooding urban areas. 

In the municipalities where such heavy rain events are common, additional infrastructure in 
the form of flow-regulation and storage elements such as gates, weirs, pumps and reservoirs is 
usually available. The efficient regulation of these elements is, therefore, critical to fully take 
advantage of the network capacity and prevent untreated water discharges. 

Real-time control (RTC) provides a solution to the problem of the infrastructure regulation 
that can benefit at each time instant form the last network measurements as well as from future 
rain forecasts [1]. Moreover, optimization-based control can also take into account the 
operational constraints of the network elements to provide optimal regulation action with 
respect to given management objectives. Model predictive control (MPC) is a RTC 
optimization-based technique that uses a mathematical model of the sewer network to formulate 
and solve successive optimal control problems (OCPs) based on the last system measurements 
and rain forecasts. Only the first regulation action computed by each OCP is applied and the 
procedure is repeated again. 



The physically-based model for water motion in sewer networks is based on the 1D Saint- 
Venant equations with constant channel cross-sectional area and constant channel bed slope [2]. 
These equations are hyperbolic nonlinear partial differential equations (PDE) relating both the 
flow and water level in an open channel/sewer. The Saint-Venant equations lack an explicit 
solution for arbitrary sewer geometries and need to be solved by means of numerical methods. 
For mid- to large-scale networks, the required time to solve the coupled system consisting of 
the whole network elements is too long to be included in a RTC scheme. Therefore, simplified 
mathematical control-oriented models are developed that, while still describing the flows with 
reasonable accuracy, allow to formulate OCPs with suitable properties that can be solved within 
short times [3, 4, 5, 6]. 

In this work, a control-oriented sewer network model is described. Using this model, an 
OCP can be formulated to be used in a MPC strategy. This controller acts as an upper level 
controller that computes optimal gate flows used as set-points for local PID controllers. 
Simulation results of the control strategy using a physically-based model simulator as virtual 
reality are provided. 
 
SEWER NETWORK MODEL 
 
The following model aims to be general enough to be used in a wide range of network 
instances. Therefore, each network element is modeled individually, so that specific network 
topologies may be modeled using the interconnection between elements. This approach also 
facilitates the calibration process, which can be carried out using real data or data generated by 
a physically-based model simulator. 

The model consists of discrete-time equations, which are used directly in the OCP 
formulation. In the following, t ∈ ℤ! is the discrete-time variable and ∆t [s] the time step. Thus, 
the discrete-time instant t corresponds to t · ∆t seconds after the modeled event starts. 
 
Flow Model 
 
The main network equations are the flow model equations, describing the flow delay and 
attenuation along sewers and the mass balance in the network junctions. For each sewer, two 
flow variables are used: qin as the inflow to the sewer and qout as its outflow. 

The inflow qin to a sewer is computed by adding the contributions of all the upstream 
elements entering the node where the sewer is attached. In case there are several outgoing 
sewers at the same junction each one takes a fixed proportional part of the total inflow. 

The outflow in a sewer is computed by means of a convex combination of is inflow at two 
consecutive time steps with a coefficient ai ∈  (0,1]: 

 
thus, taking into account the transportation delay τ. 
 
Reservoir Model 
 
The reservoir equation used in the model is simply a discretization of the usual mass balance 
reservoir equation using a forward Euler method 
 

qout(t) = aqin(t − τ)+(1−a)qin(t − τ −1),

v(t) = v(t −1)+∆t
�
gin(t −1)−goutt(t −1)

�
,



where v(t) is the volume contained in the reservoir and gin(t) and gout(t) the (controlled) inflow 
and outflow. 
 
Weir Model 
 
Weirs are flow regulation elements that divert part of the flow in a sewer to a secondary one, 
called a spillway, when a certain water level is achieved. Weirs can have fixed or movable 
position. In the latter case the flows would become decision variables, the OCP would compute 
their optimal values to be used as set-points for local PID controllers and no particular modeling 
would be required. Therefore, the following equation applies only to the fixed weir case. The 
following formula is an approximation in terms of flow of the weir behavior, which actually 
depends on water levels. 

The spillway flow for a weir, w(t) is computed as 
 
 
where zw(t) is the total inflow to the junction and qw

max is an estimated value of the maximum 
inflow to the sewer before the flow starts flowing through the spillway. Parameter aw ∈   (0,1] 
allows the flow through the main sewer reach values higher than qw

max, as observed in data 
generated by a physically-based model. 
 
Overflow and flood runoff model 
 
Overflows are defined at some network junctions, where flooding or overflows are known or 
expected to occur. As in weir flow equation, the overflow f(t) is defined as the excess flow 
above an estimated maximum inflow qf

max 
 

 
Again, zf(t) is the total inflow to the junction and a parameter af ∈   (0,1]  is introduced to allow 
the flow through the sewer to reach values higher than qf

max, as observed in real cases or in a 
physically-based model. 

Unlike weir flows, overflows are not redirected to another network junction. The overflow 
volume is kept in a fictitious reservoir until the overflow event finishes and then, is returned to 
the same junction. The fictitious reservoir holds a mass-balance equation like the reservoir one 
 
 
with an outflow computed as follows: 
 
 

 
U sing this formula the overflow volume re-entering the network (flood runoff flow) is 

equal to zero while overflow is occurring (i.e., f(t) > 0). When the overflow ends, the flood 
runoff takes a value proportional to the difference between the maximum flow qf

max and the 
junction inflow zf(t), without exceeding the maximum flow available due to the volume stored 
in the reservoir (vt(t)/∆t). The proportionality parameter bf is introduced for calibration reasons 
to best fit real or physically-based model generated data. 

 
 

w(t) = max{0,aw (zw(t)−qmax
w )},

f (t) = max{0,a f (z f (t)−qmax
f )}.

vt(t) = vt(t −1)+∆t
�

f (t −1)−qt(t −1)
�
,

qt(t) = min
�

max
�

0,b f (qmax
f − z f (t))

�
,

vt(t)
∆t

�
.



Collector Model 
 
Collectors are big sewers with an in-line retention capacity of the same order as a reservoir. In 
order to take into account the volume contained in a collector to take full advantage of its 
capacity, three different models have been developed and compared in this study. In all cases a 
manipulated gate gc(t) is assumed to be placed at the downstream end of the collector and an 
overflow variable fc(t) is added to model flooding.  
 
Single Reservoir: The first model consists simply of modeling the collector as a reservoir 
 
 
with an overflow defined as 
 
 
where vc

max is the total collector volume. 
 
Single Reservoir Plus Delay: The second model consists of adding a delay to the inflow to the 
reservoir, thus making the volume available to be released through the downstream gate only 
some time steps after it has entered the collector. An easy way to implement this is to represent 
the collector as a series of N reservoirs, each one adding a one time step delay to the flow, with 
only the last one acting as a storage element. The reservoir equations are the same as in the 
reservoir model with correspondingly modified in- and outflows: 
 
 
 
 
 
The communicating flows qi(t) between the reservoirs are defined as 
 
 
 
This means that each reservoir completely empties towards the next one every time step except 
the last one, which is controlled by a gate flow gc(t). In this case, the overflow variable is 
defined as 
 
 
 
where vc

max is the total collector volume. 
 
N Reservoirs: The last model consists also of a series of N reservoirs. In this case each of the 
reservoirs has the same maximum capacity vN

max = vc
max/N, where vc

max is the total collector 
volume.  The last reservoir is again controlled by a gate, acting as a decision variable. This can 
cause the last reservoir to become full. If this happens the second downstream reservoir starts 
filling. The same procedure applies to the other reservoirs on until the first one. If the first 
reservoir becomes full, any additional inflow is regarded as overflow. 

The equations for the reservoirs and the overflow variable are the same as for the previous 
model. However, in this case the flows communicating the reservoirs are defined as follows: 

v(t) = v(t −1)+∆t
�
qin(t −1)−g(t −1)− fc(t −1)

�
,

fc(t) = max
�

0,v(t −1)+∆t
�
qin(t −1)−gc(t −1)

�
− vmax

c

�
,

v1(t) = v1(t −1)+∆t
�
qin(t −1)−q1(t −1)− fc(t −1)

�
,

vi(t) = vi(t −1)+∆t
�
qi−1(t −1)−qi(t −1)

�
, i = 2, . . . ,N −1,

vN(t) = vN(t −1)+∆t
�
qN−1(t −1)−gc(t −1)

�
.

qi(t) =
vi(t)
∆t

, i = 1, . . . ,N −1.

fc(t) = max
�

0,
N

∑
i=1

vi(t −1)+∆t
�
qin(t −1)−gc(t −1)

�
− vmax

c

�
,



 
 
 
with the modified expression for the last reservoir, accounting for the controlled outflow 
 
 
 
Notice that, even when several reservoirs are full, there is still flow through the collector: all the 
full reservoirs provide the next one a flow equal to the downstream gate flow gc(t). 

In this case, the overflow variable takes only into account the first reservoir 
 
 
 
OPTIMAL CONTROL PROBLEM 
 
Hybrid Linear Model 
 
The maximum and minimum functions involved in the model equations are reformulated by 
means of the Mixed Linear Dynamic (MLD, [7]) systems approach into a set of linear equalities 
and inequalities. This procedure involves the definition of binary variables that describe which 
of the maximum and minimum function branches is chosen at each time step, thus turning the 
system into a hybrid system. 

Once all dynamic equations and MLD inequalities are put together, the system can be 
written in the following form: 
 
 
 
 
 
where T is the maximum system delay, X(t – i), i=1,…,T, contain all the system variables at 
time step t – i and Mi , Ni , i=1,…,T, contain the coefficients of the equations and inequalities 
corresponding to X(t – i). 
 
Optimal Control Problem 
 
The optimal control problem is built by imposing the system of equations and MLD inequalities 
(1) together with some additional constraints (described below) at H consecutive future time 
steps (where H is called the prediction horizon). The whole resulting set of constraints can be 
arranged by means of block-structured matrices M1 and N1 related to the future unknown 
variables to be solved for, M2 and N2 related to the initial conditions and  M3 and N3 related tot 
the rain inflows. The resulting optimization problem has the form 
 
 
 
 
 
 

qi(t) = min
�

vi(t)
∆t

,
vmax

N − vi+1(t)
∆t

+qi+1(t)
�
, i = 1, . . . ,N −2,

fc(t) = max
�

0,v1(t −1)+∆t
�
qin(t −1)−gc(t −1)

�
− vmax

N

�
.

T

∑
i=0

Mi X(t − i) = m(t),

T

∑
i=0

Ni X(t − i)≤ n(t),

(1)

min
X (t)

J(X (t)) = c�X (t),

s.t. M1 X (t) = M2 X0(t)+M3(t),
N1 X (t)≤ N2 X0(t)+N3(t),
Aeq X (t) = beq(t),

Aineq X (t)≤ bineq(t),

qN−1(t) = min
�

vN−1(t)
∆t

,
vmax

N − vN(t)
∆t

+gc(t)
�
.



where the vector of unknowns is defined as X(t) = ( X(t + H)T ,… ,X(t + 1)T )T, and the vector of 
initial conditions as X0(t) = ( X(t)T ,… ,X(t – T + 1)T )T . Additional constraints  Aeq X(t) = beq 
and Aineq X(t) ≤ bineq(t) take into account bounds on variables, mass balances at junctions with 
outflowing gates and bounds on the variation rates of the controlled variables to ensure smooth 
actions. Moreover, since the MPC controller provides set-points to local PID controllers, the 
gate flows are constrained to remain constant for intervals of 5 time steps in order to take into 
account the fact that the PID controllers need some time to reach the desired values. 

The objective function J(X(t)) contains a weighted sum of variables to be minimized. The 
specific expression for J(X(t)) will depend on the management objectives of the network. The 
model is flexible enough to accommodate many different objectives. The management 
objectives used in this work consist of: (i) minimizing overflows (urban flooding), (ii) 
minimizing CSO, and (iii) maximizing WWTP usage. Maximization of a variable can be 
achieved by means of a negative weight in the objective function. Quadratic objective functions 
could also be used to describe other objectives such as tracking of a desired volume in a 
reservoir. 
 
CASE STUDY 
 
The Riera Blanca sewer network is a part of the Barcelona sewer network comprising an area of 
about 20 km2 converging at its downstream end to a big collector with a total in-line capacity of 
6·104 m3. Ten gates can be used regulate the network flow and eventually redirect part of the 
volume to two reservoirs with capacities of 5·104 m3 and 104 m3 respectively. Figure 1 shows a 
simplified diagram of the network. The modeling approach presented above has been applied to 
this network together with calibration and validation procedures, which are out of the scope of 
this paper. The resulting control model consists of one collector, 145 sewers, 3 weirs and 10 
overflow points in addition to the 10 gates and 2 reservoirs mentioned above. A time step of ∆t 
= 1 minute and a maximum delay of T = 6 minutes have been used.  

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1: Map and diagram of the simplified interconnection scheme for the Riera Blanca sewer 
network. 
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Full information of the network has been made available by the company responsible of its 
management, CLABSA (CLavegueram de Barcelona S.A.), by means of an implementation in 
the physically-based model simulator MOUSE [8]. MOUSE solves the complete Saint-Venant 
equations and is also able to simulate local PID controllers located at the network gates to 
regulate its outflow by means of their opening. The results presented in the next section are 
based on using this simulator as a virtual reality. 

MOUSE has also provided the rainfall-runoff model used in this study, that is, the model 
computing net flow entering the network from pluviometer data. The model is based on 
defining rain catchments which are modeled as reservoirs with an outflow computed by means 
of the Manning equation [9]. To model the Riera Blanca sewer network 68 rain catchments 
were defined by CLABSA. 
 
CLOSED-LOOP SIMULATION ALGORITHM AND RESULTS 
 
Model predictive control is a control strategy which involves solving consecutive OCPs (based 
on a model of the system) and only applying to the system the control action corresponding to 
the first time step. After the system is left to evolve for one time step, measures of the system 
state are taken and are used to update the initial conditions of a new OCP, whose solution will 
be used for the next time step. In the case of external disturbances, such as the rain inflows to a 
sewer network, forecasts of their values must also be included in each OCP. 

To simulate this procedure, instead of letting the system evolve, simulations of the network 
using the physically-based simulator MOUSE are performed. Hence, once the OCP is solved 
the (constant) gate flow values corresponding to the first 5 minutes of the solution are used as 
PID set-points for a 5 minute simulation of the network. Then the flow values corresponding to 
the last T minutes of the simulation are used to update the OCP initial conditions X0 and the 
OCP is solved again to compute the PID set-points for the next 5 time minutes. All the OCPs 
have been solved using a prediction horizon of H = 30 time steps. Figure 2 shows a diagram of 
this closed-loop simulation algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Diagram of the closed-loop simulation algorithm. 
 

Results of these simulations are shown in Table 1 for the three different collector models 
for a real rain event, with rain data provided by CLABSA. It can be noticed that no relevant 
differences appear between the three models. This is due to the fact that although the multiple 
reservoir models describe the dynamics of the collector with better accuracy, the hard constraint 
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forcing not to exceed the collector maximum volume does not allow for better performance in 
any of these cases. 

In all cases, overflows downstream of the controlled gates are completely avoided and 
maximum volumes at the reservoirs and collector are respected. This, together with the 
maximum computation times needed to solve the OCPs, show that the proposed control 
procedure is suitable for RTC. 
 

Table 1: Closed-loop simulation results. 

 
CONCLUSIONS 
 
A control-oriented model for sewer networks has been developed together with a model-based 
formulation of an Optimal Control Problem (OCP) to minimize pollution in presence of heavy 
rain events. The modeling procedure and OCP formulation has been applied to a real network. 
By solving consecutive OCPs a Model Predictive Control (MPC) strategy has been assessed 
using a physically-based model simulator as virtual reality. The overall modeling and control 
approach has proven to meet real-time control requirements, fulfill the physical and operational 
constraints and provide good performance results. 
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Maximum

OCP Time [s]

Single Reservoir 250.09 5186.59 53054.41 1.09

SR, delay = 5 250.09 5026.79 53132.86 1.84

SR, delay = 10 250.09 4582.24 53104.61 2.20

5 Reservoirs 250.09 5106.18 53157.49 2.25

10 Reservoirs 250.09 3905.40 53526.97 3.82


