
"Teaching Grasping Points
Using Natural Movements"

RRI I

Institut de Robòtica i Informàtica Industrial

Yalım Işleyici
Guillem Alenyà

July, 2014

IRI-DT 14-02

Technical Report



Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Cient́ıficas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)

http://www.iri.upc.edu

Corresponding author:

Yalim Isleyici
tel: +34 93 405 4490

yisleyici@iri.upc.edu

http://www.iri.upc.edu/staff/yisleyici

Copyright IRI, 2014



Section 1 Introduction 1

1 Introduction

1.1 Objectives

A common strategy to teach a robot certain skills involves demonstration. While the demonstra-
tions are best made by directly manipulating the robot, in hazardous conditions the only choice
is teleoperation. Even though haptic devices offer fairly good results, using natural movements
would give a better feeling of control.

Leap Motion sensor (Leap Motion Inc., USA) is a device that detects hands and it can be
used to control the robot arm in a more natural way. In this work, a system that will control
the WAM arm (Barret Technology Inc., USA) using the Leap Motion sensor will be explained.
Later this system will be tested in order to grasp a polo shirt which will be used to train grasping
points on the shirt.

1.2 Leap Motion Sensor

Leap Motion sensor is a small computer input device that recognizes hand, fingers and tools such
as pens. It contains 2 monochromatic cameras and 3 infrared LEDs. It uses the information
from those input and using ’complex math’ it outputs the hand/finger 6D position information
via USB. The device is able to track individual hand and finger movements independently. Due
to patent pending situation algorithms and detailed information is not available.[1]

Figure 1: Leap Motion sensor

1.3 ROS

Robot Operating System (ROS) (Willow Garage, USA) is an open source framework for writing
robot software. It is developed in order to make the process of robot programming easier by
increasing collaborative works.

The software is developed using packages which implements certain functionalities and algo-
rithms such as SLAM, face detection etc. Those packages may be implemented by anyone who
wants to contribute.

The executables are called nodes. Communication between ROS nodes are done by topics.
They have certain message structures. Users may use the ones that are already defined or they
can create new structures using the basic ones. For example Leap Motion sensor uses Pose
message for hand and finger positions. Its structure;



2

1. geometry msgs/Pose

geometry_msgs/Point position

float64 x

float64 y

float64 z

geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w

To send the position information to the robot, we also need the reference frame and time
information. Therefore a stamp is added to the Pose message. Its structure is as follows:

2. geometry msgs/PoseStamped

std_msgs/Header header

uint32 seq

time stamp

string frame_id

geometry_msgs/Pose pose

geometry_msgs/Point position

float64 x

float64 y

float64 z

geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w

The difference between the Pose and PoseStamped object is that PoseStamped has informa-
tion about the reference frame and the generation time of the message.

2 Leap Motion with ROS Environment

As the robot needs to be controlled with Leap Motion sensor, first it is necessary to provide the
data from Leap Motion in ROS environment. Then, a goal position will be created.

2.1 ros leap Package

The ros leap package, created by Bosch RTC Team, is used for obtaining Leap Motion data and
publishing it as a topic. Main features of this package are;

Ì Scale the data from milimeters to meters.

Ì Change the reference frame.

Ì Publish the Leap() data

The structure of the Leap() data is:



Section 3 leap wam controller Package 3

[leap_msgs/Leap]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

int64 leap_frame_id

int64 leap_time_stamp

int16 hands_count

int16 fingers_count

int16 tools_count

leap_msgs/Hand[] hands

int16 id

float64 sphere:radius

float64 direction_yaw

geometry_msgs/Pose pose

(...)

int16[] finger_ids

int16[] tool_ids

leap_msgs/Finger[] fingers

int16 id

float64 width

float64 length

geometry_msgs/Point velocity

float64 x

float64 y

float64 z

geometry_msgs/Pose pose

(...)

leap_msgs/Tool[] tools

int16 id

float64 width

float64 length

geometry_msgs/Point velocity

float64 x

float64 y

float64 z

geometry_msgs/Pose pose

(...)

leap_msgs/Gestures[] gestures

int64 id

int64 type

int64[] pointables

From this message leap msgs/Hand[] hands/pose in order to detect hand position, leap msgs/Gestures[]
gestures to catch the grasp and lift signal and size of the leap msgs/Fingers[] list to be able to detect fist
which will help to remove the hand without moving the robot will be used.

3 leap wam controller Package

This is the package that has been developed for controlling the WAM arm. It basically subscribes to the
topic that contains the Leap Sensor data and generates a goal position for the WAM robot.

The main flow of this package is as follows:

Ì Subscribe the hand position information.

Ì Generate a goal position for the robot according to hand position.

Ì If grasp signal comes, close the gripper and lift the item.



4

The detailed flowchart of the leap wam controller and its sub-state machines can be seen in Figure 5a 5b
and 5c. States will be explained in section 3.2.1

This package publishes a PoseStamped object to the DMPTracker package which is a low-level library
for generating trajectories between two positions in joint space.

3.1 Installation

To download leap wam controller run:

$ git clone https://github.com/yalim/leap-wam-controller.git

3.1.1 External Dependencies

To use leap wam controller package, you need to install ROS1, LEAP Motion Software and Developer
SDK Bundle2 and ros leap package3.

In order to activate Leap Motion sensor, connect the sensor, open a terminal and run:

$ sudo service leapd stop

$ leapd

After executing the last command you should see:

[13:12:18] [Info] WebSocket server started

[13:12:19] [Info] Processing initialized

[13:12:19] [Info] Leap Motion Controller detected: LP9440...

3.1.2 Internal Dependencies

Install iri-ros-pkg4.

3.2 Use of leap wam controller Package

Before controlling the robot with Leap sensor, the robot must be ready. To do this first connect to the
robot computer using ssh then run the following on the robot:

$ roslaunch iri_wam_bringup estirabot.launch

$ roslaunch iri_wam_bringup iri_wam_bringup_gripper_no.launch ROBOT:=estirabot

Now open up a terminal and run

$ roslaunch iri_wam_bringup iri_wam_bringup_kinect.launch ROBOT:=estirabot

In order to move the robot DMP tracker should be running. In a new terminal run:

$ roslaunch iri_wam_dmp_tracker test.launch ROBOT:=estirabot

Now, polo shirt detection should be started. To do this run while the table is empty:

$ roslaunch estirabot_apps pick_up_cloth_skills.launch openni_poincloud_topic:=/

estirabot/camera/depth_registered/points

Place the shirt on the table. To start using leap wam controller package, open another terminal and run:

$ roslaunch leap_wam_controller leap_wam_controller.launch

You can hover your hand over Leap Motion sensor and control the WAM robot. If polo detection is
not necessary and you only want to control the robot using the Leap Motion sensor, do not run the
iri bow object detector package, remove the ’INITIALIZE’ state from the Leap Wam Controller State
Machine (Figure 5a) and run leap wam controller package.

1http://wiki.ros.org/hydro/Installation/Ubuntu
2https://developer.leapmotion.com/downloads
3https://github.com/bosch-ros-pkg/ros_leap
4https://devel.iri.upc.edu/pub/labrobotica/ros/iri-ros-pkg/rosinstall/



Section 3 leap wam controller Package 5

3.2.1 States

leap wam controller SM GRASP
This is an SimpleActionState which calls /gripper/tool close action in order to close the gripper.
LIFT
This states publishes a new pose in order to lift the grasped object

GO TO DESIRED POSE SM INITIALIZE
Subscribes to the current position of the robot and initializes the PositionCreator

CHECK FOR COLLISION
As we are manipulating on a table, we have to avoid hitting it. We know that table lays on x-y plane
therefore, this state only checks if the pose to be published has a z value lower than a given threshold. If
so, it sets the z value to the threshold.

POSE PUBLISHER
Publishes a new position for the robot on /pose st topic.

GRASP CHECKER
It checks if the grasp signal is received from the hand. The grasp signal is key tapping of one finger(
Figure 2). Leap Motion Sensor provides that information via /leap/data topic.

Figure 2: Key Tap Gesture
(https://developer.leapmotion.com/documentation/python/api/Leap.KeyTapGesture.html)

POSITION CREATOR SM READING LEAP
Subscribes to /leap/data to get the hand information. If there is more than one hand, no hand at all or
the hand is in a fist position, it returns empty otherwise it passes the hand position to the STD DEV
state.

STD DEV
It checks the standard deviation of the hand position in order to wait until hand stabilizes when the
hand first introduced. Without this state, robot will move as soon as hand is seen by the Leap Motion
sensor. It also publishes the hand position to rviz interface. The color coding of hand marker indicates
if the hand position is stable. If the hand is stable, the color turns green (Figure 3a). It remains red
otherwise(Figure 3b). Once hand is stable the user is able to control the robot.

CHECK IF MOVED
This state checks whether the robot moved by the user. If moved, it sends it enables the system to
reinitialize the starting position when the hand is reintroduced.

STAY STILL
When there is no hand present, this state re-sends the last position in order to make the robot stay still.
It also resets the initial position for the POSITION DIFFERENCE state.

POSITION DIFFERENCE
This state generates the new goal position for the robot based on the hand position. It uses the formula:
new position � initial position � hand difference
where



6

(a) Stable hand (Green Disk) (b) Unstable hand (Red Disk)

Figure 3: Stable and unstable hand visualization

hand difference � hand position on first introduction � current hand position It also filters
the position with a low pass filter in order to eliminate abrupt changes which causes a failure in DMP
tracker.

Figure 4: Running of the system

(a) Leap Wam Controller
Flowchart

(b) Go To Desired Pose State
Machine

(c) Position Creator State Ma-
chine Flowchart

Figure 5: Program Flowcharts

4 Results and Conclusions

4.1 Results

Several experiments have been conducted in order to test the performance of the system. For simplicity,
manipulation is done only in 4 DoF which are 3 DoF position and rotation around z axis. Due to the



REFERENCES 7

noisy data from the sensor, a low-pass filter was implemented. Moreover, to prevent the robot from
crashing, a slower rate is selected for publishing position information.

After the experiments we noticed that the filter and DMP tracker caused a significant delay which
made the user incapable of positioning the end effector in a desired position with ease. When the effect of
the filter is reduced, delay between hand movements and published pose became insignificant. However
a delay of 1.5 seconds due to DMP tracker still present as seen in Figure 6. Furthermore, as the hand
moves farther than the sensor, the data obtained became less reliable. For example, the direction of the
hand seems to vary even though only the position was changing. We noticed that the best region of
operation of Leap Motion is within 40 cm of distance.

As it is mentioned in Chapter 3, a key tap gesture is used to send grasp and lift signal. During the
experiments, it took several tries to capture the key tap gesture.

Figure 6: Delay due to DMP tracker. (Blue straight line: Published pose, Red straight line:
Robot position, Dotted lines: Input time of published pose (Blue) and Arrival time of the robot
(Red)

4.2 Conclusion

In general, we can safely say that Leap Motion sensor is a suitable device for controlling the robot
remotely. When the filter is made weaker and the hand is kept in the reliable region, the robot responded
well to all signals. However, sending the grasping signal was still problematic. Using just hand movements
to control the robot feels very natural and it enhances the user experience.

References

[1] The unofficial leap faq, February 2014.



8 REFERENCES





IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.


