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Abstract

We present a decision theoretic approach to mobile robot exploration. The
method evaluates the reduction of joint path and map entropy and computes
a potential information field in robot configuration space using these joint en-
tropy reduction estimates. The exploration trajectory is computed descending
on the gradient of these field. The technique uses Pose SLAM as its estimation
backbone. Very efficient kernel convolution mechanisms are used to evaluate
entropy reduction for each sensor ray, and for each possible robot orientation,
taking frontiers and obstacles into account. In the end, the computation of this
field on the entire configuration space is shown to be very efficient computa-
tionally. The approach is tested in simulations in a pair of publicly available
datasets comparing favorably both in quality of estimates and in execution time
against an RRT*-based search for the nearest frontier and also against a locally
optimal exploration strategy.
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1. Introduction

We consider the problem of autonomous mobile robot exploration, and frame
it as that of reducing both localization and map uncertainties. Exploration
strategies driven by uncertainty reduction date back to the seminal work of
Whaite [21] for the acquisition of 3-D models of objects from range data. Within
the context of SLAM, it is the work of Feder et al. [4], who first proposed a metric
to evaluate uncertainty reduction as the sum of the independent robot and land-
mark entropies with an exploration horizon of one step to autonomously produce
occupancy maps. Bourgault et al. [1] alternatively proposed a utility function
for exploration that trades off the potential reduction of vehicle localization un-
certainty, measured as entropy over a feature-based map, and the information
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gained over an occupancy grid. In contrast to these approaches, which con-
sider independently the reduction of vehicle and map entropies, Vidal-Calleja
et al., [20] tackled the issue of joint robot and map entropy reduction, taking
into account robot and map cross correlations for the Visual SLAM EKF case.

Action selection in SLAM can also be approached as an optimization problem
using receding horizon strategies [6, 11, 10]. Multi-step look ahead exploration
in the context of SLAM makes sense only for situations in which the concate-
nation of prior estimates without measurement evidence remain accurate for
large motion sequences. For highly unstructured scenarios and poor odometry
models, this is hardly the case. So, we stick with the one step look ahead case.

One technique that tackles the problem of exploration in SLAM as a one step
look ahead entropy minimization problem makes use of Rao-Blackwellized par-
ticle filters [15]. The technique extends the classical frontier-based exploration
method [22] to the full SLAM case. When using particle filters for exploration,
only a very narrow action space can be evaluated due to the complexity in com-
puting the expected information gain. The main bottleneck is the generation of
the expected measurements that each action sequence would produce, which is
generated by a ray-casting operation in the map of each particle. In contrast,
measurement predictions in a Pose SLAM implementation, such as ours, can be
computed much faster, having only one map posterior per action to evaluate,
instead of the many that a particle filter requires. Moreover, in [15], the cost
of choosing a given action is subtracted from the expected information gain
with a user selected weighting factor. In our approach, the cost of long action
sequences is taken into consideration during the selection of goal candidates,
using the same information metrics that help us keep the robot localized during
path execution.

In [17] our group proposed a solution to the exploration problem that max-
imizes information gain in both the map and path estimates. The method
evaluates both exploratory and loop closure candidate trajectories, computing
entropy reduction estimates from a coarse resolution realization of occupancy
maps. The final trajectory is computed using A* in the occupancy grid, just
as [9] does so over an initial reference trajectory. The computational bottleneck
of [17] was in the estimation of the occupancy map. In this paper we present an
alternative method, in which we compute directly the global entropy reduction
estimate for each possible robot configuration. The use of very efficient kernel
convolutions allow us to compute this estimate very fast and without the need
to reduce the grid resolution. In [17], exploratory actions considered omnidirec-
tional sensing and evaluated paths toward positions near frontiers, disregarding
orientation. In a more general setting, a sensor, such as a laser range finder or
a camera, would have a narrow field of view, and hence, we need to deal with
full poses not just positions. In this paper we take this issue into account and
compute instead entropy reduction estimates for the whole configuration space
(C-space).

To find candidate exploration paths, the entropy reduction grid in C-space
is transformed into a potential field, taking into account frontiers and obstacles.
The path is obtained by gradient descent on this field. Potential field methods
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have been previously used for exploration [2, 12], but different than our ap-
proach, these methods directly evaluate boundary conditions on deterministic
maps of obstacles and frontiers, without taking uncertainty into account. Our
method follows the idea of gradient descent to a desired exploratory or loop
closing location, due to the minimization of joint map and path entropies.

In summary, the proposed method iteratively proceeds as follows. First,
from the current Pose SLAM estimate (Sec. 2), a log odds occupancy map
is synthesized from raw sensor data as shown in Sec. 3. We use this map to
compute a potential information field (Sec. 4), and plan exploration trajectories
as gradient descent along this field. Once the current exploration goal is reached,
or a loop closure is obtained, a new exploration candidate is computed in the
next iteration. The method is compared against frontier-based exploration and
locally optimal planning in Sec. 5, and conclusions are drawn in Sec. 6.

2. Pose SLAM

The proposed exploration strategy uses Pose SLAM as its estimation back-
bone. In Pose SLAM [7], a probabilistic estimate of the robot pose history is
maintained as a sparse graph with a canonical parametrization p(x) = N−1(η,Λ),
using an information filter, with information vector η = Λµ, and information
matrix Λ = Σ−1. This parametrization has the advantage of being exactly
sparse [3]. State transitions result from the composition of motion commands
to previous poses,

xk = f(xk−1, uk) = xk−1 ⊕ uk , (1)

and the registration of sensory data also produces relative motion constraints,
but now between non-consecutive poses,

zik = h(xi, xk) = 	xi ⊕ xk, (2)

where the operators ⊕ and 	 are used to indicate forward and backward com-
position of one coordinate frame relative to another [14].

When establishing a link between the current robot pose, say k, and any
other previous pose, say i, the update operation only modifies the corresponding
diagonal blocks of the information matrix Λ and introduces new off-diagonal
blocks at locations ik, and ki. These links enforce graph connectivity, or loop
closure in SLAM parlance, and revise the entire path state estimate, reducing
overall uncertainty, hence entropy.

To enforce sparseness in Pose SLAM, only the non redundant poses and
the highly informative links are added to the graph. A new pose is considered
redundant when it is too close to another pose already in the trajectory and not
much information is gained by linking this new pose to the map. However, if
the new pose allows to establish an informative link, both the link and the pose
are added to the map. In other words, in Pose SLAM, all decisions to update
the graph, either by adding more nodes or by closing loops, are taken in terms
of overall information gain.
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The information gain of a link, i.e., the difference in entropies on the entire
map before and after the link is established, takes the form

Iik =
1

2
ln
|Sik|
|Σy|

, (3)

where Σy is the sensor registration covariance, Sik is the innovation covariance

Sik = Σy + [Hi Hk]

[
Σii Σik

ΣT
ik Σkk

]
[Hi Hk]T, (4)

Hi, Hk are the Jacobians of h with respect to poses i and k evaluated at the
state means µi and µk, Σii is the marginal covariance of pose i, and Σik is the
cross correlation between poses i and k. Links that provide information above a
threshold γ are added to the graph, either to link previous states, or to connect
a new pose with the map prior.

3. Log Odds Occupancy Grid

Pose SLAM does not maintain a grid representation of the environment. It
only encodes relations about robot poses. The environment however, can be
synthesized at any instance in time using the pose means in the graph and the
raw sensor data. The resolution at which the map is synthesized depends on
the foreseen use of this map. For instance, in [17] occupancy grid maps at very
coarse resolution are produced to evaluate the effect of candidate trajectories in
entropy reduction. In some cases one might not even need to render a map. Such
is the case in [16], where only the graph is needed to plan optimal trajectories
in a belief roadmap.

In this paper, we use the Pose SLAM estimate and raw sensor data to synthe-
size an occupancy map, and from this map, we then build an entropy reduction
field in configuration space. The quality of the occupancy grid produced is a
key element of our exploration strategy. The mapping of frontiers near obstacles
in the presence of uncertainty might drive the robot to areas near collision, a
situation we need to avoid. Moreover, there is a compromise between tractabil-
ity and accuracy in choosing the resolution at which the occupancy cells are
discretized.

To provide an accurate computation of the occupancy map, which is nec-
essary for the proper computation of the potential information field, we render
the map from all poses in the Pose SLAM graph, and not only a limited number
of them. Moreover, the resolution at which the occupancy grid map is com-
puted is finer than what we were able to compute in [17]. Instead of repeating
the ray-casting operation at each iteration, we store local log odds occupancy
maps at each robot pose, and aggregate them efficiently for the computation of
a global log odds occupancy map.

At each robot pose xk, the raw sensor data is ray-casted to accumulate
evidence pk(c) for each cell c in a log odds occupancy grid in local coordinates

mk(c) = log
pk(c)

1− pk(c)
. (5)
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Figure 1: A number of log odds occupancy maps in local coordinates.

These local log odds occupancy maps are shown in Fig. 1 for a small number
of robot poses. Negative values (black) mean free space, and positive values
(white) mean obstacles. A value of zero (gray) means unexplored. During
open loop, each local map is aggregated into the global log odds occupancy
map m. To relate them in a common reference frame, each local map is rotated
via sheers and translated using very efficient image processing routines. Only at
loop closure, the occupancy map is recomputed from scratch using all previously
stored local log odds maps but oriented and translated according to the newly
estimated robot poses. The result is shown in Fig. 2a.

Generalizing Eq. 5 to the global coordinate case, we can solve directly for
aggregated cell classification probabilities,

p(c) =
em(c)

1 + em(c)
. (6)

Note however that map aggregation was computed only at the mean pose es-
timates. To smooth out misclassified and unobserved cells and to classify free
cells, obstacles and frontier cells (unobserved close to a free cell) morphologi-
cal opening and closing operations on the global log odds map are used. The
resulting detection of frontiers, obstacles and free cells is exemplified in Fig. 2b.

4. Exploration with Potential Information Fields

Our purpose at each exploratory step is to find a path that drives the robot
to those locations in the map that reduce the uncertainty in classification of free
and occupied cells. That is, as in [17], to drive the robot to minimize the joint
robot path and map entropies.

5
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Figure 2: (a) Aggregated log odds occupancy map m. (b) Classified frontier cells (white),
obstacle cells (black), free cells (light grey) and unobserved cells (dark grey).

The objective is to find a scalar function φ(c) defined over all C-space cells
such that its gradient ∇φ will consist of a path with largest joint path and map
entropy decrease. Unfortunately, the entropy decrease when executing a trajec-
tory from the current pose to any given C-space configuration is not independent
of the path taken to arrive to such pose. Different routes induce different de-
crease values of path and map entropies. Take for instance two different routes
to the same pose, one that goes close to previously visited locations or one that
discovers unexplored areas. In the former, the robot would be able to close
loops, and thus maintain bounded localization uncertainty. In the second, an
exploratory route would reduce the map entropy instead.

Computing the optimal path to a goal taking into account the effect on the
reduction of joint path and map entropies for each possible route is a computa-
tionally intractable process for anything else than very small academic scenar-
ios. We are content with obtaining a suboptimal solution, assuming that the
robot can reach each possible configuration in one single step and letting Pose
SLAM take into account uncertainty reduction during path execution. That
is, we do consider path and map entropy changes thru the path to each robot
configuration but only the changes induced in entropy by ’appearing’ at that
configuration.

This is a strong assumption since we give up knowing about the change in
entropy at intermediate steps for the ability to compute a dense entropy estimate
over the whole C-space. This dense estimate ends up being conservative, but
this is not a problem since it is only used for path planning and not to guarantee
path execution. Any event triggering replaning (reaching a goal or a collision)
triggers also a new evaluation of the entropy decrease estimate for the whole
C-space. Contrary, in Active Pose SLAM [17], entropy reduction is indeed
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Figure 3: The choice of pose a, a configuration perpendicular to a frontier, as an exploratory
goal is a suboptimal choice, compared to the selection of pose b, a configuration of optimal
map entropy reduction.

simulated for every step along the path to the goal. This makes Active Pose
SLAM computationally intractable for large planning horizons.

In contrast to our approach, [12] defines a potential scalar function using
attraction and repulsion fields on frontiers and on the current robot pose, with
some boundary conditions on obstacles. Choosing frontiers as attractors poses
some challenges. Frontiers are unexplored areas next to free cells which have a
significant probability of being yet unseen obstacles. The use of potential fields
to reach frontiers produces perpendicular robot configurations at the arriving
locations, thus making the robot face these new obstacles directly, with the
consequent unavoidable collision. Other methods that select frontiers as goal
locations during exploration that are not based on potential fields share the
same inconvenience [23]. We instead set as attractors not the frontiers, but
the robot configurations at which joint entropy reduction is maximized. These
poses are not necessarily close to frontiers, but can be at any configuration in
the free space. In addition, these attractors will also guarantee larger reductions
in map entropy since more frontier cells can be observed from these locations
than from the frontier itself. See Fig. 3.

The general formula of the joint map and path entropy given all motions and
observations, would be the addition of the path entropy given all motions and
observations and an average of the entropy of all infinite maps resulting from
all infinite paths x of the probability distribution weighted by the probability
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of each possible trajectory:

H(x,m|u, z) = H(x|u, z) +

∫
x

p(x|u, z)H(m|x, u, z)dx. (7)

The joint state entropy is approximated, in a similar way as in [17] as

H(x,m|u, z) ≈ H(x|u, z) + α(p(x|u, z))H(m|µx, u, z) (8)

where instead of computing the map entropy averaging for all infinite possible
maps, we compute it only for the mean pose estimates µx and differently to the
approximation used in [17], we add a factor α(p(x|u, z)) multiplying the map
entropy depending on the probability distribution. Finally, we actually do not
want the absolute value of the joint entropy but its change, so what we need to
compute is

∆H(x,m|u, z) ≈ ∆H(x|u, z) + α(p(x|u, z))∆H(m|µx, u, z). (9)

We evaluate joint entropy reduction on these two terms separately for each
discretized robot configuration in C-space, treat this entropy reduction as an
information field and smooth it to avoid discontinuities. We finally compute the
exploration path as the gradient of this field.

4.1. Path entropy reduction

The first term in Eq. 8 accounts for the path entropy, which in Pose SLAM
is given by

H(x|u, z) = ln((2πe)(n/2)|Σ|). (10)

The evaluation of Eq. 10 poses some drawbacks. As noted in [13], it can easily
become ill defined. To overcome this situation one might approximate its value
without taking into account the correlation between poses, and averaging over
the individual pose marginals as proposed by Stachniss et al. [15] and also
implemented in [17].

This is not necessary in our case, since we are not interested in computing
the entropy itself, but its change –the information gain– (eq. 9) and not for just
one posterior pose, but for the whole discretized C-space. To approximate it,
we assume a noise free platform for the evaluation of the final leg in the path,
and thus the jump from the current pose to each configuration will produce the
same marginal posterior, with zero information gain, except at loop closure.

And, in closing a loop between any previous configuration i and the current
one k, the decrease in path entropy is given precisely by the information gain
Iik encoded in a link connecting the two nodes as defined in Eq. 3,

∆H(x|u, z) =

{
Iik if a loop with configuration i can be closed,
0 otherwise

(11)

To establish such a link, the two configurations must be within the sensor
range, i.e., inside the sensor match area. Instead of iterating over each cell in
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the C-space grid and searching for its loop closure candidates in the Pose SLAM
graph, the iteration proceeds the other way. For each pose in the Pose SLAM
graph, we annotate the cells inside their match area in a C-space path entropy
decrease grid with the corresponding information gain. The resulting C-space
grid contains the amount of path entropy decrease when the robot is moved to
that particular position and orientation.

4.2. Map entropy reduction

In contrast to [17], in which we compute the reduction in entropy for a
limited set of final configurations, we now compute it for each configuration in
the discretized C-space. For a map with size cell l, its entropy can be computed
as a scalar value

H(m|u, z) = −l2
∑
∀c∈m

(p(c) log p(c) + (1− p(c)) log(1− p(c))). (12)

The reduction in entropy that is attained after moving to a new location
and sensing new data depends basically on the number of cells that will change
its status from unknown to discovered, either obstacle or free. Anticipating the
number of discovered free cells before actually processing the new observations
is impossible. We are content with approximating entropy reduction as the
increase in the number of discovered frontier cells.

This map entropy reduction by observing frontier cells for each robot con-
figuration could be found computing the frontier visibility of each sensor ray
for each robot configurations but this wouldn’t be efficient at all. We propose
instead a novel method for computing it efficiently using convolutions. Taking
into account that several robot orientations have common ray directions, and
also that using a simple convolution, we can compute the frontier visibility for
a specific direction from all positions, we invert the order of computations.

Hence, we are able to compute this entropy change very efficiently with the
following three steps:

1. Obstacle occlusion mask. We generate a three-dimensional grid. Its dimen-
sions are x, y, and the orientation of each laser ray. For each ray orientation
layer, a 2D obstacle occlusion mask is created, annotating whether the near-
est non-free cell along that ray direction is a frontier or not. The mask is
computed with a one-dimensional convolution with an inverse exponential
motion kernel over a positive value for frontier cells and a negative value
for obstacles. Binary thresholding the positive values we obtain the desired
occlusion mask. See Fig. 4b.

2. Frontier convolution. Given the radial nature of the sensor being simulated,
each frontier cell will receive a different density of ray casts from the same
scan, thus it is necessary to compensate for this in order not to overestimate
the number of frontier cells being observed. The ray cast density n(c) at each
cell c is modeled as a function of the distance from the robot to that cell r(c)
and the angle β between two consecutive sensor rays

n(c) =
1

r(c) tanβ
. (13)
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(a) (b)

(c) (d)

Figure 4: Computation of entropy change. (a) Occupancy map with obstacles (black), frontiers
(white) and free cells (light gray). (b) Obstacle occlusion mask in one ray direction. (c) Map
entropy decrease of one ray direction after the frontier convolution. (d) Sum over entire sensor
spread for one robot orientation.

For each ray orientation layer, a convolution is made with a one-dimensional
motion kernel weighted with min(1, r(c) tanβ). The result of this frontier
convolution is shown in Fig. 4c.

3. Sum over entire sensor spread. We now build up the final 3D grid in C-space
to annotate map entropy reduction for each hypothetical robot pose. Once
the frontier convolution layers for all ray directions have been computed, we
sum all the layers within the sensor orientation range to annotate it in the
corresponding cell in the C-space map entropy reduction grid. The result of
this step for one particular robot orientation is shown in frame d of the same
figure.

4.2.1. Localization uncertainty compensation

The factor accounting for the path probability distribution α(p(x|u, z)) in the
joint entropy decrease estimate (Eq. 9) has an intuitive meaning. It is obvious
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that exploratory trajectories that depart from well localized priors produce more
accurate maps than explorations that depart from uncertain locations. In fact,
sensor readings coming from robot poses with large marginal covariance values
may spoil the map adding bad cell classifications, i.e., adding entropy. Since
we already have localization uncertainties encoded in the Pose SLAM graph,
these are used to weight the entire entropy reduction map. It suffices to weight
the entire entropy reduction map with the inverse of the determinant of the
marginal covariance at the current configuration

α(p(x|u, z)) =
1

|Σkk|
(14)

Exploratory trajectories that depart from uncertain configurations will be
weighted negatively, giving predominance to the path entropy reduction term
in those cases. In this way, we achieve the desired effect of alternance between
exploratory and relocalization paths.

4.3. Potential field and gradient path

Once the path entropy decrease and the map entropy decrease estimation
are computed densely for all C-space cells, we combine them weighing the map
entropy by the localization uncertainty compensation as described to obtain a
dense estimate of information gain. Dense in the sense that it has been computed
for each cell in the C-space grid. But, for this estimate to become the needed
scalar function φ, we still need one more step. To avoid long valleys with no
entropy change, and to enforce attraction to the informative poses, the grid is
turned into a potential field, smoothing it using a harmonic function of the form

φxyθ =
1

6
(φx±yθ + φxy±θ + φxyθ±) (15)

where the superscript ± is used to indicate neighbor cells in the C-space grid.
See Fig. 5 for a one-dimensional example.

4.4. Obstacle avoidance and boundary conditions

For our gradient descent exploration strategy, we have identified two types
of local minima. One type of local minima refers to those entropy reduction
configurations at the selected goals, that when reached by the robot, become
entropy reduction valleys in the next computation of the potential field. These
do not constitute a problem. The second type of local minima are bottlenecks
and dead ends near obstacles.

To account for obstacles, in our computation of the grid we have considered
them to adequately propagate entropy change along sensor rays taking into
account occlusions, but we have still not penalized configurations that get close
to them. We resort to the use of boundary conditions of the form

∇φ(c) = g(c) ∀c ∈ ∂Soccupied (16)
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Figure 5: The C-space entropy change grid is smoothed with a harmonic function updating
the values below v at each smooth iteration. The solid and the dotted lines represent the
initial joint entropy decrease and the potential information field resulting after smoothing,
respectively. Zone (a) represents a region with steep entropy reduction within the sensor
range to guarantee loop closure. Zone (b) represents an area worth exploring.

Figure 6: Potential field values for some C-space orientation layers. The blue regions indicate
competing exploratory and loop closure candidate configurations at that robot orientation.
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Figure 7: Exploration trajectory computed as the gradient descent of the potential information
field from Fig. 6.

as in [12], with the difference that instead of using Neumann boundary condi-
tions to guarantee flow parallel to obstacles, we still want some repulsive per-
pendicular effect from them. This effect can be achieved by mirroring weighted
inner cell values near obstacles. In the method reported here we start each
planning step weighting the repulsion term with a small constant to avoid bot-
tlenecks at local minima and increasing it and re-planning in case a collision is
detected. This iterative increment of the repulsion weights has the final effect
of pushing the robot away from the bottleneck in the next planning iteration.

The final path is obtained by traversing the gradient field from the current
robot configuration to the robot configuration with largest joint entropy reduc-
tion. Some C-space orientation layers of the resulting information potential
field are shown in Fig. 6, and the resulting trajectory of its gradient descent is
depicted in Fig. 7.

5. Simulations

5.1. Scenarios

Simulations are carried out in three different scenarios. The first one is
the widely used cave-like environment available from [5], scaled to a size of
20 m×20 m. The second one is a modification of this cave-like environment with
more obstacles and corridors to enforce bottleneck situations. This scenario was
used to investigate whether the gradient descent in the potential information
field allowed for easy transitions through these narrow passages. The third
scenario is the larger Freiburg indoor building 079, also available from [5]. It is
a more challenging scenario, allowing us to show the limitations of the algorithm
with regards to scalability when compared to the other methods. The scenarios
used are shown in Fig. 8.
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(a) Cave (b) Modified cave (c) Freiburg indoor building 079

Figure 8: Scenarios used in the simulations.

5.2. Methods

Several simulations were performed to compare the proposed solution with
other exploration strategies. We wanted to evaluate to what extent path entropy
reduction plays a role on the improvement of map quality. To this end, we
compare our method, which aims to reduce both path and map entropies, with
a greedy coverage technique such as frontier-based exploration, which seeks only
map entropy decrease.

The frontier-based method used drives always the robot to the closest frontier
larger in size than a predefined threshold, without considering neither localiza-
tion nor map uncertainties. In our simulations, frontiers larger than 9 cells (90
cm) were considered first. Once there were no frontiers of that size, the thresh-
old was reduced until there was no frontier left to visit or the simulation steps
limit was reached. The trajectory to the chosen frontier was computed with an
RRT* optimal planner [8].

Secondly, we wanted to evaluate whether dense estimation of the entropy re-
duction field for one step look ahead optimization is a better choice than entropy
reduction for a sparse set of goals but with larger look ahead optimization se-
quences. To that end, we compare the method against Active Pose SLAM [17], a
technique that evaluates joint entropy reduction for a limited set of exploratory
and path revisiting goals.

Active Pose SLAM evaluates entropy as in Eq. 8, with the difference that
it does not allow for localization uncertainty compensation, so α(p(x|u, z) = 1,
and with the disadvantage that it is not computed densely, but only for a limited
number of candidate trajectories. The method estimates, at each iteration, the
posterior for a reduced number of exploratory trajectories seeking frontiers and
a number of loop closing trajectories computed using the PRM algorithm. Using
such posteriors it evaluates joint entropy decrease at those locations and chooses
the trajectory with maximum joint entropy decrease. This method also uses a
naive implementation of occupancy grid which is shown to be significantly more
expensive to compute than ours.

For each environment and exploration method, we performed 5 simulations
due to the effects of the simulated noise in motion and sensors and the ran-
domness of the RRT* used in the frontier-based method and the PRM used by
the Active Pose SLAM. The simulation steps limits were 200 and 400 for the
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cave-like and the Freiburg maps, respectively.
All the simulations used the same parameter values. The robot is fitted with

a laser range sensor with a match area of ±1 m in x and y, and ±0.35 rad in
orientation. This corresponds to the maximum range in configuration space for
which a link between two poses can be established. The robot motion was esti-
mated with an odometric sensor with noise covariance Σu = diag(0.1 m, 0.1 m,
0.0026 rad)2. Measurement noise covariance was fixed at Σy = diag(0.05 m,
0.05 m, 0.0017 rad)2 and laser scans were simulated by ray casting over a ground
truth grid map of the environment using the true robot path. Relative motion
constraints were measured using the iterative closest point algorithm. The ini-
tial uncertainty of the robot pose was set to Σ0 = diag(0.1 m, 0.1 m,0.09 rad)2.
Informative loop closures were asserted at I = 2.5 nats.

5.3. Metrics

A number of different metrics were used to compare the three methods. First,
to evaluate the speed-up of our new log odds occupancy grid computation, we
measured the time taken by the algorithm to produce the whole occupancy map
vs. the time taken by Active Pose SLAM for the same task, without considering
other processes (state and entropy estimation, planning, navigation, etc).

Secondly, to compare the three exploration methods at run time, we stored
on average and at each iteration, path and map entropy values for each of the
methods and scenarios; the map coverage, measured as the number of cells
labeled in the occupancy map; and the map error, measured as the number of
cells in the occupancy map which were inconsistent with at least one rendered
sensor data point measured at the respective mean of the estimated path pose.

As shown in the following subsection, map entropy decrease is almost equiv-
alent to measuring coverage in the same way that map error is correlated to path
entropy, i.e, an accurate path is a good indicator of adequate sensor registration
and hence, map consistency.

Two other measures of performance computed were total execution time,
including all the different processes of each method except for the mapping, and
the total number of loop closures computed by each of the methods, which can
also be related to the overall path entropy reduction.

5.4. Results

5.4.1. Mapping

Table 1 shows the average computational cost required to build a map for
each of the different scenarios by the Active Pose SLAM method and by our new
implementation, which aggregates local log odds occupancy maps into a common
reference frame. The table shows how in general, our new implementation is
an order of magnitude faster than the one used in Active Pose SLAM. This
speed-up increase is accentuated even more for the larger Freiburg scenario.

This speed-up in computation is achieved mainly thanks to the affine trans-
formations computed through sheers and translations that aggregate the local
log odd maps into a global reference frame as described in Sec. 3.

15



Active Pose SLAM Aggregated log odds

Cave 47.83 s 2.32 s
Modified Cave 47.94 s 3.12 s
Freiburg 079 153.50 s 5.80 s

Table 1: Average computational time required to build the occupancy map in seconds, without
taking into account other processes.

(a) Average map entropy. (b) Average path entropy.

(c) Average coverage. (d) Average map error.

Figure 9: Cave exploration. Average map and path entropies, coverage and map error over
5 simulation runs. In blue, the frontier-based method with RRT* exploratory paths. In red,
Active Pose SLAM. In green, gradient descent on the potential information field. Best viewed
in color.

5.4.2. Cave map

Figure 9 shows plots for average map and path entropies, coverage, and map
error, over 5 simulation runs of a 200 step exploration sequence of the cave
scenario. The plots readily show the strong correlation between map entropy
and coverage. Map error on the other hand is not only linked to path accuracy,
but also to the size and morphology of the environment explored. Such difference
is more acute for the other two scenarios which contain larger amounts of walls
and obstacles.

As a consequence of path entropy minimization in both methods (Active
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Nearest frontier Active Gradient descent
Performance metric with RRT* Pose SLAM on the PIF

Final path entropy −0.94 nats −1.94 nats −2.08 nats
Final map entropy 100.87 nats 105.30 nats 98.70 nats
Total time 1480.84 s 21357.03 s 3487.74 s
Loops closed 5.2 19.8 27.4

Coverage 285.17 m2 283.80 m2 286.38 m2

Map error 60.30 m2 55.78 m2 50.91 m2

Table 2: Cave map exploration. Average comparison of different performance metrics for 5
runs of the three exploration methods discussed.

(a) Closest frontier with
RRT*.

(b) Active Pose SLAM. (c) Gradient descent on the
potential information field.

Figure 10: Final trajectories after an execution of 200 steps in the cave map for the three
exploration methods. In red the robot path, in green the loop closure links, in black the
whole raw sensor data rendered at the last path estimate, and in blue the marginal robot
pose estimate for the current state (mean and variance) along with the sensed data at that
location.

Pose SLAM and gradient descent on the potential information field), lower levels
of map error are obtained for similar final coverage areas than pure frontier-
based exploration. On average, for this scenario, the proposed method, gradient
descent of the potential information field, achieves the largest coverage with the
least amount of map error, as shown in Table 2.

Figure 10 shows single runs for the three methods for this map. The effect
of path entropy reduction can be easily observed in these plots as well. The
blue dots indicate the final robot pose estimate and its corresponding sensor
data. It can be seen how the two methods that take into account path uncer-
tainty reduction in their exploration strategies provide more accurate final pose
estimates (blue and black sensor registration matches), whereas pure frontier
based exploration does not account for that. Since there is no loop closure
enforcement, there is no guarantee that the final path will be optimized.

It tuns out however that without localization uncertainty compensation, Ac-
tive Pose SLAM results in an exploration strategy that is too conservative. For
the same plant and sensor noise levels, the technique weights more localiza-
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tion than exploration and hence coverage grows slower than in the other two
methods.

Our method outperforms both other methods reaching full coverage much
faster, and with lower path entropy. In addition, the computational time for the
aggregated exploration and planning routines is significantly lower than Active
Pose SLAM and competitive with the frontier-based method.

In the figure, it can also be observed how the frontier-based strategy re-
sults in many collisions with many frontiers misclassified due to the larger path
uncertainties. In contrast, the exploration method using the gradient descent
on the potential information field produces valleys of high information at loop
closures and away from the repulsive obstacles.

Another difference between the two methods is that frontier-based explo-
ration ceases once full coverage is reached and there are no further frontiers to
visit. On the contrary, our method even when reaching full coverage, might
continue optimizing the path, seeking revisiting trajectories to close loops, and
hence improving the map estimate.

5.4.3. Modified cave map

This second scenario is a modification of the cave map in which we have
added walls and obstacles to create a more challenging environment. The ob-
jective in designing this setting was to analyze whether the gradient descent
approach would get stuck in local minima at corridors or dead ends.

Figure 11 shows once more averaged metrics for the three methods in this
scenario for five simulation runs. One interesting thing to note is that frontier-
based exploration rapidly enforces coverage, reaching low map entropy values
sooner than the other methods, but being unable to decrease such value at the
end of the simulation. The reason for this is that disregarding path entropy
minimization in frontier-based does not enforce loop closure. For that same
reason frontier-based exploration produced the largest map errors. The two joint
entropy minimization schemes performed reasonably well with regards to path
entropy reduction. However, our method was more conservative in exploration
at the beginning, reaching better coverage at the end, whereas Active Pose
SLAM was too conservative heavily refining its localization estimates for this
scenario and failed to fully explore it.

These same findings are also contrasted in Table 3 and in the exemplary
test runs plotted in Fig. 12. See for instance the large number of collisions that
needed to be accounted for in the frontier-based method due to its larger map
error values.

Computationally speaking, our gradient descent takes similar effort to com-
pute than frontier-based exploration, and is about six times faster than Active
Pose SLAM on average for this scenario.

5.5. Freiburg 079 map

The Freigurg 079 building is quite more complex than the two previous
scenarios. We choose this environment in order to test not only the bottleneck
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(a) Average map entropy. (b) Average path entropy.

(c) Average coverage. (d) Average map error.

Figure 11: Modified cave exploration. Average map and path entropy, coverage and map error
over 5 simulation runs. Color labels as in Fig. 9.

Nearest frontier Active Gradient descent
Performance metric with RRT* Pose SLAM on the PIF

Final path entropy −0.52 nats −2.43 nats −1.73 nats
Final map entropy 154.33 nats 201.65 nats 134.04 nats
Total time 530.39 s 3102.84 s 595.87 s
Loops closed 10.8 35.8 27.6

Coverage 211.55 m2 156.70 m2 233.90 m2

Map error 54.02 m2 36.70 m2 50.38 m2

Table 3: Modified cave map exploration. Average comparison values of different performance
metrics for 5 runs of the three exploration methods discussed.

effect since it is the main drawback of the potential field method, but also to
study how the method scales for larger settings.

In this scenario, there are no big loops and the corridor is straight. This
helps those methods that do not plan for loop closure such as frontier-based
exploration, beause these loop closures will occur anyways each time the robot
comes out from an explored room back into the corridor.

As in the previous scenarios, Active Pose SLAM performance is characterized
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(a) Nearest frontier with
RRT*.

(b) Active Pose SLAM. (c) Gradient descent on the
potential information field.

Figure 12: Final trajectories after an execution of 200 steps in the modified cave map of the
three exploration methods. Color meanings as in Fig. 10.

by a very conservative behavior with regards to localization uncertainty. For
a simulation run of 400 steps, the method did not reach full coverage. The
result was a largely connected graph of nodes around the initial robot pose,
with very low path entropy, leaving the rest of the scene highly unexplored.
As expected, the closest frontier method behaves the opposite way, it reaches
nearly full coverage and, due to the topology of the scenario, closes a significant
number of loops. Path entropy and map error however are still larger than in
the other two methods.

Our method shows a more balanced performance with regards to exploration
vs. exploitation, as shown in Fig. 14 which plots the resulting map for one in-
stance of the simulations after 400 steps for each of the three methods discussed.

For the potential information fields method, the local minima drawback is
detected in two different cases, as a bottleneck effect near obstacles and also as
local minima of path entropy. The first case is mainly a planning drawback,
narrow door passages tend to trap the robot because of the repulsive boundary
conditions at obstacles. To get away from these local minima, it sufficed to
increase the potential field at that node, turning a valley into a ridge. This
iterative potential field increase constituted a two-fold increase in computation
time when compared with the frontier-based method, as shown in Table 4.

The second case of local minima appears in the second half of the simulation.
At that point marginal pose uncertainties have become large enough to populate
the Pose SLAM graph with plenty of nearby nodes. A gradient descent path
will seek loop closure with such nodes but with little path entropy reduction.
Navigating around these nearly flat potential fields will not significantly reduce
map entropy either, but will introduce motion and sensor error, hence producing
map error in the end as shown in Fig. 13. The end result is that for the second
half of the simulation, coverage does not increase as fast as in the first part. A
possible solution to this problem would be to change our state representation to
local coordinates instead of global. In that case, marginals close to the current
robot location would always have smaller variance, and path entropy reduction
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(a) Average map entropy. (b) Average path entropy.

(c) Average coverage. (d) Average map incoherence.

Figure 13: Freiburg 079 building exploration. Average map and path entropy, coverage and
map error over 5 simulation runs. Color labels as in Fig. 9.

Nearest frontier Active Gradient descent
Performance metric with RRT* Pose SLAM on the PIF

Final path entropy −0.03 nats −2.06 nats −1.3 nats
Final map entropy 481.74 nats 706.84 nats 603.68 nats
Total time 1466.91 s 33899.97 s 3727.48 s
Loops closed 18.0 67.5 49.0

Coverage 602.24 m2 358.82 m2 475.56 m2

Map error 171.02 m2 115.74 m2 117.62 m2

Table 4: Freiburg 079 building exploration. Average comparison values of different perfor-
mance metrics for 5 runs of the three exploration methods discussed.

will always be maximal away from the current robot location. We leave this
issue as a topic for further research.

6. Conclusions

We have proposed a decision theoretic approach for autonomous mobile
robot exploration. The goal of the approach is to determine the movements
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(a) Nearest frontier with RRT*.

(b) Active Pose SLAM.

(c) Gradient descent on the potential information field.

Figure 14: Final trajectories after an execution of 400 steps in the Freiburg 079 map of the
three exploration methods. Color meanings as in Fig. 10.

that aim at reducing the entropy about both the robot state and the map. Map
entropy is computed on an occupancy grid, whereas path entropy is computed
from the uncertainties of an underlying graph-based SLAM solution.

Exploratory paths are computed by traversing a gradient descent on a C-
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space field of path and map entropy reduction estimates. The technique makes
use of very efficient convolutions first, to project boundaries along sensor rays,
and secondly, to integrate entropy measures at independent robot orientation
layers.

The method outperforms, in terms of map quality, frontier-based exploration
which only seek coverage. The method also outperforms another method that
seeks joint path and map entropy minimization but only for a limited number
of exploratory trajectories. In this case, both in terms of coverage and speed of
computation.

Contrary to other exploration methods, joint path and map entropy decrease
is computed densely over the C-space. In computing the gradient descent on
this field, the method assumes an holonomic platform. Also, the use of the
gradient descent makes the method sensitive to some local minima drawbacks.
Future work is on using this dense joint entropy decrease estimation to compute
potential exploratory goals, but leaving the path planning strategies to other
methods that can account for the non-holonomic restrictions and also be less
sensitive to this local minima [19].

Future work also includes, the switch from global to local representations,
an implementation in ROS, and comparison against competing approaches on
real scenarios.
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