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ABSTRACT: This work focuses on obtaining an order-reduced model from a nonlinear single PEMFC model, 
which incorporates the effects of distributed parameters that are relevant for its proper functioning and 
performance. The original model is an in-house MATLAB® code, flexible enough to manipulate the underlying 
model equations and apply model order reduction (MOR) techniques. The obtained order-reduced model is 
suitable to perform numerical simulations and design efficient controllers for the original nonlinear partial 
differential equations (PDE) model.	
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1. INTRODUCTION 
 

Distributed parameter modeling is required to 
accurately consider space variations, which are 
important regarding the performance and durability 
of the Proton Exchange Membrane Fuel Cells 
(PEMFC) [1-3]. However, the number of differential 
and algebraic equations (DAE) obtained from the 
discretization of a set of partial differential 
equations (PDE) is very large, and this not only 
slows down the numerical simulations, but also 
complicates the design of online model-based 
controllers. 

The inclusion of complex DAE models within 
model-based control schemes requires a previous 
simplification. This work presents a method to 
simplify complex models that consists of reducing 
the order while preserving the relationship between 
certain input and output variables, applied to a 
nonlinear distributed parameter single PEMFC 
model. 
 
 
2. DESCRIPTION OF THE SYSTEM 
 

This work considers a single cell of one channel 
(Fig. 1) that includes all the functional parts of the 
PEMFC: bipolar plates, gas channels, gas diffusion 
layers, catalyst electrode layers, the proton exchange 
membrane and a cooling system. This simple model 
suits the detailed analysis of spatial variations. The 
case study selected in the work is a 0.4 m along-the-
channel single cell (area 0.4x10-3 m2) with Nafion 
117 membrane. The parameters of the membrane are 
taken from [4, 5]. 

A distributed parameter model was used to 
represent this system. Partial differential equations 
and algebraic constraints have been discretized by 
finite differences into 10 volumes (uniformly 
distributed) along z-direction. As a result, a set of 

DAE (110 ODE and 310 algebraic equations) was 
obtained. This new set of model equations was 
implemented and numerically solved in 
MATLAB®, using a DAE solver. The complete 
discretization process was presented in [6]. 

 

 
Fig. 1. Single cell distributed parameter model geometry. 

 
 

3. MODEL ORDER REDUCTION 
 

The method used to reduce the order of the case 
study nonlinear DAE model requires finding the 
underlying ODE description of the original DAE 
model, linearizing around an equilibrium point of 
interest, then computing the corresponding 
controllability and observability functions. The final 
step is finding an appropriate model realization that 
reveals which states of the original system can be 
truncated without considerably affecting the original 
input-output behavior [7]. 

 
3.1. Balanced truncation model order reduction 
 

Consider the nonlinear control system, assuming 
that the DAE model has an underlying ODE 
description as stated in [7]. 
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!x = f x( )+ g x( )u,
y = h x( ),

                         (1) 

                          
with x! N, u! M, y! P and f(0) = 0. 
 

The controllability function Lc(x) is the solution 
of the optimal control problem 

 

        Lc x( ) = inf
u!L2 "#,0( ),RM( )

1
2

u t( )
2

"#

0
$ dt,            (2) 

 
subject to the boundary conditions x(-! ) = 0, x(0) = 
x and the system (1). Roughly speaking, Lc(x) 
measures the minimum 2-norm of the input signal 
necessary to bring the system to the state x from the 
origin. 

As shown in [8], Lc obeys the Hamilton-Jacobi-
Bellman PDE 
 

                    !xLc f +
1
2
!xLcgg

T!x
TLc = 0,                 (3) 

 
in a domain Uc!

M containing the origin, where 
the vector field ! f + ggT"x

TLc( )  is asymptotically 

stable. 
The observability function Lo(x) is the 2-norm of 

the output signal obtained when the system is 
relaxed from the state x 

 

           Lo x( ) = 1
2

y t( )
2

0

!

" dt = 1
2

y t( )
2

0
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" dt  ,     (4) 

 
with x(0) = x and subject to (1) with u = 0, that is, 
!x = f x( ) . It obeys the Lyapunov PDE 

 

                  !xLo f +
1
2
hTh = 0,      Lo 0( ) = 0             (5) 

 
in a domain Uo !

N where f(x) is asymptotically 
stable. 

For linear control systems, 
 

                         
!x = Ax +Bu,
y =Cx,

                            (6) 

 
assumed to be observable, controllable and Hurwitz, 
both Lc(x) and Lo(x) are quadratic functions 
 

                        Lc x( ) = 1
2
xTWc

!1x,                          (7) 

                        Lo x( ) = 1
2
xTWox,                            (8) 

 

where Wc > 0 and Wo > 0, the controllability and 
observability Gramians, are the solutions to the 
matrix Lyapunov equations 
 

                    
AWc +WcA

T +BBT = 0
ATWo +WoA+C

TC = 0
                      (9) 

 
and are explicitly given by 
 

                     
Wc = eAtBBTeA

Tt dt
0

!

"
Wo = eA

TtCTCeAt dt
0

!

"
,                    (10) 

 
although the direct numerical solution of (12) is 
computationally preferred. 

As shown by Moore [9], the matrix Wc provides 
information about the states that are easy to control 
(in the sense that signals u of small norm can be 
used to reach x), while Wo allows finding the states 
that are easily observable (in the sense that they 
produce outputs of large norm). From the point of 
view of the input-output map given by (6), it is 
desirable to select the states that score well on both 
counts, and this leads to the concept of balanced 
realization, for which Wc = Wo. 

The balanced realization is obtained by means of 
a linear transformation x = Tz, with T computed as 
follows: 
1. Solve the Lyapunov equations (9), with solutions 

Wc > 0, Wo > 0. 
2. Perform Cholesky factorizations of the Gramians 

 
               Wc = XX

T ,     Wo =YY
T ,                   (11) 

with X > 0 and Y > 0. 
3. Compute the SVD of YTX 

                       
                       Y TX =U!VT ,                         (12) 
 
with U and V orthogonal and 
 
                ! = diag !1,! 2,…,! N( ),                 (13) 
 
with !1 >! 2 >!>! N > 0.  
The ! i are the Hankel singular values, and their 
squares ! i =" i

2  are often referred to as the 
squared singular values of the system. 

4. The balancing transformation is given then by 
 
        T = XV!"1/2 , with T !1 = "!1/2UTY T .       (14) 
 

5. The balanced realization is given by the linear 
system 
 
        !A = T !1AT,      !B = T !1B,     !C =CT ,       (15)  
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and in the new coordinates 

                   
!Wc = T

!1WcT
!T =",

!Wo = T
TWoT =".

                     (16) 

Notice that, in the balanced realization, 

              

!Lc z( ) =
1
2

zi
2

! i

=
1
2
zT !"1,

i=1

N

!

!Lo z( ) =
1
2

! izi
2 =
1
2
zT !z,

i=1

N

!
             (17)   

to assure that the state with only nonzero coordinate 
zi is both easier to control and easier to observe than 
the state corresponding to zi+1 for i = 1,2,…,N-1. 

To reduce the order of the model already in 
balanced realization, if, for a given r, 1! r ! N , 
there is a major gap between two singular values, 
i.e. ! r >>! r+1 , then it is only necessary to keep the 
states corresponding to the coordinates z1, z2, … ,zr, 
from the point of view of the map between u and y. 
This is known as balanced realization model order 
reduction. A further linear transformation can put 
the system into input normal form 

              

!Lc z( ) =
1
2

zi
2 =
1
2
zT z,

i=1

N

!

!Lo z( ) =
1
2

! i
2zi
2 =
1
2
zT !2 z,

i=1

N

!
          (18) 

for which the same comments apply (now all the 
states are equally easy to control, and the differences 
have been loaded completely on the observability 
function). 

As shown in [10],	
  H∞-­‐norm	
   lower and upper 
error bounds of the balanced truncation method are 
given by 

           ! r+1 ! G s( )"Gr s( ) H#

! 2 ! i
i=r+1

n

$         (19) 

From these inequalities it follows that, in order 
to get the smallest error for the truncated system, 
one should, in any case, disregard the states 
associated with the smallest Hankel singular values. 

 
3.2. Model Order reduction of the discretized 

PEM fuel cell model 
 

The original model was discretized using 10 
volumes (Fig. 2), which led to a 110-state nonlinear 
DAE model. The selected inputs are gas species 
inlet flows, inlet temperatures and total cell voltage 
(8 inputs). The outputs correspond to the complete 
membrane current density profile along z-direction 
(10 outputs). Each output corresponds to current 
density in one volume along the z-direction. The 
chosen operating condition is cell current 1.98 A 
and voltage 0.7 V. These inputs and outputs allow a 
complete state controllable and observable model. 

 

 
Fig. 2. Single cell distributed parameter model domain, 
discretization and variables. 
 

Applying the order reduction process to this 110-
state model results in the following Hankel Singular 
values plot, which indicates that, approximately, a 
10-state model should be good enough to preserve 
the input-output behavior of the original model. 
 

 
Fig. 3. Hankel Singular Values plot. 
 
 
4. RESULTS AND DISCUSSION 
 

In order to test the reduced-model behavior, step 
input-output responses from the original model and 
reduced models of different orders were simulated 
and compared. Time responses of important 
variables to a voltage step change at time 3 s are 
shown. In order to analyze other important model 
internal variables, these are also selected as outputs. 

 

 
Fig. 4. Time variation of hydrogen concentration at volume 3. 

 
Fig. 4 and Fig. 5 show the comparison of three 

different order-reduced models with the original 
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nonlinear full order model. The studied variables are 
hydrogen concentration at volume 3 and anode 
water at volume 5 (see Fig. 2). Notice that the 20-
state model is already a perfect approximation of the 
nonlinear model. 

 

 
Fig. 5. Time variation of membrane current density at volume 10. 

 
The 11-state model is almost as good as the 20-

state model. Using fewer states (5-state model) 
results in not very good approximations, which is 
why the chosen order-reduced model has 11 states 
(as predicted by the Hankel Singular Values plot). 
Fig. 6 and 7 show the same results for membrane 
current density, oxygen concentration and solid part 
(MEA) temperature. 

 

 
Fig. 6. Time variation of oxygen concentration at volume 10. 
 

 
Fig. 7. Time variation of solid part temperature at volume 3. 
 
 
5. CONCLUSIONS 
 

Promising results have been found by applying 
an order reduction technique to a complex 
distributed parameter model of a PEM Fuel Cell 
model. The methodology consists of finding the 
controllability and observability functions of the 

original nonlinear model, computing a change of 
coordinates to obtain a balanced realization that 
reveals the important states, and truncating less 
important states to approximate the original model. 
For the analyzed case study, a quadratic form of the 
controllability and observability functions has been 
used. Results have shown that reducing the order of 
the distributed parameter model from 110 states 
down to 11 states gives a very good approximation. 
An interesting next step is to study the range of 
operating conditions (around the equilibrium) for 
which the reduced model is valid. Currently, this 
order-reduced model is being applied to design 
model-based controllers for PEM Fuel Cells. 
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