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Abstract

ToF cameras are now a mature technology that is widely being adopted to provide sensory input to robotic applications. Depending

on the nature of the objects to be perceived and the viewing distance, we distinguish two groups of applications: those requiring

to capture the whole scene and those centered on an object. It will be demonstrated that it is in this last group of applications, in

which the robot has to locate and possibly manipulate an object, where the distinctive characteristics of ToF cameras can be better

exploited.

After presenting the physical sensor features and the calibration requirements of such cameras, we review some representative

works highlighting for each one which of the distinctive ToF characteristics have been more essential. Even if at low resolution, the

acquisition of 3D images at frame-rate is one of the most important features, as it enables quick background/foreground segmenta-

tion. A common use is in combination with classical color cameras. We present three developed applications, using a mobile robot

and a robotic arm, to exemplify with real images some of the stated advantages.
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1. Introduction

A Time-of-Flight (ToF) camera is a relatively new type of

sensor that delivers 3-dimensional images at high frame rate,

simultaneously providing intensity data and range information

for every pixel. In robotics it has been used for a wide range of

applications that can be classified in two groups: scene-related

and object-related. In scene-related tasks usually the camera is

mounted on a mobile robot (Fig 1a) and it is used for mapping

and localization, although it has been also applied to obstacle

detection and terrain classification [1]. In object-related tasks,

the camera is usually attached to the end-effector of a robot ma-

nipulator (eye-in-hand configuration), so that new images can

be obtained by actively changing the point of view of the cam-

era (Fig. 1b). In this paper we will describe some of the lessons

learned in using such cameras to perform robotic tasks, with

special attention to eye-in-hand configurations.

In an eye-in-hand scenario, some particular characteristics of

the sensor system are appreciated. Mainly, the compactness

and the detection in a short range, besides the obvious require-

ment of quality (precision and accuracy) in the obtained data.

On the one hand, operation in a short range is desired because

robot manipulators have typically a limited workspace, and the

distance from the end-effector to an object located in front of

the robot is short. As will be demonstrated later, ToF cam-

eras exhibit good performance in short ranges. On the other

hand, as the sensor system is mounted on a robot arm it has

to be lightweight, with no mobile parts, and as small as pos-

sible to avoid interference with the environment or the robot
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itself. ToF cameras fit well this description, as they are usually

lightweight, have no mobile parts, and they can be compact and

small as well. Section 2 introduces ToF cameras and presents

a critical comparison with RGBD cameras (Kinect), a different

3D sensor that is more and more commonly used in robotics.

Section 3 presents and puts in context some of the rele-

vant works, distinguishing between scene-related tasks, where

the camera is used for scene understanding, and object-related

tasks, which involve the detection, the pose estimation, or the

manipulation of objects. Our aim is to highlight in each case the

main characteristics of ToF cameras that are differential com-

pared to other approaches.

Regarding the quality of data, it is well known that raw

ToF data is quite noisy and prone to several types of distur-

bances [2]. Some of them are systematic and can be calibrated,

and others are non-systematic and sometimes can be filtered

out. In Section 4 systematic and non-systematic error sources

are reviewed and a calibration algorithm is proposed that takes

into account the application scenario.

The ability to actively move the camera depending on the

scene provides some advantages. In Section 5 we show three il-

lustrative examples: understanding the 3D structure of some

relevant parts of the scene to enable robot-object interaction

with plants, obtaining detailed views of relevant parts of tex-

tiles objects, and disambiguation to enhance segmentation al-

gorithms. Finally, some conclusions are drawn in Section 6.

2. ToF cameras

In ToF cameras depth measurements are based on the well

known time-of-flight principle. A radio frequency modulated

light field is emitted and then reflected back to the sensor,
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(a) Scene-related task setup: ToF camera attached at the

front of a mobile robot used for navigation and terrain clas-

sification. Reproduced from [1]

(b) Object-related task setup: ToF camera attached to a

manipulator end-effector, in this case a Chlorophyll meter,

to get measures by touching the leaf surface.

Figure 1: Camera-robot configurations for active vision.

Figure 2: Typical raw ToF image of a table with some objects

at short distance. Right and above: intensity image. Right and

down: Depth codified as intensity. Left: rotated 3D point cloud

with depth color coded. Observe the errors in depth due to the

colors in the calibration pattern and the noise in the background.

which allows for the parallel measurement of its phase (cross-

correlation), offset, and amplitude [3]. Figure 2 shows a typical

raw image of a flat surface with the depth values coded as color

values.

The main characteristics of two ToF sensors, PMD CamCube

3 and Mesa Swissranger 4K are detailed in Table 1. We include

also the specifications of the Kinect sensor to compare with a

very common alternative 3D sensor. Both camera types can de-

liver depth images at reasonably high frame rates. The main

difference is in resolution: ToF cameras still have limited res-

olution (typically around 200 x 200), while the Kinect depth

camera exhibits VGA resolution. Both camera types are auto-

illuminated so in principle they can work in a wide variety of

illumination conditions.

In this paper we focus on 3D perception for robotic manip-

ulation and object modeling, thus resolution is an important

factor. It is worth mentioning that the closest working depth

for Kinect is 0.5m1 whereas that for ToF can reach 0.3m, and

even 0.2m when equipped with new illumination units 2. Kinect

resolution is higher but closer views can be obtained with ToF

cameras. Consequently, the resulting horizontal (or vertical)

resolution in mm per pixel of both cameras is very similar as

the lower resolution of ToF cameras can be compensated with

closer image acquisition. The major consequence is that the

density of the point cloud when viewing a given object is simi-

lar for both camera types.

However, placing ToF cameras closer to the object has two

problems, related to focus and integration time, respectively.

Like any other camera that uses optics, focus determines the

depth of field (distance range where sharp images are obtained).

If we set the focus to obtain sharp images of closer objects then

the depth of field is small. ToF cameras do not have auto-focus

1It is commonly accepted that 0.7m is the closest distance, but in our tests

we have been able to obtain depth images at 0.5m. New Kinect camera, to

appear in the beginning of 2014 is supposed to work at 0.3m.
2http://www.pmdtec.com, 2013
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Camera model PMD CamCube Swissranger 4K Kinect

Technology ToF ToF Structured light

Image size 200x200 176x144 640x480 (depth)

1280x1024 (color)

Frame rate 40 fps 30 fps 30fps (depth)

up to 80fps up to 50fps 30/15fps (color)

Lens CS mount f = 12,8 Standard/Wide option fixed

Range 0.3 - 7m 0.8 - 5m 0.5 - 3.5m

0.8 - 8m

Field of view 40x40 43.6x34.6 57x43

69x56

Focus Adjustable Adjustable Fixed

Integration time Manual Manual Auto

Illumination Auto Auto Auto (depth)

Suppression

Outdoor Background No No

Illumination

Depth Depth Depth

Images Intensity Intensity Color

Amplitude Amplitude

Confidence Confidence

Interface USB USB - Ethernet USB

Table 1: Specifications of two different ToF cameras, and comparison with Kinect features.

capabilities, so the focus (and consequently the desired depth

of field) has to be determined in advance.

Moreover, integration time has to be manually adjusted. In-

tegration time has a strong impact on the quality of the obtained

images, and each integration time sets the camera for a specific

range of depths. As before, for close distances the range of

possible depths for a given integration time is small.

Some of the ToF cameras have the capability of auto-

adjusting the integration time. However, depth calibration of

ToF cameras is dependent on the current integration time, and

a common practice is to calibrate for only one integration time,

which is manually determined depending on the expected depth

range.

One of the advantages of Kinect is the ability of delivering

colored depth points if required. Coloring ToF depth points is

also possible but requires some additional efforts.

One common problem with both cameras is that they do not

provide a dense depth map. The delivered depth images con-

tain holes corresponding to the zones where the sensors have

problems, whether due to the material of the objects (reflection,

transparency, light absorption) or their position (out of range,

with occlusions). Kinect is more sensitive to this problem by

construction.

Finally, we have tested ToF cameras in outdoor scenarios

with sunlight [4]. An algorithm has been proposed to select the

best integration time depending on the sun conditions, as well

as a suitable strategy to combine two frames to obtain depth im-

ages even when a plant is partially illuminated with direct sun-

light and partially in shadow, as it is common in greenhouses.

As could be expected, a ToF camera provides depth information

but with more noisy depth readings in parts exposed to direct

sunlight.

3. Using ToF cameras in robotic manipulation tasks

ToF cameras have been used to sense relatively large depth

values for mapping or obstacle avoidance in mobile robotics,

and also for human detection and interaction. At closer dis-

tances, ToF cameras have been applied to object modeling [5,

6], precise surface reconstruction [7], and to grasp known [8]

and unknown [9] objects. We focus our review on two com-

plementary areas: scene-related tasks and object-related tasks.

Scene-related tasks generally involve moving the camera using

a mobile robot. Although the range of distances involved is

rather long, the techniques and ideas can be applied to eye-in-

hand algorithms. Object-related tasks involve the use of ToF

cameras at close distances. The most common application is

object modeling, and to a lesser extent to enable object manip-

ulation.

A table is provided in each section to summarize and give a

comprehensive view of its contents. Our conclusion is that the

most exploited feature of ToF cameras is their capability of de-

livering complete scene depth maps at high frame rate without

the need of moving parts.

The depth-intensity image pair is also often used because

both images are registered. In applications where high reso-

lution is required a common solution is to fuse with color cam-

eras. ToF cameras are used in human environments because

they are eye-safe and permit avoiding physical contact and ded-

icated markers or hardware.
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The first works that appeared were comparisons between ToF

and other technologies. Then, in subsequent works, these tech-

nologies were gradually complemented, and sometimes substi-

tuted, by ToF sensors.

3.1. Scene-related tasks

This kind of applications deal with tasks involving scenes

that contain objects like furniture and walls. Observe that the

expected range of distances to these objects is relatively wide.

A usual framework in these applications is to install the cam-

era on a mobile robot and use it for robot navigation and map-

ping. As it will be seen, one of the areas where ToF sensors

are adequate is in obstacle avoidance, because the detection re-

gion is not only horizontal (like in laser scanners) but also verti-

cal, allowing the robot to detect obstacles with complex shapes.

Clearly, the most appreciated characteristic of ToF sensors here

is the high frame rate (see Table 2). Some applications also ben-

efit from the metric information obtained with depth images.

Comparison. Initial works were devoted to the comparison

of ToF with other sensors, mainly laser scanners. Thanks to the

larger vertical field of view of ToF cameras, difficult obstacles

(like tables) are better detected by them than by 2D laser scan-

ners. For example, Weingarten et al. [10] demonstrated this in

the context of an obstacle avoidance algorithm.

To obtain a comparable detection area, a 3D scanner can be

built from a pivoted 2D laser scanner. May et al. [11, 12] com-

pared the performance of their robot navigation algorithm using

such sensor and using a ToF camera. One of the main diffi-

culties they encountered is the accumulated error in the map

created with the ToF camera, leading to failures when closing

loops, for instance. Compared to pivoted laser scanners, accu-

mulated errors usually occur more often with ToF cameras due

to their smaller field of view. As we will see in the next section,

this problem is also present in objects modeling tasks.

Only ToF. ToF sensors have been used successfully as the

unique sensor in some mobile robotic applications, despite their

characteristic limited resolution. For mapping purposes, ToF

sensors are very interesting because they allow to extract ge-

ometric features. Most of the reviewed applications extract

planar regions using both intensity and depth images. In [13],

May et al. explored different methods to improve pose estima-

tion. They propose additionally a final refinement step that in-

volves the alignment of corresponding surface normals leading

to improved 3D scene maps computed at frame rate. The nor-

mal of the extracted planes is also used by Hedge and Ye [14]

to detect badly conditioned plane detection, as horizontal planes

in a staircase. Also Pathak et al. [15] have reported the use of

ToF to extract planes for 3D mapping.

Alternatively, the acquired crude point clouds can be pro-

cessed by a variant of the Iterative Closest Point (ICP) algo-

rithm to find the relation between two point clouds. For ex-

ample, a real time 3D map construction algorithm is proposed

by Ohno et al. [16] in the context of a snake-like rescue robot

operating in complex environments, like rubble in disaster-like

scenarios. Here, a modification of the classical ICP algorithm

is proposed to cope with ToF noisy readings and to speed up the

process.

Another adaptation of an ICP-like algorithm for ToF images

is presented by Stipes et al. [17], where both the depth and the

intensity images are used. They present a probabilistic point

sampling process to obtain significant points used in the regis-

tration process.

ICP assumes that both point clouds overlap, so wrong depth

points can distort the result. May et al. [18] presented an ICP

variant to take this explicitly into account. They propose a map-

ping algorithm using a Simultaneous Localization andMapping

(SLAM) technique to reduce the reconstruction error that is

specially useful when a zone of the scenario is revisited, i. e.,

when closing a loop.

Also with potential applications to SLAM, Gemeiner et

al. [19] proposed a corner filtering scheme combining both the

intensity and depth images of a ToF camera.

Complex environments are a good test field for ToF sensors,

as they are capable of naturally recovering their geometry. In

the context of pipeline inspection, Thielemann et al. [20] have

proposed to use a ToF camera to detect the different junctions

based not on appearance but on geometric properties. Here

the self-illumination mechanism of ToF sensors is appreciated.

Furthermore, Sheh et al. [21] have proposed a ToF based nav-

igation system for a random stepfield terrain3. They use the

depth information to color an array of pixels and then perform

some classical edge detection algorithms in this array, which is

called heightfield. The heading and attitude compensation of

the image is performed using an inertial unit.

ToF sensors have proved to be also applicable in dynamic

environment mapping thanks to their characteristic high frame

rate. Swadzba et al. [22] present a scene reconstruction algo-

rithm that discards dynamic objects, like pedestrians, using a

static camera in the difficult case of short sequences (2-3 sec.).

Motion is recovered via optical flow in the intensity images,

and then transferred to the depth image to compute a 3D veloc-

ity vector.

ToF cameras have been employed also in the automotive field

to assist in parking operations. In [23] Acharya et al. describe

the system design of a ToF camera for backup obstacle detec-

tion. In [24] the same group presents an application of a similar

camera for the detection of curves and ramps also in parking

settings. A modified Ransac algorithm, that uses only the best

inliers, is used to find the best fitting of the planar patches that

model the environment. ToF has been used also to control the

deployment of the airbag system depending on the nature of the

occupant in a car [25]: adult, child, child seat or objects.

Fusion with other sensors. Some authors have started re-

cently to fuse ToF cameras with other sensors, i.e. laser scan-

ners and different types of color cameras. A simple approach is

to integrate ToF into existing algorithms. For example, Yuan et

al. [26] propose a fusion process to integrate 3D data in the do-

main of laser data by projecting ToF point clouds onto the laser

plane. This is applicable when considering a simple shaped

robot, i.e. one that can be approximated by a cylinder, and it

3Stepfield terrains are the NIST proposal to generate repeatable terrain for

evaluating robot mobility.
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Table 2: ToF camera usage in scene-related tasks

Article Topic Advantages Type of Sensor

Weingarten et al. [10] Obstacle avoidance in static env. 3D at high rate SR2 (depth)

May et al. [11, 12] 3D mapping 3D at high rate/No required Pan-Tilt SR2 (depth)

May et al. [13] Pose estimation/3D mapping Registered depth-intensity SR3 (depth + intensity)

Hedge and Ye [14] Planar feature 3D mapping 3D at high rate/No required Pan-Tilt SR3

Ohno et al. [16] 3D mapping 3D at high rate SR2

Stipes et al. [17] 3D mapping / Point selection Registered depth-intensity SR3

May et al. [18] 3D mapping/SLAM 3D at high rate SR3

Gemeiner et al. [19] Corner filtering Registered depth-intensity SR3 (depth + intensity)

Thielemann et al. [20] Navigation in pipelines 3D allow geometric primitives search SR3

Sheh et al. [21] Navigation in hard env. 3D at high rate SR3 + inertial

Swadzba et al. [22] 3D mapping in dynamic env. 3D at high rate/Registered depth-intensity SR3 (depth + intensity)

Acharya et al. [23]
Safe car parking Improved depth range/3D at high rate Canesta

Gallo et al. [24]

Gortuk et al. [25] Object classification (airbag app.) light/texture/shadow independence Canesta

Yuan et al. [26] Navigation and obst. avoidance Increased detection zone SR3 + laser

Kuhnert and Stommel et al. [27] 3D reconstruction Easy color registration PMD + stereo

Netramai et al. [28] Motion estimation 3D at high rate PMD + stereo

Huhle et al. [29] 3D mapping Easy registration of depth and color PMD + color camera

Prusak et al. [30] Obst. avoidance/Map building Absolute scale/better pose estimation PMD + spherical camera

Swadzba et al. [31] 3D mapping/Map optimization 3D at high rate SR3

Vaskevicius et al. [32]
Localization/Map optimisation

Neighbourhood relation of pixels
SR3

Poppinga [33] No color restrictions

entails a minimum update of their previous laser-scanner-based

algorithm. Nevertheless, the resulting algorithm can cope with

new kinds of obstacles in a simple way. Note that this is not a

pure 3D approach and it is not using the potentiality of having

full 3D information at a high frame rate.

Fusion of color and depth information in scene tasks seems

to have a great potential. In a preliminary work, Kuhnert and

Stommel [27] present a revision of their 3D environment recon-

struction algorithm combining information from a stereo sys-

tem and a ToF sensor. Later, Netramai et al. [28] compared the

performance of a motion estimation algorithm using both ToF

and depth from stereo. They also presented an oversimplified

fusion algorithm that relies on the optical calibration of both

sensors to solve the correspondence problem. These works pro-

pose fusion paradigms combining the results produced in two

almost independent processes.

Contrarily, Huhle et al. [29] present a color-ICP algorithm

useful for scene-based image registration, showing that intro-

ducing color information from a classical camera in the begin-

ning of the process effectively increases the registration quality.

Depth information allows to identify in a robust manner not

only obstacles but also holes and depressions. Prusak et al. [30]

proposed a join approach to pose estimation, map building,

robot navigation and collision avoidance. The authors use a

PMD camera combined with a high-resolution spherical cam-

era in order to exploit both the wide field of view of the latter

for feature tracking and pose estimation, and the absolute scale

of the former. The authors relied on a previous work on integra-

tion of 2D and 3D sensors [34, 35], showing how restrictions of

standard Structure-from-Motion approaches (mainly scale am-

biguity and the need for lateral movement) could be overcome

by using a 3D range camera. The approach produced 3D maps

in real-time, up to 3 frames per second, with an ICP-like algo-

rithm and an incremental mapping approach.

Noisy data enhancement. Swadzba et al. [31] propose a

new algorithm to cluster redundant points using a virtual plane,

which apparently performs better in planar regions and reduces

noise, improving registration results. Furthermore, a group at

Jacobs University [32, 33] has proposed to identify surfaces us-

ing a region growing approach that allows the poligonization of

the resulting regions in an incremental manner. The nature of

the information delivered by ToF cameras, specially the neigh-

borhood relation of the different points, is explicitly exploited

and also their noisy nature is taken into account. Moreover,

some comparisons with results from stereo rigs are reported.

Finally, Huhle et al. [36] propose an alternative representa-

tion of the map by means of the Normal Distribution Transform,

which efficiently compresses the scan data reducing memory re-

quirements. This representation seems to be well suited also for

the typical noisy ToF depth images.

3.2. Object-related tasks

ToF cameras have also been successfully used for object and

small surface reconstruction, where the range of distances is

small. A comprehensive summary is given in Table 3

Comparison with stereovision. A classical solution in the

area of object modeling is the use of calibrated stereo rigs.

Therefore, initial works were devoted to their comparison with
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Table 3: ToF camera usage in object-related tasks

Reference Topic Advantages Type of Sensor

Ghobadi et al. [37] Dynamic object detection and classification Color and light independence PMD

Hussmann and Liepert [38] Object pose Easy object/background segmentation PMD

Guomundsson et al. [39] Known object pose estimation Light independent / Absolute scale SR3

Beder et al. [40] Surface reconstruction using patchlets ToF easily combines with stereo PMD

Fuchs and May [7] Precise surface reconstruction 3D at high rate SR3/O3D100 (Depth)

Dellen et al. [5]
3D object reconstruction 3D at high rate SR3 (Depth)

Foix et al. [6]

Kuehnle et al. [8] Object recognition for grasping 3D allow geometric primitives search SR3

Grundmann et al. [41] Collision free object manipulation 3D at high rate SR3 + stereo

Reiser and Kubacki [42] Position based visual servoing 3D is simply obtained / No model needed SR3 (Depth)

Gachter et al. [43]
Object part detection for classification 3D at high rate

SR3

Shin et al. [44] SR2

Klank et al. [45] Mobile manipulation Easy table/object segmentation SR4

Marton et al. [46] Object categorization ToF easily combines with stereo SR4 + color

Nakamura et al. [47] Mobile manipulation Easy table segmentation SR4 + color

Saxena et al. [9] Grasping unknown objects 3D at high rate SR3 + stereo

Zhu et al. [48] Short range depth maps ToF easily combines with stereo SR3 + stereo

Lindner et al. [49] Object segmentation for recognition Easy color registration PMD + color camera

Fischer et al. [50] Occlusion handling in virtual objects 3D at high rate PMD + color camera

ToF sensors showing the potential of the latter when poorly tex-

tured objects are considered, and when background-foreground

segmentation is difficult. For planar and untextured object sur-

faces, where stereo techniques clearly fail, Ghobadi et al. [37]

compared the results of a dynamic object detection algorithm

based on SVM using stereo and ToF depth images. In the same

manner, Hussmann and Liepert [38] also compared ToF and

stereo vision for object pose computation. The key difference

favorable to ToF camera is its ability to effectively segment the

object and the background, even if their color or texture is ex-

actly the same (i.e. a white object on a white table). They also

propose a simple method to obtain object pose from a depth

image.

Another comparison is presented by Guomundsson et

al. [39]. They classify and estimate the pose of some simple

geometric objects using a Local Linear Embedding (LLE) al-

gorithm, and contrast the results of using the intensity image

and the depth image. Their analysis shows that range data adds

robustness to the model, simplifies some preprocessing steps,

and in general the generated models capture better the nature of

the object. Stereo and ToF have also been compared by Beder et

al. [40] in the framework of surface patchlet identification and

pose estimation. In their setup, using a highly textured surface

for stereo experiments, ToF slightly outperforms stereo in terms

of depth and normal direction to the patchlet. Thus, ToF can be

used to benchmark stereo surface reconstruction algorithms.

ToF for surface reconstruction. To obtain 3D object sur-

faces, multiple 3D images need to be acquired and the re-

sulting 3D point clouds should be combined. The setups for

these object modeling algorithms usually include a ToF cam-

era mounted on the end-effector of a robotic arm. Point cloud

registration is more critical in object modeling than in scene

modeling. Even if the hand-eye system is precisely calibrated,

the displacement given by the robot is usually not enough and

the transformation between different point clouds has to be cal-

culated. The application of ICP in two consecutive views nat-

urally accumulates errors and consequently more precise algo-

rithms need to be used.

To obtain precise object models, Fuchs and May [7] perform

a circular trajectory around the object to acquire equally spaced

images, and use a simultaneous matching algorithm [51] in-

stead of classical ICP to distribute the errors in all the esti-

mated displacements. Their work also includes a comparison

of two different ToF cameras. Alternatively, Dellen et al. [5]

propose a fine registration algorithm based on an ICP algorithm

using invariant geometric features. The resulting model is ob-

tained after reducing noise and outliers by treating the coarse

registered point cloud as a system of interacting masses con-

nected via elastic forces. Alternatively, Foix et al. [6] propose

a method to compute the covariance of the point clouds regis-

tration process (ICP), and apply an iterative view-based aggre-

gation method to build object models under noisy conditions.

Their method does not need accurate hand-eye calibration since

it uses globally consistent probabilistic data fusion by means of

a view-based information-form SLAM algorithm, and can be

executed in real time taking full advantage of the high frame

rate of the ToF camera.

ToF for object manipulation. Object recognition and object

pose estimation algorithms are usually related to robotic manip-

ulation applications: objects have to be identified or categorized

with the aim of finding and extracting some characteristics to

interact with them. This is usually a challenging task as ToF

depth images are noisy, and low sensor resolution leads to only

few depth points per object.
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Kuehnle et al. [8] explore the use a ToF camera to recog-

nize and locate 3D objects in the framework of the robotic ma-

nipulation system DESIRE. Objects are modeled with geomet-

ric primitives. Although they use depth images rectified up to

some level, their system is not reliable enough. In a subse-

quent work [41] they use the ToF camera to detect unknown

objects and classify them as obstacles, and use a stereo camera

system to identify known objects using SIFT features. As it is

widely known, this second approach requires textured objects

while their first approach does not. In the same project, Reiser

and Kubacki [42] have proposed a method to actively orientate

the camera using a visual servoing approach to control a pan-

and-tilt unit. They proved that position-based visual servoing is

straightforward by using a ToF camera, because of its ability to

deliver 3D images at high rate.

In a different way, Gächter et al. [43] propose to detect and

classify objects by identifying their different parts. For exam-

ple, chairs are modeled by finding their legs, which in turn are

modeled with vertical bounding boxes. The tracking of the dif-

ferent parts in the image sequence is performed using an ex-

tended particle filter, and the recognition algorithm is based on

a SVM, that proves again to be useful in typical noisy ToF im-

ages. Later, Shin et al. [44] used this incremental part detec-

tor to propose a classification algorithm based on a geometric

grammar. However, they use a simulated environment because

the classification in real scenarios does not seem to be reliable

enough.

ToF cameras have been also used in the framework of mobile

manipulation, where a mobile robot has the task to detect and

grasp unknown objects. Depth information here is very use-

ful in both clean and cluttered environments. Klank et al. [45]

propose a mobile manipulation algorithm where a ToF camera

is mounted on the end-effector of a robot arm embarked on a

mobile robot. An in eye-in-hand configuration provides a large

mobility to the camera, allowing to easily change the point of

view. The assumption is that objects would be on top of sup-

porting planes, e.g. a table. In their algorithm, once the ta-

ble has been located, the corresponding 3D points are removed

from the image. The remaining points would correspond to ob-

jects.

One advantage of ToF cameras is that the 3D region of in-

terest can be extracted easily. Another advantage is that some

object segmentation algorithms can be developed combining

cues from both a ToF sensor and a color camera. Using such

a combined sensor, Marton et al. [46] proposed a probabilistic

categorization algorithm for kitchen objects. This work uses a

new SR4000 camera. This sensor assigns a confidence value to

each depth reading that allows to infer if the object material is

producing bad sensor readings.

Combining the two last ideas, that is, table plane extraction

and depth-color combination, Nakamura et al. [47] propose an

algorithm to move a mobile robot, with a ToF camera and two

CDD cameras mounted on its head, next to the supporting table

where objects are supposed to be. Their proposal uses the depth

to easily remove the 3D points corresponding to the table, and

to cluster the remaining points. Color is used then at each of

the clusters to recognize objects.

Thanks to the depth information, some grasping properties

can be easier to evaluate, i.e. form- and force-closure, sufficient

contact with the object, distance to obstacles, and distance be-

tween the center of the object and the contact point. Saxena et

al. [9] used this advantage to propose a learning grasp strategy

that identifies good grasping points using partial shape infor-

mation of unknown objects. The contribution of the depth in-

formation allows to update an already presented method using

a color camera, with the advantage of having depths even in

texture-less portions of the objects.

Fusion algorithms. In fact, ToF and stereo systems naturally

complement one another. As has been argued before, ToF per-

forms correctly in poorly textured surfaces and object segmen-

tation becomes easy even in poorly contrasted situations. Con-

trarily, it has difficulties precisely in textured surfaces and in

short distances, where stereo outperforms it. This fact has been

exploited in several works. For example, Zhu et al. [48] pro-

pose a probabilistic framework to fuse depth maps from stereo

and the ToF sensor. They use a depth calibration method to

improve the ToF image, which is useful in small depth ranges

(from 1m to 1.4m).

Another fusion framework is proposed by Lindner et al. [49]

using calibration and scaling algorithms. They obtain a dense

colored depth map using the geometrical points correspondence

between the ToF and color cameras by assigning a color to the

ToF depth points, and interpolating the depth of the rest of the

color camera pixels. A way to detect areas not seen by the color

camera is also provided, as well as some techniques to enhance

edges and detect invalid pixels.

Finally, in the context of augmented reality, Fischer et al. [50]

combine a ToF camera and a standard color camera to handle

virtual object occlusions caused by real objects in the scene.

Fast 3D information is highly valuable, as well as its indepen-

dence on lightning conditions, object texture and color. They

do not use any depth calibration or noise outliers removal algo-

rithm, and consequently the negative effect of noise is clearly

visible in their results.

Summary and final remarks.

ToF cameras have been successfully used for object and

small surface reconstruction at close distances. In general the

scenario for these applications involves a robotic manipulator

and the task requires modeling object shape. In such settings,

one has to expect that some over-saturation problems may oc-

cur when acquiring depth images. On the contrary, as the range

of depths is short, calibration can be simplified.

Some of the reviewed works do not apply any calibration

method to rectify the depth images. We believe that this ex-

plains some of the errors and inaccuracies reported in some ex-

periments, and that with proper calibration better results can be

obtained. We note that ToF technology is evolving and depth

correction methods are still subject to investigation.

Foreground/background segmentation methods based on

depth information are quite straightforward, so ToF images are

used in many applications requiring them. A good characteris-

tic is that geometric invariants as well as metric constraints can

be naturally used with the ToF depth images.

ICP-like techniques are the preferred solution to reconstruct
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surfaces. A common approach to identify objects is the use of

Support Vector Machines, which perform adequately when con-

sidering the noisy point models obtained with one ToF image or

when merging different ToF views.

The high frame rate of ToF sensors is a key advantage, but

also the natural combination with color cameras and stereo rigs.

The fact that the depth and intensity images are delivered al-

ready registered is handy in some contexts, but in applications

where the reduced resolution of a ToF camera is critical, it is

complemented with other sensors, usually color cameras. Actu-

ally, a growing trend is observed not to use the intensity image

supplied by the ToF camera, preferring the combination with

high-resolution conventional cameras.

4. Depth measurement errors and calibration

Raw measurements captured by ToF cameras provide noisy

depth data. Default factory calibration can be used in some

applications where accuracy is not a strong requirement and

the allowed depth range is very large. For the rest of appli-

cations ToF cameras have to be specifically calibrated over the

defined application depth range. Two types of errors, system-

atic and non-systematic, can interfere and consequently corrupt

ToF depth readings. A detailed ToF error description and clas-

sification can be found in [2].

ToF cameras are evolving and a lot of work is being carried

out to understand the source of errors and to compensate them.

For example, recent works demonstrate the benefits of using a

band-pass optical filter to increase the sensor performance and

also attenuate the background light [52].

4.1. Systematic errors

ToF camera systematic errors can be either constant or de-

pendent on the actual measurement. The advantage of system-

atic errors is that depth values can be corrected through calibra-

tion. Two of the most important systematic errors are depth dis-

tortion, an offset following a sinusoidal shape depending on the

measured depth that affects all the image (compare the height

(depth) of the plane in Fig. 3a and 3b), and built-in pixel er-

rors, which is a constant offset of each pixel independent of the

measured depth. It can be observed as a rotation of the whole

scene (compare the orientation of the plane in Fig. 3a and 3b).

A very important parameter to control in ToF cameras is the

integration time (IT). Simplifying, IT can be seen as the shutter-

time parameter in conventional cameras. It is observed that

measurements performed with a static camera while changing

only the IT value produce different depth results. This is called

the integration time error, and it is usually solved by calibrating

the camera at each one of the different used IT values.

Observing Fig. 3c, it can be seen that a planar surface is per-

ceived as non-planar. Depth at the borders, where illumination

is less intense, is over-estimated. In contrast, if the object is too

close (or IT too high) the saturation leads to underestimation of

the depth. This is caused by the amplitude-related errors and

can be corrected by means of calibration (Fig. 3d).

The last systematic error to take into account is related to

temperature. The measurements drift until the camera reaches

(a) Uncalibrated (b) Calibrated

(c) Uncalibrated (d) Calibrated

Figure 3: 3D image of a planar surface and a white/black

checker-board. (a) surface should be horizontal, but built-in

pixel-related error causes a distortion. (b) Once calibrated, the

orientation of the plane and the depth of individual points is cor-

rected. (c) Observe the difference in depth between the squares

of each color. (d) The calibrated image is rectified taking into

account built-in and amplitude errors.

(a) Raw image (b) Filtered

Figure 4: Reduction of noise by filtering pixels using a flying-

points detector and depth threshold filtering.

the working temperature. The usual solution is to wait some

time until the temperature is stable.

4.2. Non-systematic errors

Non-systematic errors appear because of unknown and un-

predictable situations. Contrary to systematic errors, pixels

with wrong depth values cannot be recovered and have to be

removed. Newer cameras can detect and mark invalid pixels.

The two main reasons are bad depth estimation due to darkish

pixels (very low illumination) or over-exposed pixels (too much

illumination). Filtering algorithms can be applied to minimize

the remaining bad pixels.

The most important error is due to multiple light reception.

This causes one of the know problems with ToF cameras, the so

called flying points. These are false points that appear between

the edges of the objects and the background. These points can

be easily located in the depth image and the 3D point cloud, and

easy-to-implement filtering methods are available [2].
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Figure 5: Suggested calibration approach dependent on the

range of the scene. Short-range (0.4m - 2m). Large-range (1.5m

- 7.5m).

4.3. Depth calibration

Several calibration methods have been proposed, each one

with its own peculiarities. Among them, it is quite difficult

to decide which calibration method one should apply in each

situation. Here we will provide a general unified approach to

camera calibration.

A naive such approach would be to parameterize per pixel the

complete set of systematic errors. Applying such an approach

would require a 4-D look-up table providing error offsets de-

pendent on pixel position, integration time, measured depth and

reflected amplitude. Although the naive calibration would be

very accurate, it would be highly time consuming and conse-

quently inadvisable for robotic applications.

A general approach consisting of two calibration processes

can be devised by distinguishing between short-range and long-

range robotic applications. Figure 5 is a graphical representa-

tion of this approach. Short-range applications are defined as

the ones whose depth ranges between 0.4 and 2 meters, and

long-range applications are those with a depth range larger than

2 meters and which do not have measurements closer than 1.5

meters. While the pre-processing module is shared, the system-

atic errors calibration module is tailored to each process. Large-

range applications differ from short-range ones in that the scene

can contain simultaneously nearby and distant objects. That is

the reason why multiple IT look-up tables have to be built and

B-Splines are used, instead of the simple polynomials used in

the short range. In the same manner, multiple FPN are calcu-

Algorithm 1 Suggested Calibration Approach

1: wait warm-up period;

2: calculate intrinsic parameters;

3: filter amplitude;

4: if S hortRangeS cene then

5: Select Optimal Integration Time;

6: LUTIT = compute 3-degree polynomial look-up table;

7: FPN = compute fixed pattern noise;

8: LUTA = compute amplitude look-up table;

9: else

10: Ni = choose integration time set;

11: for all i such that 1 ≤ i ≤ size(Ni) do

12: LUTi = compute B-Spline look-up table for Ni;

13: FPNi = compute fixed pattern noise for Ni;

14: end for

15: end if

lated for each IT, while short-range applications need only one.

Systematic amplitude errors due to object reflectivity can be

considered negligible for large range scenes if compared to the

other influencing factors [54, 53].

Instead of solving each systematic error step by step, a com-

plete calibration approach can be used for short range applica-

tions.

The pre-processing module is divided into three stages. First

of all, a warm-up period has to be waited in order to mini-

mize temperature effects, usually between 10 and 20 minutes

depending on the camera. Secondly, intrinsic parameters have

to be calculated in order to convert from spherical coordinates

to Cartesian ones taking into account lens and sensor distor-

tions. And finally, an amplitude filtering is applied in order to

increase accuracy by using more reliable data. Low illuminated

and over-saturated pixels have to be discarded before a system-

atic error calibration process takes place.

Short range applications have the peculiarity of requiring

only a particular integration time for covering the whole scene.

The optimal IT can be chosen as the one with less over-

saturated and underexposed pixels at the required depth range.

Once the IT is defined, systematic errors can be estimated.

Firstly, a 3-degree polynomial look-up table is built by measur-

ing depth of a mobile white planar surface at several intervals

over the defined short range. Only a centered pixel is used for

the measurements. Afterwards, a fixed pattern noise is com-

puted at half depth range, this time for the whole sensor matrix.

And finally, an amplitude look-up table is built by means of

a mobile scaled black-to-white calibration pattern, once again

using a single centered pixel.

Large range applications need different integration times de-

pending on the current scene distance. That’s the reason why,

after choosing the required IT range, multiple IT look-up tables

have to be calculated. Considering that the scene can contain

different distant objects simultaneously, each IT look-up table

has to be measured over the full range in order to evaluate all

measurements. B-Splines are used, instead of a polynomial,

in order to reduce the overall complexity. Measurements at a
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central pixel of a mobile planar surface are used here too.

5. Applications

Some use-cases of ToF cameras in scene- and object-related

tasks are presented in this section. In both contexts the position

of the camera can be actively changed. However, when the cam-

era is mounted on a mobile robot the set of feasible new camera

positions is restricted (Sec. 5.1). Clearly, as will be shown in

the object-related subsection (Sec. 5.2), the eye-in-hand config-

uration provides a greater mobility of the camera.

5.1. Scene-related tasks

Scene-related tasks usually involve a ToF camera mounted on

a mobile robot. The placement of the camera highly depends on

the task. When the task is navigation and mapping, the camera

is placed horizontal on the front of the vehicle. Compared to the

common laser solution, the advantage of ToF cameras here is

that they provide a full image at frame-rate that can be used, for

example, to easily detect difficult obstacles. Contrarily, when

the task is mobile manipulation, for example a robot that navi-

gates in the environment to locate and grasp a given object, the

camera is placed at some height, usually at the ’head’ of the

robot, looking downwards to the working area of the manipu-

lator arm. This is sometimes called the hand-eye configuration,

opposed to the eye-in-hand configuration described in the next

section.

We present an example of an all-terrain robot that uses a

PMD Camcube ToF camera, placed in the front and facing

downwards, for robust obstacle detection in real-time outdoor

mobile navigation. The main difficulties for most sensors out-

doors are caused by sunlight effects. However, it has been

demonstrated that ToF cameras can be configured to deliver cor-

rect enough images in sunlight [4].

Figure 6 shows the robot facing three different outdoor obsta-

cles: a wall (Fig. 6a), stairs (Fig. 6b) and a tree trunk (Fig. 6c).

Observe in the figures that depth data is much more informa-

tive than intensity. The segmentation of 3D structures, like the

bottom edge of a wall, is more robust using depth information.

The algorithm is based on the computation of normals for each

point, and on the comparison of neighboring normals to form

surfaces. Authors demonstrate that with this algorithm holes in

the terrain can be also correctly detected.

5.2. Object-related tasks

Two of the main advantages of actively changing the point

of view of a ToF camera are highlighted: the easy acquisi-

tion of 3D structure (that allows straightforward foreground-

background segmentation), and the ability to acquire accurate

views of particular details of the scene.

The examples are based on recent experiences mainly in the

field of plant phenotyping, and to a lesser extent in that of textile

manipulation. In plant phenotyping, a large number of plants

has to be monitored searching for unusual plant responses to ex-

ternal factors as extreme humidity or poor watering. Nowadays,

automation of greenhouses provides automatic conveyor belts

(a) Wall.

(b) Stairs.

(c) Tree.

Figure 6: Mobile robot using a ToF camera for obstacle detec-

tion in three different outdoor scenarios. In each figure can be

observed: (1)robot scene, (2)ToF intensity image, (3)ToF point-

cloud segmented (green points represent horizontal planes, red

points vertical planes), (4)ToF pointcloud rotated. Reproduced

from [1].
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(a) Custom cutting tool and ToF-color camera set.

(b) Chlorophyll meter and ToF camera.

Figure 7: Details of two different tools in the end-effector of

(a) a WAM robot and (b) a Kuka Lightweight robot. Both tools

require that the leaf is placed inside their lateral aperture. An

eye-in-hand ToF camera permits acquiring the 3D plant struc-

ture required to compute robot motion.

to transport plants to a measuring cabin, where a set of sensors

performs all the measurements required. However, plants can

have complex shapes, and having to define the best static posi-

tion for all the cameras and other sensors is problematic. The

ability to mount a sensor on a manipulator robot in an eye-in-

hand configuration is highly appreciated. Additionally, some

tasks require to place the sensor or the tool on the surface of

a leaf. We provide here two examples of such tasks: the mea-

surement of chlorophyll with a SpadMeter, and the extraction

of sample discs for DNA analysis (see in Fig. 7 both scenarios

with the ToF cameras in an eye-in-hand configuration).

3D structure and disambiguation. One of the objectives in

plant phenotyping is to gather as much information as possible

about each specimen, preferably 3D relevant information to en-

able subsequent manipulation. Color vision is helpful to extract

some relevant features, but it is not well-suited for providing the

structural/geometric information indispensable for robot inter-

action with plants. 3D cameras are, thus, a good complement,

since they directly provide depth images [55]. Moreover, plant

data acquired from a given viewpoint are often partial due to

self-occlusions, thus planning the best next viewpoint becomes

an important requirement. This, together with the need of a

high throughput imposed by the application, makes 3D cameras

(which provide images at more than 25 frames-per-second) a

good option in front of other depth measuring procedures, such

(a) Frame 1: intensity image and segmentation

(b) Frame 2: intensity image and segmentation

Figure 8: Scene containing three leaves initially identified as

two segments (Frame 1). After changing the point of view

(Frame 2), the ambiguity is cleared and two leaves are detected

that were joined in one segment in the first frame.. Addition-

ally, the whole surface of the initially partial-occluded leaf is

now visible. Observe that the effectiveness of the camera mo-

tion depends on the particular leaf arrangement.

as stereovision or laser scanners.

Segmentation algorithms use different parameters that need

to be adapted to the characteristics of the data, like long ranges,

noise type, and sensitivity. The eye-in-hand approach permits

moving the camera to find the view that fits better the segmen-

tation parameters. Figure 8 shows an example, where in the

first view the segmentation algorithm, that uses depth similar-

ity between adjusted surfaces, fails to distinguish two differ-

ent leaves. Using a next-best-view algorithm [6], a new view

is selected that maximizes the difference in depth of the two

leaves, thus the algorithm is now capable of distinguishing the

two leaves.

Additionally, the partial occlusion of the rear leaf produced

by the front leaf (Fig. 8a) is resolved after the motion of the

camera (Fig. 8b). The benefits of moving the camera have some

limits in such complex scenarios, as it is not always possible to

obtain a better viewpoint, for example when occlusions are too

strong, or when the optimal point of view is out of the working

space of the robot.

Detailed views. The eye-in-hand configuration allows to con-

trol not only the viewpoint of the camera, but also the distance

to the object. To change the distance is also an strategy to

change the effective resolution of the image, as relevant details

can be better focused.

Figure 9 shows the image of a shirt in two different configu-

rations: folded and hanged. Here the task is to grasp the shirt
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(a) Folded (b) Hanged

Figure 9: Details of the perception of a shirt in different con-

figurations. Observe that the small wrinkles are correctly per-

ceived, and some characteristic parts, like the collar shape, are

clearly visible. Depth is codified as color.

Figure 10: Detail of a plant. Observe that the stems, even if

they are thin, are correctly acquired.

from the collar to allow the robot to hang the shirt in a hanger.

Observe that in both configurations the details of the collar, the

buttons and small winkles are visible. In the hanged shirt the

sleeves are identifiable as well. Previous works have shown

that this 3D structure can be used to identify wrinkles [56] and

also the collar structure, using computer vision algorithms [57].

Clearly, the point of view determines the nature of the gath-

ered information, but also the sensor sensitivity determines the

relevant details that can be observed. Figure 10 shows a view

of a plant where the stems are visible. Here, the point of view

is important, but also that ToF cameras are sensible enough to

capture these structures. This is hard to obtain with classical

stereovision, and completely impossible with other sensors, like

Kinect.

6. Conclusions

ToF cameras have been presented from different perspec-

tives, including: underlying principle and characteristics, cal-

ibration techniques, applications where camera advantages are

explicitly exploited, and potential for future research. Over the

last years, performance of ToF cameras has improved signifi-

cantly; errors have been minimized and higher resolution and

frame rates have been obtained. Although ToF cameras cannot

yet attain the depth accuracy offered by other types of sensors

such as laser scanners, plenty of research demonstrates that they

perform better in many robotic applications. The application of

ToF cameras in the wide range of scientific areas we have re-

viewed indicates their great potential, and widens the horizon

of possibilities that were envisaged in the past for vision-based

robotics research.

Based on the task, we have divided the application fields in

scene-related and object-related tasks. The former often involve

a mobile robot and relatively long sensing distances. We have

provided an example of a robot using ToF for obstacle avoid-

ance and terrain classification. Object-related tasks involve a

robotic arm, that confers great mobility to the camera, but re-

duces the distance to the viewed target. We have provided ex-

perimental evidence of the effectiveness of such approach in

two tasks: plant 3D structure recovery and disambiguation, and

the acquisition of detailed views.

Advantages of this type of sensors are multiple: they are

compact and portable, easing movement; they make data ex-

traction simpler and quicker, reducing power consumption and

computational time; and they offer a combination of images that

shows great potential in the development of data feature extrac-

tion, registration, reconstruction, planning and optimization al-

gorithms, among other positive characteristics. Thus, ToF cam-

eras prove to be especially adequate for eye-in-hand and real-

time applications in general, and in particular for automatic ac-

quisition of 3D models requiring sensor movement and on-line

calculation.

Finally, some broad challenges need to be mentioned. First,

resolution is still generally low for ToF cameras, despite some

efforts have already led to better resolutions as explained above.

Second, short integration times produce a high noise-to-signal

ratio, and high integration times can result in pixel saturation

[10]. Although some algorithms dealing with these problems

have already been proposed, more research is needed in this di-

rection. Third, the bi-static configuration (different positions of

the emitter and the receiver) causes problems in close range sit-

uations because the measured intensity is sensitive to the vary-

ing illumination angle. The ability to move the camera is crucial

to minimize this effect.
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[1] À. Santamaria-Navarro, E.H. Teniente, M. Morta and J. Andrade-Cetto.

Terrain classification in complex 3D outdoor environments. Journal of

Field Robotics, 2014, to appear.
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