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Abstract— This paper proposes the application of a dis-
tributed command governor (DCG) strategy for the operational
control of drinking water networks (DWN). This approach is
very suitable to this kind of management problems given the
large-scale and complex nature of DWNs, the relevant effect
of persistent disturbances (water demands) over the network
evolutions and their marginal stability feature. The perfor-
mance improvement offered by DCG is compared with the
consideration of two non-centralized model predictive control
(MPC) approaches already proposed for the same management
purposes and within the same context. The paper also discusses
the effectiveness of all strategies and highlights the advantages
of each approach. The Barcelona DWN is considered as the
case study for the assessment analysis.

I. INTRODUCTION

Drinking Water Networks (DWNs) are in charge of bring-
ing water from production plants to consumers. From a dy-
namical systems point of view, DWNs are large-scale multi-
input/multi-output interconnected flow systems that must be
made reliable and resilient to continuously varying customer
behaviours, of both deterministic and probabilistic nature,
and various operational constraints. Several approaches have
been reported in the literature that address operational control
problems for DWNs; see, e.g., [1], [2], [3], [4], [5], [6],
[7] for relevant contributions. Among many others, decision
policies inspired by the model predictive control (MPC)
framework [8] are considered to be quite suitable to face
the operation of DWNs due to their flexibility to manage
constraints and minimize multi-objective cost indexes found
in the optimization of these complex systems, see [4].

In this paper, the Command Governor (CG) approach is
considered for the operational control of DWNs [9] and
aimed at performing comparisons with strategies based on
MPC control ideas. The CG approach has several similarities
with MPC control, the most relevant being the fact that its
action is computed by solving on-line a constrained convex
optimization problem based on future system predictions.
However, the two approaches have also remarkable dif-
ferences that make the CG approach computationally less
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demanding than MPC for the same problem at the price
of reduced control performance. A quantification of this
performance gap on a relevant DWN case study is one of
the main goals of this paper.

In [10], a centralized CG solution for the operational
control of DWNs has been proposed and compared with
a centralized MPC scheme. Centralized solutions require a
global dynamical model of the system for control design.
Moreover, all measurements must be collected in one loca-
tion to estimate all states and compute all control actions.
However, when considering large-scale systems such as
DWNs, these assumptions usually fail to hold, either because
gathering all measurements in one location is not feasible or
because a centralized high-performance computing unit is
not available. Centralized schemes have also poor scalability
properties and require the complete retuning of the controller
also for small plant changes. Thus, the cost of setting up
and maintaining a monolithic centralized controller could
be prohibitive. A way of circumventing or mitigating these
issues is to look into decentralized or distributed techniques,
where network local controllers are in charge of the control
of part of the entire system. Several works have been recently
published in this area; see, e.g., [11].

In this paper, a distributed version of the CG (from now
on called DCG) approach is described and used to face the
operation of a DWN. In this case, the DWN is supposed
to be partitioned into several subsystems, each of which is
locally supervised by a single agent [12]. Early works on
DCG strategies relied on a non-cooperative game theoretical
approach and several strategies have been singled out, both
sequential [13] (where, according to a prefixed order, only
one agent at each sampling time is allowed to update its
control action while all others keep applying their previous
applied commands), and parallel [14] (where, on the con-
trary, all agents update their control actions simultaneously at
each sampling time). Improved methods have recently been
presented in [15] and [16]. Following the same lines of these
works, in this paper a DCG strategy is proposed where agents
are grouped into turns and where the entire decision process
ends up within few sampling steps. There also will be shown
that this method is also effective in the case of dynamic
coupling among subsystems.

The remainder of the paper is organized as follows. The
problem of the operational control of DWNs is stated in Sec-
tion II. The proposed DCG approach is introduced in Section
III. In Section IV, the results achieved for the Barcelona
DWN case study are presented along with comparisons
with other non-centralized MPC approaches. Finally, some



conclusions and future research lines are presented in Section
V.

II. DWN OPERATIONAL CONTROL PROBLEM

STATEMENT

A. Control-oriented Modelling

The DWN modelling approach proposed in [17] is briefly
recalled. A general DWN can be represented by a directed
graph G(V, E), where a set of elements, i.e., ns sources,
nx storage elements, nq intersection nodes and nd sinks
represent the vertices v ∈ V that are connected by direct links
a ∈ E . For the network operation, water is transported along
the links by using nu flow actuators (i.e., pipes and valves),
stored into reservoirs or tanks, taken from given sources and
feeding specific destination locations. The network is subject
to several capacity and operational constraints and affected
by disturbances, such as measured stochastic flows to sinks
driven by customer water demands.

Collecting water volumes contained in the storage ele-
ments into the state vector x(k) ∈ R

nx , flows through
actuators into the manipulated input vector u(k) ∈ R

nu ,
and considering the demand flows as additive measurable
disturbances collected into d(k) ∈ R

nd , the DWN control-
oriented model may be described by the following set of
linear (or linearised) discrete-time difference-algebraic equa-
tions (DAE) for all time instant k ∈ N:

x(k + 1) = Ax(k) +Bu(k) +Bdd(k), (1a)

0 = Euu(k) +Edd(k), (1b)

where (1a) describes the dynamics of storage tanks whereas
the algebraic equations (1b) describe the network static
relations (i.e., mass balance at junction nodes). Notice that
A, B, Bd, Eu, Ed, are time-invariant matrices of suitable
dimensions dictated by the network topology.

The system (1) is subject to hard state and input constraints
describing convex polytopic sets

X , {x(k) ∈ R
nx |Gx(k) ≤ g} ⊂ R

nx ∀k, (2a)

U , {u(k) ∈ R
nu |Fu(k) ≤ f} ⊂ R

nu ∀k, (2b)

where G ∈ R
cx×nx , g ∈ R

cx , F ∈ R
cu×nu , f ∈ R

cu ,
being cx and cu the number of state and input constraints,
respectively. Moreover, for service reliability, the states are
also subject to the following safety constraints:

x(k) ≥ dnet,k ∀k, (3)

where dnet,k ∈ R
nx is the vector of (possibly time-varying)

lower-bounds on water storages (expressed in m3) necessary
to avoid water stock-outs.

B. Model decomposition

Once the control-oriented model is stated, it is necessary
to efficiently and properly decompose the overall system
into subsystems so that the DCG approach proposed in this
paper can be used. The decomposition aims at achieving
several benefits, such as modularity and reduction of the

computational burden for each single agent, while main-
taining the control performance similar to those pertaining
to a centralized solution (or at most with an acceptable
degradation).

The partitioning algorithm proposed in [12] automatically
obtains this decomposition by identifying clusters of vertices
within the graph G(V, E) that are strongly connected with
each other but weakly interconnected with the other clusters.
As a result, the overall DWN may be represented as a set
of loosely coupled subsystems. Therefore, the system in (1)
is assumed to be decomposed in M , |N | subsystems
collected in the set N , which are not overlapped, output
decentralized and input coupled. The model for the i-th
subsystem Si, for i ∈ {1, . . . ,M}, can be written as

xi(k + 1) = Aixi(k) +Bsh,iui(k) +Bd,idi(k), (4a)

0 = Esh,iui(k) +Ed,idi(k), (4b)

where Esh,i and Esh,i are matrices whose dimensions de-
pend on the number of shared inputs of subsystem Si. For
simplicity, hereafter the following constraints are considered:

xmin,i ≤ xi(k) ≤ xmax,i, ∀k (5a)

umin,i ≤ ui(k) ≤ umax,i, ∀k, (5b)

which correspond to a special case of the more general
classes (2a) and (2b).

C. System Operational Goals

The main goal of the operational control of DWN at
transport level is to fully satisfy the water demands while,
at the same time, optimizing the management policies ex-
pressed as a multi-objective optimal control problem. As
better explained in [4], common operational goals for the
management of DWNs are of three types: (i) economic,
providing a reliable water supply minimising water produc-
tion and water transport costs; (ii) safety, guaranteeing the
availability of enough water in each storage tank to satisfy
its underlying stochastic demand; and (iii) smoothness, oper-
ating the DWN under smooth control actions. The economic
and smoothness goals can be achieved by minimising the
following performance indicators

J i
E,k , ‖(αi

1 +αi
2,k)

Tui(k)‖1,Wi
e
, (6a)

J i
∆U,k , ‖∆ui(k)‖

2
2,Wi

u
, (6b)

where J i
E ∈ R≥0 represents the economic cost of network

operation taking into account water production cost α1 ∈
R

nu and water pumping cost α2 ∈ R
ni
u , which change every

time instant k according to the variable electric tariff; J i
∆U ∈

R≥0 represents the penalisation of control signal variations
∆u(k) , u(k)− uk−1, of use to extend actuators life and
assure a smooth operation; ‖ · ‖p,W is a weighted p-norm;
and Wi

e, Wi
u are diagonal matrices that weight each decision

variable in the corresponding control objective.
The second goal is enforced by the safety constraint (3),

which can be conveniently reformulated as the soft constraint

xi(k) ≥ xi
s,k − ξi(k) ≥ 0 ∀k, (7)



where xi
s ∈ R

ni
x is a vector of suitably determined safety-

volume thresholds in m3, and ξ ∈ R
nx represents the amount

of volume going down from the desired safety thresholds. As
a result, the performance index

J i
S,k , ‖ξi(k)‖

2
2,Wi

x
(8)

is consequently stated.

III. DCG STRATEGY APPLIED TO DWN OPERATIONAL

CONTROL

The DCG scheme of interest here is depicted in Fig. 1.
There, a set N of M stable plants are supervised by local
CG (agents) devices via command sequences ui(k). In this
case, it is convenient to recast the discrete DAEs in (4) as
follows:

xi(k + 1)=Aixi(k)+Biui(k)+
∑

j∈Ni

Bjiuj(k)+Bd,idi(k),(9a)

0=Eu,iui(k)+
∑

j∈Ni

Eu,j,iuj(k)+Ed,idi(k), (9b)

where the flow ui(k) is supervised by the i-th agent while
all the other flows uj(k) by a corresponding j-th agent each,
all belonging to the set Ni of neighboring agents for the i-th
agent.

u x u

u u

x

x x

input input

input

input input

input

input input

Fig. 1. DCG Scheme

More formally, the local task to be fulfilled by each agent
at each time k is that of locally computing, on the basis of the
desired reference ri(k), measured state xi(k) and external
input signals uj(k) and di(k), the command ui(k) as the
best approximation of ri(k) under the following pointwise-
in-time constraints:

ci(k) ∈ Ci, (10)

to be hold true along the system trajectories generated by
the CG. In particular,

ci(k) := Cixi(k) + Liui(k), (11)

where Ci is a convex set and Ci := [IT
ni
x
,0T

ni
u
]T and Li :=

[0T
ni
x
, IT

ni
u
, ]T . For the problem at hand, the set Ci is defined

as

Ci(x
i
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(12)
The above task is accomplished through the non-iterative

optimization procedure presented in [16], where the idea is
that agents that are not jointly involved in any coupling
constraint can simultaneously update their control actions
without violating constraints. To this aim, agents are grouped
into particular subsets (or turns).

Definition 1: (Turn) A turn T ⊂ N is a subset of non-

neighboring nodes, i.e., ∀i, j ∈ T such that i 6= j, j /∈ Ni

(none of them is a neighbor of the others).
In the previous work [16], the above agent partitions were
exploited to build up a distributed strategy where at each
sampling time, on the basis of a round-robin policy for the
turns, only agents belonging to a turn are allowed to update
simultaneously their commands ui(k), while all agents in all
other turns keep applying constantly their current commands
until their turn becomes active. Here, by following the pro-
cedure sketched in [15], a faster approach is proposed, where
the above round-robin process among turns is completed
within a sampling time. The approach clearly requires agents
to know when to optimize their local commands ui. To this
end, assume that

• a communication network linking neighboring agents
exists and it is modeled as a graph Γ;

• a sequence of turns T1, T2, ...Tq which covers com-
pletely Γ has been determined.

Roughly speaking, at each time k, for each turn, agents carry
out the following basic actions:

1) receive finite sequences uj(l|k), l = 0, 1, ... of com-
puted flows from previous updating neighboring agents
and uj(l|k − 1), l = 0, 1, ... from next updating
neighboring agents;

2) compute ui(k), l = 0, 1, ... according to the minimiza-
tion of a proper optimization program;

3) transmit ui(l|k), l = 0, 1, ... to neighboring agents;
4) apply ui(0|k).

The local optimization problem solved by each agent aims
at selecting, at each time k, an open-loop virtual command
sequence ui(l|k) ≡ wi, chosen in such a way that, if
constantly applied to the system over a semi-infinite horizon
l ∈ [0, ∞), from the initial state xi(k), it would never
produce constraint violations. Moreover, in order to take
into account the algebraic-equations (1b), the following set
is introduced:

Wi({uj}j∈Ni
,di) =

{

w ∈ R
ni
u : Eu,iwi

+
∑

j∈Ni

Eu,j,iuj(k) +Ed,idi = 0
}

. (13)



The applied command wi is chosen in such a way that the
future predictions (virtual evolutions) of the ci-variable along
the virtual time l under a constant virtual command ui(l|k) ≡
wi from the initial state xi (at virtual time l = 0)

ci(l, xi,wi, {uj}j∈Ni
,di) =

Ci



Al
ixi+

l−1
∑

j=0

A
l−j−1
i



Biwi+
∑

j∈Ni

Bj,iuj+Bd,idi







+Liwi

(14)
do not violate constraints ci(l, xi,wi, {uj}j∈Ni

,di) ∈
Ci, ∀l ∈ Z+.

In the case of a constant disturbance di(l|k) = di, this is
obtained by selecting the applied command as follows:

wi ∈ Vi(xi, {uj}j∈Ni
,di) := {wi ∈ W(d) : ∃ ξi(l)

such that c(l, xi,wi, {uj}j∈Ni
,di), ξi(l)) ∈ C(xs), ∀l ∈ Z+} .

It is worth mentioning that, if Ai is Schur, the set
V(Wi({uj}j∈Ni

,di)), ∀xi ∈ R
ni
x , is convex and finitely

determined, viz. there exists an a-priori known integer l0
(see [18]) such that if c(l, xi,wi, {uj}j∈Ni

,di), ξi(l)) ∈
Ci(xs,i), l ∈ {0, 1, . . . l0}, then c(l, xi,wi, {uj}j∈Ni

,di) ∈
Ci(xs,i), ∀l ∈ Z+.

Finally, the local CG problem is solved by choosing at
each time instant k a command u∗

i (k), which is the solution
of the following convex optimization problem:

u∗
i (k) = arg min

wi∈Vi(xi(k),{uj(k)}j∈Ni
,di)

J∗, (15)

where J∗ is computed as in (6) with

JE,i,k , ‖(α1,i +α2,i,k)
T(wi − ri(k))‖1,We,i

.

In the case of time-varying disturbance predictions, com-
mands ui(l|k) need to be selected in a set that depends on the
entire disturbance sequence di−→

(k) , [di(0|k), ...,di(l0|k)]

and has the following form:

Vi(xi, d−→i(k)) ,
{

w−→i(l) : {wi(l) ∈ Wi(di(l))} s.t. ∃ ξi(l),

(c(l, xi,wi(l), {uj(l)}j∈Ni
,di(l), ξi(l)) ∈ C(xs,i),

∀l ∈ {0, 1, ..., l0}} ,
(16)

The procedure previously explained and discussed is sum-
marized in Algorithm 1.

IV. APPLICATION TO THE BARCELONA DWN

A. Case Study Description

The selected case study is an aggregate and representative
version of the Barcelona DWN. In this model, some network
water demand sectors are concentrated in a single demand.
Similarly, some tanks are aggregated in a single element
and the corresponding actuators are considered as a single
pumping station or valves [19]. The model consists of 17
tanks, 61 actuators, 25 measured demands and 11 nodes
(see Figure 2). Water is taken from rivers Besòs and Ter,
particularly from three sources named Abrera, Llobregat and
Cardedeu where there are, respectively, three water treatment
plants.

Algorithm 1 DCG Algorithm
1: set cnt = 1
2: while cnt ≤ q do

3: for i ∈ Tcnt do ⊲ parallelization
4: receive uj(l|k− 1), l = 0, 1, ..., l0 from previous

updating
5: receive uj(l|k), l = 0, 1, ..., l0 from previous

updating neighbours
6: solve (15)
7: transmit uj(l|k), l = 0, 1, ..., l0 to the neighbours
8: apply ui(0|k)
9: end for

10: cnt← cnt++
11: end while

B. Case Study Partitioning

Using the partitioning algorithm presented in [12], the
aggregate model of the Barcelona DWN is decomposed into
three subsystems, as depicted in Fig. 2 with different colours.
DWN subsystems are composed by the following elements:

• Subsystem 1 (red): Composed by tanks xi, i ∈ {1, 2},
inputs uj , j ∈ {1 : 5}, demands dl, l ∈ {1, 2, 3}, and
nodes nq , q ∈ {1, 2}.

• Subsystem 2 (green): Composed by tanks xi, i ∈
{3, 4, 5, 12, 17}, inputs uj , j ∈ {7 : 16, 18, 19, 25, 26,
32, 34, 40, 41, 47, 48, 56, 60}, demands dl,
l ∈ {4 : 7, 15, 18, 22}, and nodes nq , q ∈ {3, 4, 7}.

• Subsystem 3 (blue): Composed by tanks xi, i ∈ {6 :
11, 13 : 16}, the inputs uj , j ∈ {6, 17, 20 : 24, 27 :
31, 33, 35 : 39, 42 : 46, 49 : 55, 57, 58, 59, 61}, de-
mands dl, l ∈ {8 : 14, 16, 17, 19, 20, 21,
23, 24, 25}, and nodes nq , q ∈ {5, 6, 8 : 11}.
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Fig. 2. Case Study: Aggregate model of the Barcelona DWN. Subsystems
are highlighted by different colors: red (Subsystem 1), green (Subsystem
2), blue (Subsystem 3)

C. Closed-loop Setup

All results have been obtained by considering a four-day
real-demand scenarios (with 1 hour of sampling time), and
Hp = Hu = i0 = 24. Control objectives in (6) are prioritised



with the following weights: We = 100, Wx = 10 and
Wu = 1, following a trial-and-error tuning strategy. The
network has been simulated by using the same model used
to design the controller but fed with real water demands. The
network model has been calibrated and validated by using
real data provided by AGBAR1. Concerning the DCG, it is
worth to mention that agents are grouped into two turns
T1 = {Agent 3 (blue)}, T2 = {Agent 1 (red), Agent 2
(green)}. All simulations have been undertaken by using the
Yalmip interpreter [20] and the CPLEX solver, all under
MATLAB c© 8.2 environment, running on an Intel c© Core
i5-3330 machine with 3.3 GHz and 8 GB RAM.

D. Results, Comparison and Discussion

In order to show the effectiveness of the DCG approach
proposed in this paper, it will be compared against the
decentralized MPC (DMPC) and multi-layer decentralized
MPC (ML-DMPC) approaches proposed in [12] and [17],
respectively, which were also applied to the control of DWNs
using the same case study of Barcelona.

Table I shows the results achieved by the DCG approach
as well as those obtained when the ML-DMPC and DMPC
approaches and their centralized versions are used2. From
these results it can be seen that the DCG approach achieves
a performance that is quite close to that pertaining to the
centralized CG scheme. This means that the DCG imple-
mentation results to be quite effective.

On the other hand, the DCG approach clearly achieves bet-
ter performance when compared with the DMPC approach.
This is because the DMPC approach has only a local view
of the control problem, which tends to overemphasize the
local objectives (electrical costs). On the contrary, when the
ML-DMPC is used, which takes into account also the global
objectives (water costs), the results are closer to that of the
DCG approach.

Figures 3 and 4 show comparatively the evolutions of a
tank volume and a valve flow when the DCG and DMPC
approaches are used. On the other hand, Figure 5 shows the
different usage of the available water sources done by each
approach. Also notice the cyan areas in all figures that delimit
time intervals where the cost of electricity is the lowest with
respect to the remainder of the day. As a matter of fact, it
results that all approaches try to move water into the tank
during the night when the energy is cheaper as it can be seen
in Figure 3.

Interestingly enough, these figures show different manage-
ment behaviors produced by the different approaches, also
confirmed by the results reported in Table I. Specifically, the
total cost achieved by DCG and ML-DMPC are quite similar
and better than that achieved by DMPC. This can be seen
for example in the management of valve u54 in Figure 4 and
in Table I. However, unlike DMPC and ML-DMPC, it can
be seen from Figure 3 that DCG makes a stronger use of

1Aigües de Barcelona, S.A., the company that manages the Barcelona
DWN.

2Notice that the economic costs in Table I are given in economic units
rather than real values (Euro) due to confidentiality reasons.

pumps in order to obtain a better water management (see
Figure 5). Such a behavior translates into lower water costs
at the price of increased electric costs while complementary
behaviors are observed for DMPC and ML-DMPC.

Finally, centralized MPC and CG strategies yield quite
similar results and management policies. Minor differences
can been observed, mainly related to the statement of the
optimization problems for each strategy. In particular, CG
achieves a slightly better performance than the MPC strategy
in terms of electric cost that nevertheless weakly outperforms
CG in terms of water cost. Regarding the total cost, MPC
yields in lower values mainly towards the final of the
simulation. Finally, the computational burden is practically
the same with a slight advantage for the CG setup. The
centralized methods present, as expected, a quite higher CPU
time per step with respect to the decentralized approaches.
Notice also that, despite all simulations have considered a
four-day scenario, the closed-loop system reached its steady
state at the end of the second day of simulation.

TABLE I

COMPLETE BREAK-DOWN OF ECONOMIC COSTS FOR THE DIFFERENT

APPROACHES

DAY 1 DAY 2 DAY 3 DAY 4

WATER COST

DMPC 35.79 42.65 42.10 41.51
DCG 14.76 25.72 27.13 26.66

ML-DMPC 27.19 34.01 34.19 32.77
MPC 14.46 25.87 27.55 27.63
CG 14.49 26.08 27.87 27.94

ELECTRIC COST

DMPC 10.93 12.32 12.06 11.78
DCG 23.88 23.65 23.98 23.99

ML-DMPC 12.80 13.45 13.27 13.03
MPC 21.52 21.68 21.87 21.87
CG 21.44 21.60 21.79 21.79

TOTAL COST

DMPC 46.71 54.97 54.16 53.29
DCG 38.64 49.37 51.11 50.65

ML-DMPC 39.99 47.46 47.46 45.80
MPC 35.99 47.55 49.42 49.50
CG 35.93 47.68 49.65 49.73

CPU TIME

DMPC 7.78 8.43 8.51 8.59
DCG 7.75 8.39 8.49 8.54

ML-DMPC 7.82 8.46 8.79 8.64
MPC 9.48 10.31 10.71 10.65
CG 9.34 10.11 10.23 10.29

V. CONCLUSIONS

This paper has proposed the application of a DCG strategy
for the operational control of DWNs. The application of
the CG approach to the problem at hand required a slightly
modified of the theory in order to face with marginal stable
systems, incorporating equality constraints and dealing with
disturbance rejection goals. The provided simulation results
obtained by using the Barcelona DWN as a case study
and the comparison with two DMPC schemes have shown
similarities with some noticeable difference in managing the
system. In particular, all approaches shown similar compu-
tational burdens and total management costs although the
CG approach seems to be computationally less demanding.
However, the water and electricity costs are minimized
differently by the various schemes, giving rise to different
management strategies, although their sum (the total cost)
resulted quite the same for all the contrasted strategies.
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Fig. 3. Resultant volume related to tank x(10) (d130BAR)
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Fig. 4. Computed flow related to valve u(54).
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