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Abstract— Large-scale network systems involve a large num-
ber of variables, making the design of real-time controllers
challenging. A distributed controller design allows to reduce
computational requirements since tasks may be divided into
different subsystems, making possible to guarantee real-time
processing. This paper proposes a constrained optimization-
based distributed control design by applying a novel population
and masses dynamics approach. The distributed controller
design is applied to the Barcelona Drinking Water Network
(DWN) in order to illustrate its effectiveness in the control
performance.

I. INTRODUCTION

Network systems in engineering are usually large-scale
problems, i.e., there is a big amount of variables in the
system, becoming challenging to design real-time controllers
owing to high computational costs. On the other hand, a
centralized control requires full information about system
states, which might imply additional communication issues
when measuring the sensor signals (e.g., delays, packet
losses). Drinking water management in urban areas has an
increasing importance due to its influence in the supply
of this indispensable resource due to social issues. Con-
trollers for these systems are complex and should cope with
constrained dynamical behaviors and operational criteria.
Among constraints, there are limitations in elements in the
network, e.g., tanks have their maximum storage capacity,
the actuators have their physical restrictions to operate, the
control action should be smooth to avoid damage in the net-
work components, and the time-variant water demand must
be satisfied. Additionally, it is necessary to minimize costs
related to the energy required to operate valves and pumps,
and the costs related to water that depend on proportions
obtained from different sources available in the network.
Therefore, this problem has many goals to weight up accord-
ing to the importance assigned to each one. Consequently,
control design based on constrained optimization may be
convenient. That is why model predictive control (MPC) has
been well studied and implemented in these systems [1]-
[2]. A different approach to design decision-making systems
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involving optimization concepts is game theory and the
population dynamics approach [3]. The main characteristic
to relate constrained optimization with game theory and
population dynamics is that the Nash equilibria satisfy first
order Karush-Kuhn-Tucker (KKT) conditions in full poten-
tial games [3]. Moreover, several distributed solutions for
engineering problems have been proposed applying a game
theoretical approach [4]. In [5], the replicator dynamics is
applied to a dispatch problem in an optimal way. In [6], a
game theoretical approach to solve constrained optimization
problems is discussed.

The main contribution of this work is the design of a
distributed control of Drinking Water Networks (DWN) by
using a novel methodology based on population dynamics.
This allows to have distributed intelligent systems in charge
of a portion of the total amount of tasks, making more
viable to guarantee real-time control. Moreover, the proposed
method ensures that the feasible region is attractive, making
the distributed control system robust against disturbances
that could make conditions leave the feasible set. Finally,
a distributed control for the Barcelona DWN designed with
this methodology is presented.

The remainder of the paper is organized as follows.
Section II presents some mathematical preliminaries regard-
ing graphs and population dynamics. Section III describes
the methodology proposed and shows stability analysis for
the population and the masses dynamics; this section also
presents the main constrained optimization problem solved
with the proposed approach. Then, Section IV describes the
Barcelona drinking water network, its states, constraints, and
operational objectives. In Section V the results in simulation
are presented, while in Section VI the main conclusions are
drawn.

II. GRAPHS AND POPULATION GAMES NOTATION

The proposed decision-making system is oriented to con-
trol a network plant that is represented by an undirected
connected graph denoted by G = (V, E). This graph exhibits
the topology of a society in a strategic interaction. The set of
vertices or nodes denoted by V , represents the control actions
in the system and also corresponds to the set of strategies
S = {1, ..., N} in a strategic interaction. The set of edges or
links given by E = {(i, j) : i, j ∈ V}, represents the possible
information sharing between states of the system associated
to each node (control action) throughout the network.

The network system is composed by M sub-systems. Each
sub-system is represented by a complete sub-graph contained
in G, which is known as a clique. A clique represents also



a population in the strategic interaction from the set P =
{1, ...,M}, where there is full availability of information
about system states. The sub-systems are not independent,
e.g., sub-systems have coupled dynamics affecting each other
or there are constraints involving elements from different
sub-systems. The set of cliques is denoted by C = {Cp : p ∈
P}, where Cp = (Vp, Ep), i.e.,Vp ⊂ V and Ep ⊂ E . In the
strategic interaction Vp represents the Np strategies from the
set Sp = {i : i ∈ Vp} of the population p ∈ P .

The number of sub-systems containing a certain node i ∈
V is given by a function denoted by G(i) =

∑
p∈P g(i, p)

where g(i, p) = 1, if i ∈ Vp, and g(i, p) = 0, otherwise.
Since G is a non-complete connected graph, each clique
associated to a sub-system shares at least one node with
another clique. The nodes communicating various cliques
are channels known as intersection nodes between sub-
systems. The set of intersection nodes in a subsystem (i.e.,
a population in the society p ∈ P) is denoted by Ip = {i ∈
Vp : G(i) > 1}, and the set of intersection nodes in the
system (i.e., the society) is given by I = ∪p∈PIp.

Throughout the paper, the set {p : i ∈ Vp} refers to all
populations p ∈ P containing a node i, e.g., for a case with
three populations whose set of nodes are given by V1 =
{1, 2},V2 = {2, 3} and V3 = {3, 4}, then {p : 2 ∈ Vp} =
{1, 2} whereas {p : 4 ∈ Vp} = {3}.

The scalar xi is the amount of agents in the society
selecting the strategy i ∈ S, and the scalar xpi is the amount
of agents selecting the strategy i ∈ Sp in the population
p ∈ P . The distribution of agents throughout the available
strategies is known as the social state and the population
state denoted by x ∈ RN and xp ∈ RNp

, respectively. For
the strategic interaction, the set of social states (associated
to control actions in the system) is given by a simplex
denoted by ∆, i.e., ∆ =

{
x ∈ RN+ :

∑
i∈S xi = m

}
, where

m is the mass of agents in the society, i.e., an amount of
a resource associated to actuators of the system. The set
of population states (associated to control actions in a sub-
system) is given by a simplex denoted ∆p where p ∈ P ,
i.e., ∆p =

{
xp ∈ RNp

+ :
∑
i∈Sp x

p
i = mp

}
, where mp is

the mass of the population p, i.e., an amount of a resource
associated to actuators at each sub-system.

There is a relationship between the social states (resource
in the system) and the population states (resource in the sub-
systems), where xpi = 0 if i /∈ Vp,

xi =
1

G(i)

∑

p∈P
xpi . (1)

The resource could be the total energy applied to all the
actuators in a system and/or a sub-system.

An actuator in the system affects directly a state of the
system, then there is a function that depends on the state of
the system, which determines the behavior of the associated
actuator. These functions (known as fitness functions) deter-
mine how masses should be distributed among sub-systems
(populations) within the system (society). Also, these fitness
functions distribute masses among population states (xpi for
all i ∈ Vp) within each sub-system.

Remark 1: The population states and the social states
are associated to the actuators and depend on the fitness
functions which are associated to the states of the system,
i.e., the control actions depend on states of the system as it
is usual in a control system. ♦

Let Fi : ∆→ R be the fitness function for the proportion
of agents playing strategy i ∈ S. The fitness function for the
proportion of agents playing strategy i ∈ Sp is F pi : ∆p →
R. The fitness for a strategy i ∈ S is the same as the fitness
for a strategy j ∈ Sp if i = j. Consequently, for all i ∈ Sp
and for all p : i ∈ Vp,

Fi(x) = F pi (xp), if xi = xpi . (2)

Society average function denoted F̄ (x) is denoted by F̄ (x) =
1
m

∑
i∈S xiFi. The average function for all populations

p ∈ P denoted F̄ p(xp) is F̄ p(xp) = 1
mp

∑
i∈Sp x

p
iF

p
i .

The method proposed in this paper, is restricted to the
assumptions below.

Assumption 1: The game F (x) is a full potential game,
i.e., there is a function f(x) known as potential function such
that the fitness functions are given by F (x) = ∂f(x)

∂x . In this
kind of games, the Nash equilibrium denoted x∗ corresponds
to an extreme point of the potential function f(x) satisfying
the Karush-Kuhn-Tucker (KKT) first order conditions [3]. ♦

Assumption 2: The game F (x) is stable, i.e., the potential
function f(x) is concave. ♦

Assumption 3: Fitness functions in a sub-system only
depend on elements that belong to the same sub-system.
i.e., the required information for a decision-making system
is available in the sub-system. ♦

Assumption 4: The population masses are strictly positive,
i.e., mp > 0, for all p ∈ P; and there is not extinction
of proportion of agents playing a strategy, i.e., the scalar
xpi > 0, for all p ∈ P , and i ∈ Sp. ♦
III. DYNAMICS FOR SUB-SYSTEMS AND INTERSECTION

NODES

The objective for the system (society) is to establish
optimal social states related to the actuators in the system
according to a potential function f(x) that depends on the
states of the system. Consequently, the social states converge
to a Nash equilibrium denoted x∗ ∈ ∆, which implies that
in mixed-strategies Fi = Fj for all i, j ∈ S.

The goal is achieved by using sub-systems dynamics and
intersection nodes dynamics. At each sub-system (popula-
tion), there is a game converging to a Nash equilibrium
denoted xp∗ ∈ ∆p implying that F pi = F pj for all i, j ∈
Sp, and each intersection node has dynamics allowing an
interchange of masses among populations.

A. Dynamics for sub-systems

A game is solved for each sub-system (population) with
constraints given by masses mp which vary dynamically.
There are M system dynamics of this type, one for each
sub-system (clique) Cp, for all p ∈ P . Moreover,

ẋpi = xpi
(
F pi − F̄ p − φp

)
, for all i ∈ Sp, (3)



φp = β


 1

mp

∑

j∈Sp

xpj − 1


 ,

and β is a convergence factor. Note that when φp = 0 (i.e.,
xp ∈ ∆p) the differential equation in (3) is the replicator
dynamics equation [3].

B. Dynamics for intersection nodes

On the other hand, there are dynamics for population
masses mp. The masses associated to each sub-system are
varying depending on the intersections nodes behavior. There
are dynamics of this type for all nodes i ∈ I such that

ṁp
i = mp

i (xi − xpi ) , for all p : i ∈ Vp. (4)

There is a relationship between mp
i and mp,

mp = 1
|Ip|

∑
i∈Ip

mp
i , where |Ip| is the cardinality of

the set Ip. For these dynamics, column vectors of masses
are defined for all i ∈ I as mi = {mp

i , for all p : i ∈ Vp},
mi ∈ RG(i) and column vectors of population states for all
i ∈ I as xi = {xpi , for all p : i ∈ Vp}, xi ∈ RG(i). Note that
mi 6= mi and xi 6= xi. The equilibrium point m∗i implies
that xi = xpi , for all p : i ∈ Vp. Consequently, the dynamics
for the sub-systems converge to a Nash equilibrium, and the
society satisfies an arbitrary simplex ∆.

Proposition 1: If Assumption 4 is satisfied, the sub-
systems dynamics are in equilibrium xp∗ ∈ ∆p, for all p ∈
P , and the intersection nodes dynamics are in equilibrium
m∗i , for all i ∈ I, then the system is in equilibrium x∗ (i.e.,
Fi(x) = Fj(x) = F̄ (x), for all i, j ∈ S).

Proof: The equilibrium xp∗ ∈ ∆p of the sub-systems
dynamics (3) for all p ∈ P implies that

i) φp(xp∗) = 0 and,
ii) F pi (xp∗) = F̄ p, for all i ∈ Sp, and p ∈ P .

The equilibrium mi
∗ of the intersection nodes dynamics (4),

for all i ∈ I implies that x∗i = xpi
∗ for all p : i ∈ Vp.

Then, for all i ∈ I, it holds that x∗i = xri
∗ = xki

∗ for all r :
i ∈ Vr and k : i ∈ Vk. By (2) Fi(xr∗) = Fi(x

k∗) = Fi(x
∗).

Moreover, Fi(xr∗) = F̄ r(xr∗) = Fi(x
k∗) = F̄ k(xk

∗
) for

all r, k ∈ P and i ∈ I. Consequently, all population average
fitnesses are equal, then Fi(x

∗) = Fj(x
∗) = F̄ (x∗) for all

i, j ∈ S, which completes the proof.
In order to have control on the solution of the strategic

interaction, it is convenient to achieve the equilibrium in an
imposed/desired value for the fitness functions. The desired
value is a reference denoted by R. Then, the dynamics
would establish the appropriate masses so that the average
fitness coincides with the reference at the Nash equilibrium
point. In order to guarantee the convergence of the fitness
functions to R, it is ensured that xpi approaches to the
known value x̃i, for all p : i ∈ Vp. Additionally, it is
known that Fi(x̃i) = R for any i ∈ I. The desired value
is forced by modifying the relationship in (1) only for one
intersection node i ∈ I as xi = 1

G(i)+1

∑
p∈P x

p
i + x̃i.

Remark 2: In case that x̃i is not easily found for any i ∈ I
so that Fi(x̃i) = R. It is possible to establish any decreasing
fictitious function denoted by F̃ (xN+1), where xN+1 is an
intersection node, and x̃N+1 is known so that F̃ (x̃N+1) = R.
The addition of a new variable does not affect the solution
of the whole problem, but allows to force the trajectories to
converge to the desired value R. ♦

The structure corresponding to a case with three cliques
and an intersection node is presented in Figure 1.

ẋ1i = x1i (F 1
i − F̄ 1 − φ1)

ẋ2i = x2i (F 2
i − F̄ 2 − φ2)

ṁp
i = mp

i (xi − xpi )

∀p : i ∈ Vp and i ∈ I

xi = 1
G(i)

∑
p∈P

xpi

mp = 1
|Ip|

∑
i∈Ip

mp
i

∀p ∈ P

ẋ3i = x3i (F 3
i − F̄ 3 − φ3)

Clique 2 (C2)

Clique 1 (C1)

Clique 3 (C3)

∀i ∈ S1

∀i ∈ S2

∀i ∈ S3

xi

m1

m2

m3 x1j , j ∈ I1

x2j , j ∈ I2

x3j , j ∈ I3

x1i

x2i

x3i

Sub-system dynamics

Intersection nodes dynamics

Fig. 1. Structure of dynamical system for a system with three subsystems
and one intersection node.

C. Stability Analysis

It is shown that the equilibrium for both dynamics (i.e.,
the ones for sub-systems and the ones for intersection nodes)
are asymptotically stable.

Theorem 1: If F (x) is a stable game, then there exists a
β such that the equilibrium point xp∗ ∈ ∆p of (3) for all
p ∈ P , and the equilibrium point mi

∗ of the masses dynamics
in (4) for all i ∈ I, are asymptotically stable.

Proof: Using the convex radially unbounded Lyapunov
function V (xp,mi)

1,

V (xp,mi) =
∑

p∈P

∑

i∈Sp

xpi − xpi
∗
(

1 + ln

(
xpi
xpi
∗

))
+

∑

i∈I

∑

p:i∈Vp

mp
i −mp

i
∗
(

1 + ln

(
mp
i

mp
i
∗

))

where, V (xp∗,mi
∗) = 0,, and V (xp,mi) > 0 if xp 6= xp∗

or mi 6= mi
∗. Its derivative considering one population and

one intersection node is

V̇ (xp,mi) =
∑

i∈Sp

(
1− xpi

∗

xpi

)
ẋpi +

∑

p:i∈Vp

(
1− mp

i
∗

mp
i

)
ṁp
i .

Make a change of variable 1x>i 1
1

G(i) = x̃i, where 1 =

[1 1 ... 1]> is a column of ones with suitable dimen-
sions for population states (i.e., its cardinality is |1| = Np)
and for masses (i.e., its cardinality is |1| = G(i)). Also,
it is considered that xp>1 = mp + ε where ε could be
either positive or negative depending on whether xp is
geometrically either above or below the simplex ∆p, then

1Details of this proof have been omitted due to the lack of space.



V̇ (xp,mi) = αxp>F (xp)− β
ε2

mp
+ (xp − xp∗)

>
F (xp)+

(m∗i −mi)
> (xi − x̃i) .

with α =
(
1− mp+ε

mp

)
. There exists a β such that

V̇ (xp,mi) ≤ 0 given by

β ≥m
p

ε2

{(
1− mp + ε

mp

)
xp>F (xp) + (xp − xp∗)

>
F (xp)+

(m∗i −mi)
> (xi − x̃i)

}
.

Note that when population states are near a feasible region
(i.e., ε → 0), the convergence factor is not longer required
(i.e., β can get any positive value or zero).

Remark 3: This theorem also shows that the feasible
region is attractive, i.e., the trajectories converge to a feasible
region when the population states are out of it or when
disturbances force the state to leave this set. ♦
D. Optimization problem with constraints

Since a Nash equilibrium in a potential game satisfies
the Karush-Kuhn-Tucker (KKT) first order condition, an
optimization problem in a distributed way can be solved by
applying the population dynamics and the masses dynamics
introduced in Sections III-A and III-B, respectively.
Suppose that we want to design a decision-making system to
control (in a distributed way) a network system composed by
various sub-systems. The desired behavior for the network
is given by a constrained optimization problem, i.e.,

max f(x), s. t. Ax = b, and xi ≥ 0, 1 ≤ i ≤ N, (5)

where x ∈ RN+ , f : RN+ → R. It is assumed that f(x) is con-
tinuously differentiable, f ∈ C1, and concave. A ∈ RV×N
since there are V constraints and N decision variables, and
b ∈ RV . For this constrained optimization problem, µ is
the Lagrange multiplier vector and the Lagrange function
l : RN × RV → R is l(x, µ) = f(x) + µ>(Ax − b), where
∇xl(x, µ) = ∇f(x) +A>µ, and ∇µl(x, µ) = −Ax+ b.

The Lagrange condition is used to find possible extreme
points in a cost function. In the optimal point ∇xl(x∗, µ∗) =
0 and ∇µl(x∗, µ∗) = 0. Consequently, new nodes µi for
constraints are added. The fitness functions for each node
are chosen as F (x) = ∇xl(x, µ) and F (µ) = ∇µl(x, µ).
The problem is solved imposing a reference value R = 0 by
applying a fictitious function as highlighted in Remark 2.

IV. CASE STUDY APPLICATION: BARCELONA DWN
The Barcelona DWN, managed by Aguas de Barcelona

S.A (AGBAR), supplies drinking water to Barcelona city
and its metropolitan areas. The network has a centralized
telecontrol system, organized in a two-level architecture. At
the upper level, a supervisory control system, installed in
the control centre of AGBAR, is in charge of controlling the
whole network by taking into account operational constraints
and consumer demands. This upper level provides the set-
points for the lower-level control system. The lower level
optimizes the pressure profile to minimize losses due to
leakage and to provide sufficient water pressure, e.g., for
high-rise buildings. For more details of this system, see [7].

A. System management criteria

In order to control the DWN, there are two main criteria
for a desired performance.

1) Minimize operational costs associated to water supply
and energy for water transport: Economic costs associated
to drinking water production are generated by chemicals for
treatment water, legal canons, and active elements electri-
cal costs (pumps). The function to minimize is given by
f1(t) = Wc(α1 + α2(t))u, where Wc establishes a weight
for a total cost function, u ∈ RN denotes the flows that
can be manipulated, α1 is a known column vector whose
cardinality is N associated to water costs according to the
corresponding source (treatment plant, dwell, etc.). α2(t) is a
column vector whose cardinality is N describing operation
energy costs associated to pumps, which varies over time
since electricity costs have different values during the day.

2) Ensure safety storage terms, which are related to satisfy
demand at each point of the network: Satisfaction of water
demands should be met all the time and some risk prevention
mechanism should be considered as a storage of water
volume availability of emergency for future demands given
by a relation respect to the maximum volume at each tank
ξvmax. The cost function to minimize is f2(t) = (v −
ξvmax)>Wv(v − ξvmax), where v ∈ RV denotes the water
volumes at network tanks, ξ is a term that determines the
safety volume to be considered with respect to the maximum
volume tank vector vmax ∈ RV . Wv is a weight matrix that
ponderates the total objective function.

B. DWN Model and constraints

The DWN can be considered as a large-scale system.
Figure 2 shows the DWN in Barcelona. The control sys-
tem presented in this paper manages the transport network
problem and sets references for local PID controllers, which
are in a lower level of the hierarchical structure. DWN
is a non-linear system; however, for management level, it
is considered linear due to the fact that non-linearities are
considered in the low level controllers.

The mass balance expression relating the stored volume
v ∈ RV , the manipulated flows, and demand flows can be
written as v̇i =

∑
n q(in),n(t)−∑m q(out),m(t), where, for

all time t, q(in),n(t) and q(out),m(t) are the nth inflow and
the mth outflow related to the ith tank, respectively. These
flows are given in [m3/s].

There are physical constraints for the tanks according to
their capacity, i.e., vmini ≤ vi(t) ≤ vmaxi , where vmini is
the minimum volume capacity and vmaxi is the maximum
capacity given in [m3]. Then, it is not possible to assign
more water to a filled tank or drain water from an empty
tank. Regarding the control actions ui(t), there are two types
of actuators: pumps and valves.

These elements have physical constraints as well, i.e.,
umini ≤ ui(t) ≤ umaxi , where umini and umaxi denote the
minimum and maximum flow capacity, respectively, given in
[m3/s]. Figure 2 shows 11 nodes in the network, where the
mass balance should be respected, adding more constraints
to the problem.



Fig. 2. Barcelona drinking water network. Partition of the network into three cliques according to Table II.

TABLE I
NODE CONSTRAINTS

Node Constraint
1 u(1)− u(2)− u(5)− u(6) = 0
2 u(2)− u(3) = d(2)
3 u(18)− u(13) = d(5)
4 u(14) + u(26) + u(15)− u(19)− u(25) = d(7)
5 u(22)− u(30) = d(9)
6 u(31)− u(40)− u(39) = d(14)
7 u(32) + u(40) + u(34) + u(25)− u(41)− u(26) = d(15)
8 u(39) + u(46)− u(45)− u(47) = d(17)
9 u(28) + u(49)− u(35)− u(43) = d(16)
10 u(44) + u(43) + u(52) = d(20)
11 u(61)− u(59)− u(50)− u(51)− u(52)− u(57)− u(58)

−u(56)− u(60) = d(25)

The constraints are expressed as
∑
n q(in),n(t) =∑

m q(out),m(t), where q(in),n(t) is the nth the node inflow
and q(out),m(t) is the mth node outflow. Some of these flows
are manipulated as part of the control actions, and others are
set by water demands. Moreover, demands can be forecasted
and they are assumed to be known, where d is a vector with
measured disturbances affecting DWN. Node constraints are
explicitly expressed in Table I.

C. Partitioning of the network

Partitioning of the DWN is a problem already studied in
[8]. For the DWN control problem, partitioning is determined
based on system constraints. As in Section III-D, Lagrange
multiplier vertices are connected to vertices from which
information is needed to set the respective constraint and
these Lagrange multipliers must belong to the same clique.
Based on this idea, it is possible to determine vertices
(strategies) that should belong to the same clique (popula-
tion). For example, the constraint given by node 9 shares
a vertex with constraint given by node 10, this vertex is
u43; however, constraints for nodes 10 and 11 involve vertex

u52. Consequently, there is a clique including all elements
involved in constraints 9, 10, and 11 from Table I. In the
same way, vertices corresponding to the slack variable s(j)
should belong to the same clique to which vertex uj belongs.
On the other hand, there are some vertices that are not
associated to any constraint, e.g., u4 or u55. In these cases,
the vertices are assigned to the nearest clique. Cliques are
presented in Table II.

TABLE II
PARTITION OF THE NETWORK INTO CLIQUES

Clique Vertices u, s ∈ Vp

p = 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 22, 29, 30, 36, 37, 38
p = 2 12, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26, 27, 31, 32, 33, 34, 39,

40, 41, 45, 46, 47
p = 3 28, 35, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61

D. Optimization Problem

The controller is designed as an optimization problem
minimizing costs and the error with respect to the safety
storage term subject to physical constraints of nodes, tanks,
and actuators. To this end, a new variable ṽ(t) ∈ RN is
introduced, where ṽi(t) is the volume corresponding to the
tank whose input flow is given by ui(t), i.e., ṽi(t) = vj(t) if
ui(t) is the input flow of the jth tank. In case that the control
action ui is not an input flow to any tank, then ṽi = 0. In the
same way, ṽmax ∈ RN corresponds to the maximum volume,
e.g., for the control action u4(t), ṽ4(t) = v1(t), since u4(t)
is the input flow for tank 1, and the maximum volume
ṽmax4 = vmax1 . For the control action u2(t), ṽ2(t) = 0 since
u2(t) is not an input flow for any tank, and the maximum
volume ṽmax2 = 0 for the same reason. The error is defined as
e(t) = (ξṽmax − ṽ), e(t) ∈ RN since it is known that error
e(t) is reduced as u(t) increases, assigning more drinking



water to tanks with more error. The scalar ei(t) = ξṽmaxi −ṽi
is the error of the tank for which ui is its input flow. The
error ei(t) = ξṽmaxi − ṽi = 0, if ui is not an inflow for any
tank. The optimization problem is given by

max f(u) =−Wv(ṽ − ξṽmax)>diag(u(t))(ṽ − ξṽmax)

−Wc(α1 + α2(t))u(t)

s. t. Au = b, Iu ≤ c, (6)

where A ∈ R11×61 is a matrix determined by the constraints
presented in Table I corresponding to the nodes, I ∈ R61×61

is the identity matrix fixing constraints related to actuators,
b =

[
0 d2 d5 d7 ... d25

]>
, b ∈ R11 (see Figure

2), and c = [umax1 umax2 ... umaxN ]>, c ∈ R61. Then,
consider the vector of states x̃ ∈ R122 with the slack
variables s given by x̃ = [u>, s>]>, and two new matrices
Ã and b̃ as

Ã72×122 =

[
A11×61 011×61
I61×61 I61×61

]
, b̃72 =

[
b11
c61

]
.

The new optimization problem has the form as in (5) and
it can be solved using population dynamics, whose fitnesses
are the Lagrangian function, i.e.,

max f(x̃), s. t. Ãx̃ = b̃, and x̃i ≥ 0, 1 ≤ i ≤ 122.

This problem is solved by applying the dynamics intro-
duced in Section III in a distributed way, and satisfying all
constraints established for the DWN.

V. RESULTS

Simulations consider the following parameters: demand
requirements establishes a ξ = 0.2, and weight for functions
are selected to assign more importance to the minimization
of costs, then Wc = 10 and Wv = 0.1. Initial conditions
for simulation are chosen arbitrarily with respect to the
maximum volume, i.e., v(0) = 0.386vmax. Results for the
distributed optimization based controller with population dy-
namics are compared with results obtained with a distributed
model predictive control (DMPC) presented in [1]. Evolution
of the DWN states of tanks 14 and 15 have been chosen to be
analyzed since they involve a considerable number of control
actions (u50, u53 − u55, u57, u58, u61), water sources and
demand points (c200BARnord, C100BLLnord), see Figure
2. The evolution of volumes at tanks 14 and 15 are shown
in Figure 3. Volumes oscillate around the set point despite
the hard disturbances given by demands.
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Fig. 3. Volume evolution with reference for tanks a) 14 and b) 15.

The behavior is oscillatory due to the periodicity of the
water demand (system disturbances), yielding in a controller

more focused on disturbance rejection instead of regulation
or tracking problems. It is important to highlight that results
along the first days are not representative due to the fact
that the system initial conditions do not correspond to the
periodical behavior of the system.

Regarding water and energy costs related to the operation
of actuators, data are discriminated in Table III during four
days2 for both controllers, DMPC and distributed controller
based on population dynamics.

TABLE III
DISCRIMINATION OF ECONOMIC COSTS

DMPC WITH POPUL. DYNAMICS
Day

1
2
3
4

Water Electric Total
21.56 21.94 43.50
27.67 21.90 49.57
27.57 21.94 49.51
27.58 21.94 49.52

Water Electric Total
24.07 16.88 40.95
29.46 19.14 48.60
30.12 26.79 56.91
30.13 26.71 56.84

VI. CONCLUSIONS

A distributed model-free control has been designed by
applying the proposed methodology based on population
dynamics for subsystems and dynamics associated to inter-
section nodes among subsystems in a DWN, particularly in
the Barcelona case study. This optimization-based controller
considers the multiple constraints associated to tanks, actu-
ators and demand, and a minimization of costs of water and
energy. Results show that, despite the critic disturbances,
volumes in the system tend to their corresponding set-
points minimizing the difference between current states and
safety storage terms. On the other hand, the methodology
allows to have a decision-making system at each subsystem
distributing tasks, and this distribution does not affect the
consideration of constraints for the whole system.
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