
Dimensionality Reduction and Motion Coordination in Learning
Trajectories with Dynamic Movement Primitives

Adrià Colomé and Carme Torras

Abstract— Dynamic Movement Primitives (DMP) are nowa-
days widely used as movement parametrization for learning
trajectories, because of their linearity in the parameters,
rescaling robustness and continuity. However, when learning
a movement with a robot using DMP, many parameters may
need to be tuned, requiring a prohibitive number of experi-
ments/simulations to converge to a solution with a locally or
globally optimal reward.

We propose here strategies to palliate this dimensionality
problem: the first is to explore only along the most significant
directions in the parameter space, and the second is to add a
reduced second set of Gaussians that would optimize the trajec-
tory after fixing the Gaussians approximating the demonstrated
movement. Both strategies result in less Gaussian computations
and better performance on learning algorithms.

To further speed up the learning and allow for a better biased
exploration, we also propose to coordinate the motion of differ-
ent joints, by computing a coordination matrix initialized with
the demonstrated movement and then automatically updating
it by eliminating the degrees of freedom least affecting task
performance.

Our three proposals have been experimentally tested and the
obtained results show that similar (or even better) performance
can be obtained at a significantly lower computational cost by
reducing the dimensionality of the exploration space.

I. INTRODUCTION

Learning robotic skills is a tough problem which can be
adressed in several ways. The most common approach is
Learning from Demonstration (LfD), in which the robot is
shown an initial way of solving a task, and then tries to
reproduce, improve and/or adapt it to variable conditions.
The learning of tasks is usually performed in the kinematic
domain by learning trajectories [1], [2], although it can also
be done in the force domain [3], [4]. The problem of learning
to execute complex motor tasks can be tackled with different
approaches as follows.

A training data set is often used in order to fit a relation
between an input (experiment conditions) and an output (a
good behaviour of the robot). This fitting, which often uses
regression models such as Gaussian Mixture Models (GMM)
[5] or Locally Weighted Projection Regression (LWPR) [6],
is then adapted to the external conditions in order to modify
the robot’s behaviour [5] (see Fig. 1).

This work is partially funded by EU Project IntellAct (FP7-269959) and
by the Spanish Ministry of Science and Innovation under project PAU+
DPI2011-27510 and by the CSIC Project CINNOVA (201150E088). A.
Colomé is also supported by the Spanish Ministry of Education, Culture
and Sport via a FPU doctoral grant (AP2010-1989)

The authors are with Institut de Robòtica i Informàtica Industrial
(CSIC-UPC), Llorens Artigas 4-6, 08028 Barcelona, Spain. E-mails:
[acolome,torras]@iri.upc.edu

Despite its high adaptability, reproducing the demonstrated
behaviour and adapting it to new situations does not always
solve a task optimally, thus Reinforcement Learning (RL) is
also being used, where the robot learns from a demonstration,
and improves the solution by trial-and-error (see Fig. 2).
RL is capable of finding better solutions than the one
demonstrated to the robot.

Fig. 1. Typical LfD scheme. A trajectory (or a set of trajectories) is
shown by some means to the robot, and then the robot obtains a robust
generalization of those trajectories, which is then useful to adapt to similar
situations. Inspired by Fig. 59.9 of [7].

Fig. 2. Learning with Reinforcement Learning. Once the trajectory
is parametrized, exploration on these parameters is done with several
repetitions and a reward function, to improve over the initial demonstration.

In order to learn a task, a robot must have a framework
characterizing its motion. Movement Primitives (MP) are
parametrized trajectories for a robot that can be represented
in many different ways, such as splines or neural networks. A
desired trajectory is represented by fitting certain parameters,
which can then be used to improve or change this desired
trajectory, while a proper control (a computed torque control
[8], for example) tracks this reference signal. Once a task is
learned with MP from a single or several demonstrations, it
can be generalized to similar contexts [9], [10].

Among all MP, the most used ones are Dynamic Move-
ment Primitives (DMP) [11], [12], which characterize a
movement by means of a second order dynamical system,
using a position error, a velocity term and an excitation
function for obtaining the acceleration profile generating the
movement:

ż/τ = αz (βz (yg − y)− z) + f(x)
f(x) = Θ · g(x),

(1)

where y is the joint position vector, yg the goal/ending joint
position, τ a time constant, x is a transformation of time
verifying ẋ = −αxx/τ and z = ẏ/τ a rescaled velocity
vector. In addition, Θ is the parameter matrix, where each
row represents the parameters used for each joint to learn an
initial move, applied to a set of basis functions g(x) defined
as:

gi(x) =
φi (x)∑
j φj (x)

x, i = 1..Nf , (2)

where φi (x) = exp
(
−0.5(x− ci)2/di

)
, and ci, di represent

the fixed center and width of the ith Gaussian used of a total
of Nf per Degree of Freedom (DoF).

With this motion representation, the robot can be taught
a demonstration movement, to obtain the weights and Gaus-
sians of the motion by using least squares techniques on:

f
(j)
de (x) = ż

(j)
de /τ+αz

(
βz

(
y
(j)
de − y

(j)
g

)
+ z

(j)
de

)
= θT

(j)g(x),

(3)
where (j) indicates jth joint, the subscript de represents the
demonstration movement taught to the robot and θT

(j) the
j-th row of Θ. The DMP representation of trajectories has
good scaling properties wrt. trajectory time and initial/ending
positions, has an intuitive behaviour, does not have an
explicit time dependence and is linear in the parameters,
among other advantages [11]. For these reasons, DMP are
being widely used with policy optimization RL, where the
general goal is to optimize the policy parameters Θ so that
an expected reward J(Θ) is maximal. After each rollout, the
reward/cost function is evaluated and used to search for a set
of parameters that improve the performance over the initial
movement.

Some of the common approaches used in this framework
are Policy Gradients (PG) [13], [14], Policy Improvement
with Path Integrals (PI2) [15], [16], [17] or Relative Entropy
Policy Search (REPS) [18], [19]. However, these ideas have
resulted in algorithms that require several roll-outs to find a
proper update for the motion parameter. In addition, to have
a good fitting of the initial movement, many parameters are
required, while we want to have few in order to reduce the
dimensionality of the optimization problem. When applying
learning algorithms with DMP, several aspects must be taken
into account [20]:
• Parameter dimensionality. Despite DMP having less

parameters than other motion representations, such as
neural networks, complex robots still require many
parameters for a proper trajectory representation. The
number of parameters needed strongly depends on the
trajectory length or speed. In a 7-DoF robot following
a long 20-second trajectory, the use of more than 20
Gaussian kernels per joint might be necessary, thus
having at least 140 parameters in total. Exploring all
these parameters can result in the algorithm interpreting
that a weight of a kernel is good because its neighbours
are. This large parameter dimensionality then requires
a lot of exploration rollouts in order to obtain good
optimization values. Although there exist procedures for

segmenting and joining short MP [21], the use of a
single MP for each task provides a simpler framework.

• Model availability. RL can be performed by simulation
or with a real robot. The first case is more practical
when a good simulator of the robot and its environment
is available. However, in the case of manipulation of
non-rigid objects or when a model is not available, re-
ducing the number of repetitions is critical. In addition,
certain exploration values might result in dangerous
acceleration or motion on the real robot, such as strong
oscillations and acceleration changes.

• Cost function. RL needs a cost/reward function indi-
cating how good the performance of the robot was after
a reproduction of the task. In previous work, the cost
function considered is an indicator of whether the task is
being accomplished or not, adding a term to reduce the
DMP weights’ values and an acceleration cost. These
terms are linearly weighted in order to have a similar
order of magnitude. However, large accelerations com-
ing from the DMP characterization can generate large
costs, so when working in a simulated environment, it
is common to start with a minimum jerk trajectory [16],
[22]. In addition, certain tasks may not depend on the
whole number of DoFs of the robot, meaning that the
RL algorithm used might be exploring motions that are
irrelevant to the task, as we will see later.

When fitting a demonstrated movement with MP, there is
a tradeoff between a good fitting of the initial movement,
a low dimensionality of the parameter space obtained and a
good exploration strategy for learning. In [23], LWPR is used
for efficiently fitting trajectories, but with no guarantees of
obtaining a good exploration framework for using RL. Due
to these reasons, in Section II we will present alternatives
to reduce the parameter dimensionality of the DMP charac-
terization, while in Section III we will be focusing on the
robot’s DoF.

II. PARAMETER DIMENSIONALITY REDUCTION

In this section, we propose to reduce the dimension-
ality of the exploration parameters by using a multilayer
excitation function. In [22], it is shown that for the PI2
algorithm, performing constant exploration rollouts has a
similar performance to that of variable timestep exploration.
This exploration can be done in the acceleration domain,
with each acceleration value associated to a proper Gaussian,
or directly in the parameter space. However, the exploration
magnitude for the parameters is often manually tuned. In
[22], after a number of exploration rollouts, the algorithm
exploration parameter, represented as the covariance matrix,
is adapted according to the rewards and weights given by
the PI2 algorithm, namely Covariance Matrix Adaptation
(CMA). CMA’s exploration matrix represents an ellipse that
converges to an exploration magnitude for each parameter
vector. However, using this covariance matrix with fewer
rollouts per update than the number of parameters restricts
the exploration to the already explored parameter subspace,
unless a filter is used in order not to reduce the potential

task improvement limiting parameter space. Also, it is rec-
ommended to add a minimal value to the diagonal elements
of the covariance matrix after each update to avoid premature
convergence of this matrix to zero in certain Gaussians.

In order to reduce the dimensionality while performing a
meaningful exploration, we propose both to explore in the
relevant directions of the parameter space according to the
Gaussian kernels, and to create a second layer of Gaussians,
as will be described in the following two subsections, re-
spectively.

A. Exploring in Relevant Directions

When having a complex trajectory that requires several
Gaussians to be properly characterized, a first option is to
explore in the direction of those parameter vectors that have
most influence on the robot’s motion, by computing once the
matrix:

W =

 g1 (x0) ... gNf
(x0)

... ...
g1 (xNt

)) ... gNf
(xNt

)

 , (4)

M being the number of Gaussians for each joint of the
robot and Nt the number of timesteps in the trajectory. This
matrix W has dimension Nt × Nf , with Nt >> Nf . If
we compute its Singular Value Decomposition, we get its
eigenvectors v1, ...,vNf

in the parameter space (dimension
Nf), with gains associated to the singular values obtained
σ1 > ... > σNf

. Then, instead of exploring each DMP
parameter θi, we can take the M < Nf most relevant
directions v1, ...,vM and, for each exploration repetition
of the movement, use an updated parameter computed as
θ(j)
e = θ(j) +ε1v1 + ...+εMvM , with εs following a normal

distribution with a predefined exploration variance. Despite
not being reward-oriented, this approach reduces the number
of parameters of each degree of freedom by performing
an exploration meaningful for motion, and provides a good
initial guess for the exploration covariance matrix when
using CMA, already removing the exploration along some
parameter directions.

B. Dual-layer excitation functions

Another strategy to tackle high-dimensionality in the ex-
ploration is to create a dual-layer excitation function, in the
sense that in Eq. (1), one can take

f(x) = Θ0g0(x) + Θege(x),

with Θ0 and g0(x) the weights and Gaussians of the
excitation function learned with the demonstrated move, and
Θe and ge(x) a reduced set of Gaussians that does not need
to approximate the learned movement but just to optimize
the trajectory. Thus this reduced set is less constrained and
can have wider kernels in order to avoid high-frequency
oscillations coming from random exploration. Θe can be
initialized to zero and be updated as in any learning algorithm
in literature, such as policy gradients [13] or path integral

approaches [15]. In addition, the new kernels ge(x) do not
have to be the same as g0(x), so we propose to take:

(ge)i(x) =
φi (x)∑
j φj (x)

x(1− x)2, (5)

φj being the Gaussian kernels, and the term (1−x)2 reducing
the acceleration at the beginning of motion.

C. Effect of parameter reduction on exploration trajectories

In order to compare our two proposals with the standard
way of exploring parameters, we learned a motion of a 7-DoF
WAM robot. We obtain values for the weights of the robot’s
second joint’s DMP, with different exploration methods for a
20 seconds trajectory with 30 Gaussian kernels. The standard
exploration (all Gaussians explored) adds a normal random
value to each weight of the 30 Gaussians, while the relevant
directions strategy (as in Section II-A) only takes the 10 most
important parameter vectors, and the dual-layer (Section II-
B) uses a second layer of only 5 Gaussian kernels following
equation (5).

In Fig. 3 we can see samples of exploration with different
frameworks. The standard way of exploring can be dangerous
in a real robot, due to large oscillations, while the other ap-
proaches are better behaved to operate out of simulation. This
fact is more relevant when a simulation framework is not
available, making the exploration magnitude of parameters
critical, as a large value would result in large oscillations,
while a small one may need a lot of updates to reach
convergence.

Fig. 3. Joint position variation wrt. initial movement. As we can see, the
standard exploration may not only present an abrupt change at the start of
the motion, but also strong oscillations along the whole trajectory.

III. DMP COORDINATION

In [24], a coordination framework for DMP was presented,
where a robot’s primitives were coupled with a coordination
matrix, which was learned with RL algorithms. Kormushev
et al. [25] extended this work, but with the sole objective of

learning a square coordination matrix, rather than the motion
parameters.

We now propose to use a coordination matrix in order
to decrease the number of actuated DoF which will not
necessarily be squared, and may be used to reduce the
number of parameters further.

A. Coordination Matrix

Let y be the joint vector of a robot. We can rewrite Eq.
(1) as:

ÿ/τ2 = αz (βz (G− y)− ẏ/τ) + fco(x), (6)

where fco(x) is:

fco(x) = Kco ·Θ · g(x), (7)

Kco being a (d × r) matrix, with d the number of robot
DoF and r ≤ d a reduced dimensionality. Θ is a (r ×
Nf) matrix with the motion parameters, and g(x) a Nf -
dimensional vector with the Gaussian values. Note that,
with this representation, we have r movement primitives
that encode the d-dimensional acceleration command vector
fco(x). In order to learn this coordination matrix, we need an
initial guess, but also an algorithm to update it and eliminate
unnecessary degrees of freedom from the motion, according
to the reward/cost obtained.

B. Learning Coordination Matrices with PCA

An initial guess for the coordination matrix Kco is to
perform a Principal Component Analysis (PCA) over the
demonstrated values of f(x) (see Eq(1)). Taking the matrix
F of size (d×Nt) as:

F =

 f
(1)
de (x0)− f (1)de ... f

(1)
de (xN)− f (1)de

... ...

f
(d)
de (x0)− f (d)de ... f

(d)
de (xN)− f (d)de

 , (8)

fde being the average over each joint component of the
DMP excitation function (it is recommended to subtract this
average before performing PCA). Then we can perform PCA,
obtaining F = Upca · Σpca · V T

pca.
Now having set r < d as a fixed value, we can take the r

most relevant eigenvectors, which will be the first r columns
of Upca = [u1, ...,ur, ...,ud] and use

Kco = [u1, ...,ur] (9)

as coordination matrix in Eq. (7), having a reduced set
of DoF of dimension r, which activate the robot joints
(dimension d), minimizing the error in the reprojection
e = ‖F − Kco · Σ · V T

pca‖2Frob, with Σ the part of σpca
corresponding to the first r singular values. However, this di-
mensionality reduction will not take any reward/cost function
into consideration, so an alternative is to start with a full-rank
coordination matrix and progressively reduce its dimension,
according to the costs or rewards of the rollouts.

C. Adapting the Coordination Matrix through coaching

When reducing the dimensionality of the parameter space,
we may be cutting off the exploration along DoF that do not
have much influence on the initial motion. As we mentioned,
this is an important drawback of the CMA algorithm if we
do not filter the covariance updates, and could also occur
in certain situations when using a non-square coordination
matrix. To avoid this situation, we can modify the coordina-
tion matrix by repeating the initial motion with a compliant
controller, and manually force the robot to move certain
joints while reproducing it. Then we can recompute the
coordination matrix, as in the previous section, by using the
new data or adding the new and initial data. In this way, the
robot can be easily told what to explore. The idea behind
this modification is similar to many daily situations in which
a teacher tells a learner a motion, and manually helps the
learner in certain situations to show him how to improve
his performance (e.g., teaching how to play golf).will see
how this modification improves the performance of the
coordination matrix.

D. Automatic Coordination Matrix fitting

In order to tune the coordination matrix once initialized
as described in Section III-B, we assume we have performed
Nk reproductions of motion, namely rollouts, obtaining
an excitation function fk(i,j), for each rollout k = 1..Nk,
timestep i = 1..Nt, and DoF j. Now having a cost function,
we can also associate a cost-to-go Ck

i to each rollout and
timestep, and associate a probability P k

i to each rollout and
timestep as it is done by the PI2 algorithm as in[16] (see
Appendix). We can then obtain a new matrix Fco defined
as:

Fnew
co =


Nk∑
k=1

fk(1,1)P
k
1 ...

Nk∑
k=1

fk(Nt,1)
P k
Nt

... ...
Nk∑
k=1

fk(1,d)P
k
1 ...

Nk∑
k=1

fk(Nt,d)
P k
Nt

 , (10)

which is a (d × Nt) matrix containing information of the
excitation functions, weighted by their relative importance
according to the rollout result and obtain a coordination ma-
trix Kco as in the previous section. However, the parameter
matrix Θ has to be redefined in order to represent the same
excitation function, by setting

Knew
co Θnew ' KcoΘ⇒ Θnew ' (Knew

co)†KcoΘ, (11)

† indicating the Moore-Penrose pseudoinverse.

E. Eliminating irrelevant degrees of freedom

In RL, the task the robot tries to learn does not always
necessary depend on all the degrees of freedom of the robot
we are using to learn it. For example, if we want to track a
cartesian position with a 7-DoF robot, it is likely that some
degrees of freedom, which mainly alter the end-effector’s
orientation, may not affect the outcome of the task. However,
these DoF are still considered all through the learning of the
task, causing unnecessary motions which may slow down the

Algorithm 1 Coordination Matrix Update (CMU)
Input:
Rollout and timestep probabilities P k

i , i = 1..Nt, k = 1..Nk.
Excitation function fk(i,j), j = 1..d.
Previous update (or initial) excitation function Fco.
Current Kco.
Matrix dimension r.
DoF discarding threshold η.
Current DMP parameter matrix Θ.

1: Initialize Fnew
co = 0Nt×d

2: Compute Fnew
co as in Eq. (10)

3: Filter excitation matrix: Fnew
co = αFnew

co + (1− α)Fco

4: Subtract average as in Eq. (8)
5: Perform PCA and obtain Upca = [u1, ...,ur, ...,ud] (see

Eq.(9)), Spca = [σ1, ..., σr, ..., σd]
6: if σ1/σr > η then
7: r=r-1
8: end if
9: Knew

co = [u1, ...,ur]
10: Reassign weights: Θnew = (Knew

co)†KcoΘ

learning process or generate a final solution in which a part
of the motion was not necessary. In some cases, we might
not even know what the true space is, it probably being a
lower-dimensional subspace of our considered task space.

For this reason, the authors think that the main use of a
coordination matrix should be to remove those unnecessary
degrees of freedom, and the coordination matrix, as built
in Section III-D, can easily provide such result. Given a
threshold η for the ratio of the maximum and minimum
singular values of Fnew

co , we can discard the last column
of the coordination matrix if those singular values verify
σ1/σr < η.

In Algorithm 1, we show the process of updating and
reducing the coordination matrix.

IV. EXPERIMENTATION

In order to check how our proposals perform, we used a
PI2 algorithm [15], [16], [17] with the different exploration
strategies presented. The PI2 algorithm is derived from
stochastic optimal control principles and performs well in
many situations. It executes several updates consisting of a
certain number of rollouts each and, after each epoch, the
new parameters are computed with those of each rollout
and the corresponding weights. One of the advantages of the
PI2 algorithm is that it only requires two extra parameters:
the cost comparison eliteness λ (see Appendix), used to
weight the Gaussian parameters according to the rollout cost,
and the exploration variance. This exploration variance had
been set manually by trial-and-error until the CMA [22]
approach was presented, in which the exploration covariance
matrix was updated after each epoch (set of rollouts). This
approach helps to modify the exploration magnitudes in
cases where one does not have a good initial guess, but
it does not significantly improve performance when such
initial guess is available. CMA needs more rollouts per policy

update, and it is recommended to be used with a base-
level exploration to avoid premature convergence or that the
algorithm favours too much a single parameter direction if
the eliteness parameter is too large.

A. 10-DoF planar arm

In order to have comparable results, we firstly tested our
proposals with the benchmark used in [16], in which a planar
10-DoF arm (D = 10) of 1m length, with 0.1m links moves
from an initial position to a goal in a 0.5s trajectory at 50Hz
sampling. The objective of this task is to pass through point
(0.5, 0.5) at time t = 0.3s and end at the goal position. The
cost function for this task was taken from [16] as:

J(τti) = δ(t− 0.3) ·
(
(xt − 0.5)2 + (yt − 0.5)2

)
+

δ(t− 0.5) ·
(
(xt)

2 + (yt − 0.6955)2
)

+

+

d∑
s=1

(d+1−s)(ä2
t)

d∑
s=1

(d+1−s)
· 10−6

(12)
This cost function penalizes accelerations in the first joints,
which move the whole robot. The PI2 algorithm parameters
were set as: eliteness λ = 10, 100 epochs of 10 rollouts
each, with a starting exploration of

[
104, 105, 104

]
for the

standard, dual-layer and relevant exploration strategies de-
scribed in Section II, which were the parameters showing
the best performance for each case. For both the dual-layer
and relevant cases, we used a reduced set of 5 exploration
parameters per DoF. In addition, we plot the results using a
reduced dimensionality of 5, as explained in Section III-B.
We also used a decay term of γe = 0.995 for the exploration
magnitude.

We performed every experiment 10 times in order to
reduce noise from lucky/unlucky guesses, and plotted the
results in Fig. 4 in a logarithmic scale. We can see that
the relevant directions framework has a similar behaviour to
the standard exploration method, while having to perform
less computations and storing less data and parameters, thus
making a more efficient use of computation resources. Lastly,
the dual-layer method for exploration converges faster than
the standard exploration framework, while requiring less
resources, despite converging to a slightly worse solution.

B. Robot arm following a circle

For a second ilustrative example, we used a 7-DoF WAM
arm. We manually taught the real robot to follow a circular
trajectory with its wrist in the cartesian space. From this
initial motion, which was very inaccurate, the best circle
fitting the initial trajectory was computed, and a cost function
consisting in a point-to-point deviation from that circle, plus
an acceleration-penalizing term, was taken. The DMP for the
7 DoF were learned with 30 Gaussians each, as the trajectory
to be learned was a complex 20-second movement. Note that,
in this task, the objective is to track a circular trajectory
with the robot’s wrist, thus since the 3 last DoF of the robot
don’t have any influence on the cost function other than the
acceleration terms, one could eliminate those DoF and still
obtain the same optimal solution. With this experiment, we

Fig. 4. Waypoint task results. Averaging over 10 repetitions. Note the
non-symmetry of the standard deviation due to the log-scale.

pretended to show if the proposed CMU algorithm is capable
of efficiently detecting those unnecessary DoF.

The task was learned with the PI2 algorithm with the
standard DMP framework, initialized with a coordination
matrix of reduced dimension as explained in Section III-
B, with a fixed value of r = 3, 4, 5, 6. We also applied the
algorithm proposed in Section III-E, while using the CMA
in all the simulations and the results can be seen in Fig. 5.

We can observe that, due to the trivial DoF elimination
for this task, directly removing the last 3 DoF of the robot
improves the algorithm’s performance. However, removing
a fourth DoF to leave only 3 hampers the RL outcome,
yielding a bad result. In addition, we see that the automatic
DoF elimination described Section III-E obtains a result
which is as good as starting with the elimination of the 3
unnecessary DoF. However, it presents some discontinuities
in the cost function, due to the loss of information which can
occur when reducing the coordination matrix dimension, but
nevertheless, after such losses of information, the algorithm
quickly recovers from the loss of performance and still
obtains good results. These discontinuities occur due to the
difficulty of assigning costs or rewards to certain DoF, and a
high-reward (or low-cost) rollout may include noise coming
from those unnecessary DoF, thus columns from the Kco

matrix which may still contain relevant information may be
eliminated. That information is then lost, but can be quickly
recovered in most cases, since those columns are the ones
with the least energy on the PCA in Eq. (9).

V. CONCLUSIONS

Dynamical Movement Primitives are an adaptive alter-
native to precomputed trajectory representations. However,
when using them with reinforcement learning algorithms,
several issues arise:
• The number of kernels. In order to efficiently fit an

initial motion, several kernels are required. Each kernel
will later require a weighting parameter, thus there is a
trade-off between the accuracy with which the trajectory
is fitted and the number of parameters to optimize so

Fig. 5. Average cost (of 10 experiments) of the policy after each update
in the circle-tracking experiment with 200 policy updates.

that fewest reproductions are required to improve the
performance.

• Feasibility of reproduction. When a simulator is not
available, the real reproduction of a task with a robot
may be dangerous due to large accelerations, which
can appear when the exploration on close kernels has
different signs. This fact can force us to significantly
reduce the exploration on the parameters in order to
maintain safety when a model of the environment or
the task is not available.

• Exploration range. The exploration range used with
DMP, in particular using the PI2 algorithm, is often
hard to tune. CMA offers a way to guess an appropiate
range, but CMA also has a tradeoff between losing
unexplored directions in the parameter space and filter
the covariance matrix, hampering its performance, as
well as the need to add a minimum exploration to avoid
premature convergence.

To address these issues, in this paper we have proposed two
alternatives:
• Exploring only along the most relevant dimensions.

These relevant dimensions are chosen according to the
singular values of the normalized kernels. This strategy
produces similar results as using all dimensions, while
being more resource-efficient since it computes less
Gaussians per timestep.

• Using a second layer of Gaussians. We also proposed
to split the trajectory fitting problem during exploration.
We introduce a second layer of Gaussians, which does
not need to have the same kernels, and has a lower
dimensionality than the first layer. The use of any kind
of kernel can give us exploration motions with less
acceleration, and the learning algorithm performs faster,
as we have seen in the experimentation section.

In addition, following the intuition that motions are usually
performed in a subspace of all possible motions, we proposed
to use non-square coordination matrices for learning. These
non-square matrices can be initially learned with a PCA
decomposition of the task, and later modified by guiding

the robot to find the relevant parameters to be learned.
In addition, we proposed an algorithm to automatically
update this coordination matrix and eliminate its unnecessary
DoF. Despite occasionally experiencing discontinuities in the
cost/reward vs updates curve, this last algorithm showed
a better performance than the standard algorithm, while
requiring less computation time. This proposed algorithm
may become even more useful when working with highly
articulated robots learning simple tasks.

These smaller coordination matrices can be combined with
the other two dimensionality reduction strategies in order to
attain even better results in less computation time. Our future
work includes to devise new ways to find a relation between
the cost function and each DoF, in order to minimize further
the loss of information when reducing the dimensionality.
Also prior to learning, we can use several demonstrations
to find a better representation of the relevant directions in
the parameter space [26]. Moreover, we will study when to
reduce dimensionality (e.g. the parameter η) and perform
a benchmark comparison with other frameworks tackling a
similar problem, such as DMPSynergies [27] or Iterative
Improvement [28].

APPENDIX

A. Converting the cost function to rollout probabilities

Given the instantaneous cost of a RL algorithm, such as
Eq. (12), the cost-to-go at timestep i of an experiment k
is defined [15] as the sum of the instantaneous cost of the
reimaning trajectory:

Sk
i =

Nt∑
j=i

J(τtj).

These terms Sk
i can be normalized by:

Ŝk
i =

Sk
i −mink(Sk

i)

maxk(Sk
i)−mink(Sk

i)

and converted to a probability associated to each rollout and
timestep, which will be directly related to the relative reward
of that rollout over all the experiments considered:

P k
i = exp

(
− 1

λ
Ŝk
i

)
/

Nk∑
s=1

exp
(
− 1

λ
Ŝs
i

)
,

where λ is called eliteness and represents how are these
probabilities scaled.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi and S. Schaal. “Movement Imitation with
Nonlinear Dyamical Systems in Humanoid Robots”. IEEE ICRA, pp
1398-1403 (2002).

[2] J. Kober, K. Mülling, O. Krömer, C. H. Lampert and B. Schölkopf.
“Movement Templates for Learning of Hitting and Batting”. IEEE
ICRA, pp 853 - 858 (2010).

[3] L. Rozo, P. Jiménez and C. Torras. “Robot Learning from Demonstra-
tion of Force-based Tasks with Multiple Solution Trajectories”. 15th
IEEE Int. Conf. on Advanced Robotics, pp 124-129 (2011).

[4] L. Rozo, P. Jiménez and C. Torras. “A robot learning from demonstra-
tion framework to perform force-based manipulation tasks”. Intelligent
Service Robotics, vol. 6, no 1, pp 33-51 (2013).

[5] S. M. Khansari-Zadeh, A. Billard. “Learning Stable Nonlinear Dy-
namical Systems with Gaussian Mixture Models”. IEEE Trans. on
Robotics, vol. 27, no 5, pp 943-957 (2011).

[6] S. Klanke, S. Vijayakumar and S. Schaal. “A library for Locally
Weighted Projection Regression”. Journal of Machine Learning Re-
search, vol. 9, pp. 623-626 (2008).

[7] A. Billard, S. Calinon, R. Dillmann and S. Schaal. “Robot Program-
ming by Demonstration”. Springer Handbook of Robotics, part G,
chapter 59.

[8] D. Nguyen-Tuong and J. Peters. “Learning Robot Dynamics for Com-
puted Torque Control Using Local Gaussian Processes Regression”.
ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems, pp 59-64 (2008).

[9] J. Kober, A. Wilhem, E. Oztop and J. Peters. “Reinforcement Learning
to Adjust Parametrized Motor Primitives to New Situations”. Au-
tonomous Robots, vol 33, no 4, pp 361-370 (2012).

[10] B.Nemec, D. forte, R. Vuga, M Tamosiunaite, F. Wörgötter and A.
Ude. “Applying statistical generalization to determine search direc-
tion for reinforcement learning of movement primitives”. IEEE-RAS
Humanoids, pp 65-70 (2012).

[11] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal.
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviours”. Neural Computation, vol. 25, no. 2, pp 328-373
(2013).

[12] A. J. Ijspeert, J. Nakanishi and S. Schaal. “Movement imitation with
nonlinear dyamical systems in humanoid robots”. IEEE ICRA, pp
1398-1403, 2002.

[13] J. Peters, S. Schaal. “Policy gradient methods for robotics ”. IEEE/RSJ
IROS, pp 2219-2225, 2006.

[14] J. Peters and S. Schaal. “Reinforcement Learning of Motor Skills with
Policy Gradients”. Journal of Neural Networks, vol. 21, no. 4, pp 682-
697 (2008).

[15] E. A. Theodorou, J. Buchli and S. Schaal. “Reinforcement Learning of
Motor Skills in High Dimensions: A Path Integral Approach”. IEEE
ICRA, pp 2397 - 2403 (2010).

[16] E. A. Theodorou, J. Buchli and S. Schaal. “A Generalized Path Integral
Control Approach to Reinforcement Learning”. Journal of Machine
Learning Research, vol. 11, pp 3137-3181 (2010).

[17] F. Stulp, E. A. Theodorou, S. Schaal. “Reinforcement learning with
sequences of motion primitives for robust manipulation”. IEEE Trans-
actions on Robotics, vol. 28, no. 6, 2012.

[18] J. Peters, K. Mülling and Y. Altün. “Relative Entropy Policy Search”.
Twenty-Fourth National Conf. on Artificial Intelligence, track 15, pp
182-189 (2011).

[19] C. Daniel, G. Neumann and J. Peters. “Hierarchical Relative Entropy
Policy Search”. Journal of Machine Learning Research, track 22, pp
273-281 (2012).

[20] J. Kober, D. Banell, J. Peters. “Reinforcement Learning in Robotics:
A survey”. Int. Journal of Robotics Research, vol 32, no 11, pp 1238-
1274 (2013).

[21] T. Kulvicius, K. Ning, M. Tamosiunaite and F. Wörgötter. “Joining
Movement Sequences: Modified Dynamic Movement Primitives for
Robotics Applications Exemplified on Handwritting”. IEEE Transac-
tions on Robotics, vol 28, no 1, pp 145-157 (2012).

[22] F. Stulp and O. Sigaud. “Path Integral Policy Improvement with
Covariance Matrix Adaptation”. Int. Conf. on Machine Learning, pp
281-288 (2012).

[23] F. Stulp, E. Oztop, P. Pastor, M. Beetz and S. Schaal. “Compact
Models of Motor Primitive Variations for Predictable Reaching and
Obstacle Avoidance”. IEEE-RAS Humanoids, pp 589-595 (2009).

[24] D. Pardo. “Learning rest-to-rest Motor Coordination in Articulated
Mobile Robots”. Ph.D. Dissertation, (2009).

[25] P. Kormushev, S. Calinon and G. Caldwell. “Robot Motor Skill
Coordination with EM-based Reinforcement Learning”. IEEE IROS,
pp 3232 - 3237 (2010).

[26] T. Matsubara, S-H Hyon and J. Morimoto. “Learning parametric
dynamic movement primitives from multiple demonstrations”. Neural
Networks, vol 24, no 5, pp 493-500 (2011).

[27] E. Rückert and A. dÁvellam. “Learned parametrized dynamic move-
ment primitives with shared synergies for controlling robotic and
muscoskeletal systems”. Frontiers in Computational Neuroscience, vol
7, pp 1-17 (2013).

[28] A. Jain, B. Wojcik T. Joachims, A. Saxena. “Learning Trajectory
Preferences for Manipulators via Iterative Improvement”. Advances
in Neural Information Processing Systems, pp 575-583 (2013).

