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Abstract— Task learning in robotics is a time-consuming
process, and model-based reinforcement learning algorithms
have been proposed to learn with just a small amount of
experiences. However, reducing the number of experiences used
to learn implies that the algorithm may overlook crucial actions
required to get an optimal behavior. For example, a robot may
learn simple policies that have a high risk of not reaching the
goal because they often fall into dead-ends.

We propose a new method that allows the robot to reason
about dead-ends and their causes. Analyzing its current model
and experiences, the robot will hypothesize the possible causes
for the dead-end, and identify the actions that may cause it,
marking them as dangerous. Afterwards, whenever a dangerous
action is included into a plan which has a high risk of leading to
a dead-end, the special action request_teacher_confirmation will
be triggered by the robot to actively confirm with a teacher
that the planned risky action should be executed.

This method permits learning safer policies with the addition
of just a few teacher demonstration requests. Experimental val-
idation of the approach is provided in two different scenarios:
a robotic assembly task and a domain from the international
planning competition. Qur approach gets success ratios very
close to 1 in problems where previous approaches had high
probabilities of reaching dead-ends.

I. INTRODUCTION

Many robotic applications include dangerous actions that,
if applied under certain circumstances, may yield irrecover-
able problems that we call dead-ends. Robots should learn
to identify these dangerous actions and be specially careful
before executing them in order to avoid these dead-ends. This
is a very challenging problem when learning tasks, as models
not yet completely learned may lack important constraints
and effects needed to yield safer plans that avoid dead-ends.
In this paper we propose a new method that extends active
learning approaches to identify dangerous actions and avoid
repeatedly falling in the same dead-ends.

For example, this method can be applied to the robotic
assembly task shown in Fig. 1. In this task, the robot has to
learn and execute simple manipulation actions, like placing
a peg into a hole, and repeat them until the assembly is
completed. A common problem is that parts not grasped
correctly may fall. This is important specially for round pegs
which often roll away from the reachable workspace of the
robot when they fall. The objective is to enable the robot
to identify the failure causes, and let it request help to a
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Fig. 1. Marvin platform assembling the Cranfield benchmark.

teacher when it cannot find good alternatives to avoid the
problem. The teacher can show to the robot, for example, a
new grasping strategy for certain parts.

All the required actions to complete a task are codified
using rules. These rules, including the ones that account for
the risk of a dead-end, are used by a decision making module
to produce valid plans by analyzing the current state of the
robot and its environment. It selects which actions should be
executed to complete the task, and asks for interaction with
the human teacher whenever it is necessary. The decision
maker starts with no previous knowledge about the actions
that can be executed, and learns them incrementally as it
gets experiences from teacher demonstrations and action
executions.

The decision maker uses model-based Reinforcement
Learning (RL), which is a common paradigm for learning
tasks in robotics [1]. The robot has to execute actions to learn
the model that represents the scenario and to complete the
requested tasks. Thus, the robot needs to face the exploration-
exploitation dilemma [2], that consists in choosing whether
to explore (execute actions to learn unknown parts of the
model that would lead to better plans in the long term) or
to exploit (select actions to complete a task with maximum
reward). Moreover, increased performance and versatility can
be obtained through the combination with Learning from
Demonstration (LfD) [3], [4]. LfD permits requesting help



from a teacher when no solution has been found and a lot
of exploration would be needed to obtain one.

The combination of RL, LfD and relational generalizations
between similar objects [4], [5], permits reducing a lot
the number of exploration actions with the drawback that
some parts of the domain may remain unexplored. This is
a problem in some domains where dead-ends are common.
To overcome repeating these failures, the robot will have to
detect the causes of the dead-ends and learn how to avoid
them. In this paper we propose a method that allows the
robot to learn how to avoid these dead-ends by requesting a
few extra teacher demonstrations.

There have been some proposals on diagnosing plan
executions by identifying the agent or action that make the
plan fail [6]. Other approaches monitor the environment and
the actual effects of executed actions, to observe whether
something goes wrong, and then re-plan or repair the plan
if needed [7], [8]. In [9] a learner is included into a
robust planning framework to adapt plans based on previous
experiences about the actions. These works assume that the
model used for planning is already known, but something
has changed or happened that makes the plans fail. In our
case we are in a different situation as we are learning the
model: some parts of the model that are still unknown may
be required to find plans that avoid dead-ends. Therefore
previous approaches find difficulties that weren’t supposed to
happen, while our approach identifies the parts of the model
that are problematic, and tries to learn them better to figure
out how to avoid dead-ends.

A general method to analyze dead-end causes is using
planning excuses [10], [11], which are state changes that
would have to be made to find a proper plan. In this work
we propose to use these planning excuses to detect dangerous
actions that can lead to dead-ends before they are executed.
Once a dangerous action has been identified, if a plan
includes it, the system will issue a teacher interaction request
to confirm that there isn’t a better alternative.

To summarize, we propose a new method to avoid dead-
ends when using reinforcement learning with strong gen-
eralizations that make the robot learn very fast at the cost
of leaving large parts of the domain unexplored. Unlike
other approaches, our method avoids dead-ends when having
models that are not completely learned yet. Moreover, the
robot is the one that actively interacts with the teacher to
learn how to overcome the dead-ends, contrarily to other
approaches that require the teacher to continuously monitor
the robot behavior.

The paper is organized as follows. After this introduc-
tion, the background needed to understand our proposal is
presented in Section II. Afterwards, the method to avoid
dead-ends is detailed in Section III. Section IV explains the
experiments conducted in a simulator and a real robot, and
the obtained results are shown. Finally some conclusions and
future work is presented in Section V.

II. THE DECISION MAKING AND LEARNING ALGORITHM

The initial assumption is that the perception modules can
provide full observability, and that robot actions are uncer-
tain because they may fail or yield unexpected outcomes.
Therefore, Markov Decision Processes (MDP) can be used
to formulate fully-observable problems with uncertainty. A
finite MDP is a five-tuple (S, A, T, R, o) where S is a set of
possible discrete states, A is the set of actions that the robot
can execute, T : SXAxS — [0, 1] is the transition function,
R:S x A— R is the reward function and « € [0,1) is the
discount factor. The goal is to find a policy 7 : § — A
which chooses the best action for each state to maximize
future rewards. To that end, we have to maximize the value
function V7 (s) = E[>., ' R(s¢,as)|so = s, that is the
sum of expected rewards.

The decision maker uses a symbolic representation to
represent the model and the states. A state is composed
of a set of symbolic predicates that represent the scenario
that the robot is interacting with. The model consists of a
set of Noisy Indeterministic Deictic (NID) rules [12]. The
transition model 7T is represented with a set of NID rules I'
which are defined as:
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where a, is the action that the rule represents, ¢,(x) are
the preconditions for the rule to be applicable, (2,.; are the
effects defining the set of predicates that are changed in the
state with probability p,; when the rule is applied, 2, ¢ is
the noisy effect that represents all other, unmodeled, rare and
complex effects, and x is the set of variables of the rule. A
NID rule represents one action, while each action may be
represented by several rules. Each state-action pair (s, a) is
covered by just one rule r as all the rules defining one action
have disjoint preconditions ¢, , A ¢y, . =0 | Vi, j.

A reinforcement learning problem consists in learning
a transition model 7' which is unknown a priori. A RL
algorithm has to balance exploration (try different actions to
increase the system knowledge and obtain better policies in
the long term) and exploitation (choose actions to maximize
the reward according to the current policy) to obtain good
results. In particular we are using model-based RL where a
model is estimated from experiences, and this model is then
used to plan the actions that the system executes. We are
using Glutton [13] as a symbolic planner and Pasula et al.’s
learning system [12] within the RL algorithm.

Learning from Demonstration is a supervised learning
method where a teacher shows a system how to perform
an action or a task. In our problem the teacher will tell
the robot how to perform an action, its symbolic name and
its parameters. We consider that the teacher chooses actions
using the optimal policy 7*.

The decision maker uses the REX-D [4] algorithm that
combines RL and LfD to learn scenarios with fewer explo-



ration actions that in other approaches, while not requiring
many teacher demonstrations either. It has to balance explo-
ration, exploitation and teacher demonstrations. To that end,
REX-D explores the state-action pairs considered unknown
before exploiting the model to try to obtain the maximum
reward. Moreover, if no solution is found in a known state,
then REX-D requests a teacher demonstration as it considers
that a completely new action or yet unknown effects of an
action under different preconditions need to be demonstrated.
Teacher demonstrations are actively requested by the deci-
sion maker, so no human monitoring is required.

REX-D uses relational representations [5], generalizing
over different objects of the same type as they exhibit the
same behavior. A context-based density count function [5] is
used to handle the exploration-exploitation dilemma, which
reduces the number of samples before considering states as
known by grouping them in contexts:
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where |E(r)| is the number of experiences that cover the
rule with any grounding, and I() is a function that takes the
value 1 if the argument evaluates to true and O otherwise.
State-action pairs which have been explored less times than
a fixed threshold k(s,a) < ¢ are considered unknown, and
the REX-D algorithm will proceed to explore them.

III. PROPOSED APPROACH TO AVOID DEAD-ENDS

Introducing relational generalizations and LfD has the ad-
vantage of reducing the exploration while still permitting to
learn successfully different scenarios [4]. Although relational
generalizations greatly improve performance [5], they also
have drawbacks. Using a relational count function implies
that not all states are explored before considering them as
known, since all states within a context are assumed to
behave likewise. Therefore, state-action pairs that could be
needed to attain the best policy might not be visited, and thus
their contexts will not be learned. This lack of exploration
may lead to models yielding suboptimal policies that fall
frequently into dead-ends.

In this section we propose a new method that allows
the decision maker to refine the parts of the model that
lead to dead-ends, thus producing better policies that avoid
those dead-ends while not increasing much the number
of exploration actions and teacher demonstrations required.
First we explain how dangerous rules (which are rules that
may lead to dead-ends) are detected. Then we describe how
the decision maker analyzes plans to check whether they
include dangerous rules that can lead to a dead end. In this
case, the decision maker issues an interaction signal and the
teacher, whenever possible, shows alternative actions.

A. Detecting Dangerous Rules

The first requirement to avoid dead-ends is the ability
to detect the causes. When the robot cannot find a plan
to reach the goal, REX-D issues a teacher demonstration
request. When the problem is that the model is incomplete,

Algorithm 1 Avoid dangerous rules
Input: Dangerous rule r4, current state s

I: Pgead =0 > Probability of reaching a dead-end
: for All effects €2, of rule r4 do

2

3 s=s

4 Add predicates in Q,, to s’
5: Plan(s’)

6: if dead-end then
7 Pdead+ = prd,QT,d

8 end if

9: end for

10: if pgeqd > or, then

11: Request_teacher_confirmation
12: end if

the teacher shows a new action and the robot continues
with the task execution. Contrarily, when the problem is
due to a dead-end, there are no further actions that can be
applied. In this case, the teacher confirms the dead-end and
the procedure to analyze its causes is triggered.

In the proposed model, the dead-end has to be caused
by one or more predicates that, when present, prevent the
planner from finding a solution. We propose to find these
predicates using the so called excuses [10]. Excuses are
defined as changes to the state that turn the task into a
solvable one. In a more formal manner, given an unsolvable
planning task involving a set of objects C; and an initial
state so, an excuse is a pair ¢ = (Cy,s,) that makes the
task solvable, where C, is a new set of objects and s, a
new initial state. Although many valid excuse candidates may
exist, we are interested in those that make minimal changes
and are not explained by other excuses. Standard planners
can be used to find them by adding new actions that include
the different candidates, and letting the planner find the best
one with the minimal cost, as described in [10].

These excuses are then used to identify the dangerous
rules. First we extract the changes in the state that are
introduced by the excuse, 7, = soAs,, (Where A denotes the
symmetric set difference). Then we look for rules » whose
effects contain a predicate ¢ € €, such that ¢ € 7,, and we
mark such rules as dangerous.

B. Avoiding Dangerous Rules

Once the dangerous rules have been detected, whenever a
new action is planned, the decision maker will check if the
state-action pair corresponds to a dangerous rule. In this case
a special procedure is executed to analyze the action safety.

Algorithm 1 summarizes the procedure to detect cases
where there is danger of falling into a dead-end. The possible
effects €2,, of the planned dangerous rule r; are simulated,
and the planner is used to check if any of them may lead to
an irrecoverable dead-end. After this analysis, the decision
maker will know the expected dead-end probability pgeqq-
For each dangerous rule we will have an acceptable risk
probability o, that is initialized to 0. If pgeqq > o, then the



decision maker will request a confirmation from the teacher
before executing the involved action.

The confirmation consists in notifying the teacher about
the action that the robot intends to execute, and the teacher
will either confirm that it is safe or will demonstrate a differ-
ent and safer action instead. To handle domains where dead-
ends are not completely avoidable, if the teacher confirms
a rule as safe the rule’s safety threshold will be updated
Or, = max(0,,, Ddead + €), considering that a risk of pgead
is acceptable for that rule. However, if the action is really
dangerous, a safer action will be presumably demonstrated
by the teacher. This new action will be learned and added to
the model, so that the planner will have the option to choose
it afterwards.

Another detail that has to be taken into account is that
unexplored dangerous rules are also a problem. A RL algo-
rithm will try to explore actions until they are considered
known. Therefore, we are considering all dangerous rules as
known to avoid selecting them for exploration, as executing
them in unknown states may have a high chance of falling
into the same dead-ends again.

IV. EXPERIMENTAL RESULTS

Two experiments are proposed to validate our proposal.
The first one is a simulated problem from the Triangle
Tireworld domain of the 2008 International Probabilistic
Planning Competition (IPPC). The second domain is based
on the Cranfield benchmark, a standard assembly task that
has been implemented in a real robot setting.

A. IPPC: Triangle Tireworld

In the Triangle Tireworld domain a car has to move to its
destination, but it has a probability of getting a flat tire while
it moves. The car starts with no spare tires but can pick them
up in some locations. Safe and long paths exist with spare
tires, while the shortest paths don’t have any spare tires. We
are solving the first problem number of the IPPC 2008 with
a probability p = 35% of getting a flat tire. The actions
available in this domain are: a “Move” action to go to an
adjacent position, a “Change Tire” action to change a flat tire
with a spare tire, and a “Load Tire” action to load a spare tire
into the car if there are any in the current location. The main
difficulty in the Triangle Tireworld domain are the dead-
ends when the agent gets a flat tire and has no spare tires
available. If the robot doesn’t get a flat tire while it explores
locations where spare tires are available, it won’t learn how
to change a tire and therefore it will always choose the
shortest path to the goal where no spare tires are available.
It is a challenging domain where RL approaches with a low
exploration threshold ¢ can fall easily into recurrent dead-
ends.

However, the inclusion of dangerous actions permits solv-
ing this problem without requiring a large exploration thresh-
old and thus not increasing the number of exploration actions
needed to learn the domain. After the robot realizes that
moving may lead to spare tires, it will confirm the moving
actions with the teacher, who will recommend the safer paths

with spare tires instead of the shorter ones. Once the car
gets a flat tire with a spare tire available, it will learn how
to change tires and perform successfully afterwards. Figure
2 shows the advantages of recognizing and dealing with
dangerous actions, where a few extra teacher demonstration
requests allow the robot to have a much better success ratio,
getting a 98% success ratio after 15 episodes, compared
with 88% that would have been obtained without considering
dangerous actions (Fig. 2 Left). The cost of this improvement
is very low, as just one extra teacher demonstration is needed
in average (Fig. 2 Right).

B. Cranfield benchmark

This experiment was performed in the context of the In-
tellAct EU project using the MARVIN platform, which inte-
grates the decision maker presented in this paper. The MAR-
VIN platform has a set of perception modules, including
object recognition, tracking [14], semantic event chains [15],
predicate estimation and manipulation monitoring to provide
the decision maker with all the input required to reason
about the best actions to be performed. On the execution
side, DMPs are used to learn demonstrated actions [16]. An
overview of the system, including a description of all the
modules involved is presented in [17]. The important details
to be considered for this work are that the decision maker
receives a list of symbolic predicates representing the current
state as input, and that actions executed by the human teacher
are also recognized. Finally, to execute an action, the decision
maker has to provide the robot with the name of the action
and its parameters.

The Cranfield benchmark consists in assembling an indus-
trial piece, whose parts are shown in Fig. 3. It is a standard
assembly task in robotics. There are precedence constraints
in the assembly that restrict the order in which the parts have
to be assembled. Square pegs have to be placed before the
separator, the shaft before the pendulum, and all other pieces
before the front faceplate.

The problem to be solved consisted of two parts. First,
the robot had to complete the standard Cranfield benchmark
scenario during the first 10 episodes, after which the initial
setup was changed. From the 11¢h episode onwards, a peg
was laying down horizontally on the table in the initial state.
The robot action to place a peg is more difficult when the
peg is laying horizontally, and it may fall and roll away if not
grasped properly. However, there is an action that repositions
the peg in a vertical position which permits safer grasps.

This action has to be learned with a new teacher demon-
stration when a peg is laying horizontally, as it isn’t needed
during the first 10 episodes. In the proposed system, the
robot actively requests demonstrations from the teacher.
Thus, in this case, the robot has to realize that it needs a
new action and request it. When not recognizing dangerous
actions, the robot will try to place the pegs directly from the
horizontal position because this action has some probability
of performing well. In contrast, a place peg action with
an horizontal peg can be recognized as a dangerous action,
and therefore the action would have to be confirmed by the
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teacher, who would suggest to reposition the peg vertically
instead.

The MARVIN robot (Fig. 1) was used to assemble the
Cranfield benchmark and validate the algorithm. Videos of
the robot working on the Cranfield benchmark can be seen in
http://www.iri.upc.edu/groups/perception/
safePolicies . Unfortunately, no systematic experiments
were carried out that permit obtaining meaningful statistics
about its performance. To get statistical results we executed
the experiment in a simulator, which allowed us to repeat it
500 times and obtain more accurate results.

Figure 4 shows the results obtained. A few episodes after
introducing horizontal pegs, confirming which actions are
dangerous improves significantly the success ratio, getting
over 90% in 11 episodes (Fig. 4 Left), while requiring
for that improvement just an average of 0.9 extra teacher
demonstrations (Fig. 4 Right).

V. CONCLUSIONS

We have presented a method to learn safe policies within
model-based reinforcement learning algorithms with very
sparse exploration. The robot is able to reason about dead-
ends and analyze the causes, to later confirm with the
teacher which actions were dangerous before executing them
again and falling into the same dead-ends. In addition to
learning how to avoid dead-ends, the robot is the one actively
monitoring the scenario and interacting with the teacher
when needed, releasing the teacher from monitoring the
robot continuously. Experimental results have proven the
advantages of the method, both in an IPPC domain and a
robotics scenario. Our approach was shown to reach success
ratios close to 1 with just a few extra demonstration requests
and exploration actions.

As future work, we would like to extend the approach
to work under partial observability, which is an ubiquitous
problem in robotics. This would require to improve the
analysis of dead-ends to consider candidates that may not
have been observed, and integrate a POMDP planner that
could tackle partial observations.
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