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Abstract

We present a novel approach for learning a finite mixture model on a Riemannian

manifold in which Euclidean metrics are not applicable and one needs to resort to geodesic

distances consistent with the manifold geometry. For this purpose, we draw inspiration

on a variant of the expectation-maximization algorithm, that uses a minimum message

length criterion to automatically estimate the optimal number of components from mul-

tivariate data lying on an Euclidean space. In order to use this approach on Riemannian

manifolds, we propose a formulation in which each component is defined on a different

tangent space, thus avoiding the problems associated with the loss of accuracy produced

when linearizing the manifold with a single tangent space. Our approach can be applied

to any type of manifold for which it is possible to estimate its tangent space. In particular,

we show results on synthetic examples of a sphere and a quadric surface, and on a large

and complex dataset of human poses, where the proposed model is used as a regression

tool for hypothesizing the geometry of occluded parts of the body.

1 Introduction

The use of Riemannian manifolds and their statistics has recently gained popularity in a wide

range of applications involving non-linear data modeling. For instance, they have been used

to model shape changes in the brain [7], deformations of anatomical parts [10] and human

motion [5, 32]. In this work we tackle the problem of approximating the Probability Density

Function (PDF) of a potentially large dataset that lies on a known Riemannian manifold. We

address this by creating a completely data-driven algorithm consistent with the manifold,

i.e., an algorithm that yields a PDF defined exclusively on the manifold.

A standard procedure to operate on a manifold is to use the logarithmic map to project

the data points onto the tangent space of the mean point on the manifold [10, 13, 32]. After

this linearization, Euclidean statistics are computed and projected back to the manifold using

the exponential map. This process is iteratively repeated until convergence of the computed

statistics. Unfortunately, while this approximation is effective to model data with a reduced

extent, it is prone to fail when dealing with data that covers wide regions of the manifold.

In the proposed finite mixture model, we overcome this limitation by simultaneously

considering multiple tangent spaces, distributed along the whole manifold as seen in Fig. 1.

We draw inspiration on the unsupervised algorithm from [9], which given data lying in an
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(a) SO(2) Geodesics (b) Geodesic Finite Mixture Model

Figure 1: Geodesics and Mixture Models. (a) Representation of geodesics on the S2 man-

ifold. The tangent space ensures that ‖ logo(x)‖ is the true geodesic distance of −→ox. How-

ever, ‖ logo(a)− logo(b)‖ is not the geodesic distance of
−→
ab. (b) Illustration of the proposed

mixture model approach. Each mixture component has its own tangent space, ensuring the

consistency of the model while minimizing accuracy loss.

Euclidean space, automatically computes the number of model components that minimize

a message length cost. By representing each component as a distribution on the tangent

space at its corresponding mean on the manifold, we are able to generalize the algorithm

to Riemannian manifolds and at the same time mitigate the accuracy loss produced when

using a single tangent space. Furthermore, since our model is semi-parametric, we can

handle an arbitrarily large number of samples. This is in contrast to existing non-parametric

approaches [22] whose complexity grows with the training set size.

Results will show that our manifold-based finite mixture model can be effectively used

both for non-linear data modeling and regression. In addition, we will show that the mod-

eling of articulated structures can greatly benefit from our approach, allowing for instance,

hallucinating subsets of missing joints of the human body without any specific training.

2 Related Work

Recently, there has been an influx of theoretical results in statistics on Riemannian mani-

folds [23] that have allowed for their widespread usage in modeling. For example, there

exists several PCA generalizations to non-linear data such as the Principal Geodesic Anal-

ysis [10, 32] and the Geodesic PCA [13]. Yet, these methods only use one single tangent

space located at the geodesic mean, which can lead them to have significant accuracy error

when input data is spread out widely on the manifold. Other algorithms based on kernels [7]

and Markov Chain Monte Carlo sampling [5] have been specifically used in regression tasks

on manifolds, but they have not been applied to stochastic modeling problems.

There have also been recent developments addressing classification models on Rieman-

nian manifolds. For binary cases, the classifier is usually built in a “flattened” version of

the manifold, obtained via the tangent space [34]. Multiple category classification problems

have been addressed by replacing the tangent space mapping with rolling maps [6], and by

using extensions of the Kernel methods to Riemannian manifolds [16]. In any event, these

approaches have been exclusively used to tackle classification problems, which are out of

the scope of the current paper, focused on PDF modeling.

With regards to density estimation on Riemannian manifolds, various non-parametric

approaches [21, 22] have been proven to be powerful. However, as their complexity is de-

pendent on the number of training samples, they scale poorly for large datasets. In con-
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trast, semi-parametric models such as the mixture model we propose here can handle large

amounts of data efficiently. [1] is an interesting approach that is in spirit is similar to ours, as

it proposes a technique to perform Expectation Maximization (EM) on manifolds. However,

this work considers data-driven manifolds, resulting in a high computational overhead for

large training sets. In addition, [1] neither estimates the number of clusters, nor makes use

of the tangent space, which allows our model to be defined “on the manifold”.

As an alternative to build probabilistic models, one could use Gaussian Processes (GP)

strategies, such as GP-Latent Variable Models [18] and the constrained GP [35]. Again,

despite some approximations to improve computation efficiency [19, 24], the algorithmic

complexity of GP makes them unfeasible for large datasets, as those we consider here.

3 Geodesic Finite Mixture Model

We next describe our approach, starting with some basic notions on Riemannian geometry

and statistics on manifolds. We then integrate these tools in a mixture modeling algorithm to

build consistent generative models.

3.1 Manifolds, Geodesics and Tangent Spaces

Manifolds arise naturally in many real-world problems. One of the more well-known is the

manifold representing spatial rotations. For example, when studying human motion, it is a

common practice to use the spatial rotations of the different body parts to obtain a subject-

agnostic representation of the whole body pose. This is usually done with angle representa-

tions that have an inherent periodicity and thus are not a vector space. By considering the

Riemannian manifold of spatial rotations it is possible to use tangent spaces as a local vector

space representation, and use powerful statistical tools based on Euclidean metrics. For an

in depth description of Riemannian manifolds we refer the reader to [3].

Geodesic distances, which we shall denote as d(·, ·), are the shortest distance along the

manifold between two arbitrary points. This distance is generally not equivalent to an Eu-

clidean one. The tangent space is a local vector space representation where the Euclidean

distances between the origin and arbitrary points correspond to the geodesic distances on the

manifold. Yet, as seen in Fig. 1a, this correspondence does not hold for two arbitrary points.

A point v ∈M on the tangent space TpM at p ∈M can be mapped to the manifold M and

back to the TpM by using the exponential and logarithmic maps respectively:

expp :
TpM −→ M

v 7−→ expp (v) = x
, logp :

M −→ TpM
x 7−→ logp (x) = v

(1)

In general there is no closed-form of the expp and logp maps for an arbitrary manifold.

There are, though, approximations for computing them in Riemannian manifolds [8, 31].

Additionally, efficient closed-form solutions exist for certain manifolds [25]. An interesting

mapping for us will be the one between the unit sphere S2 and its tangent space TpS2. Let

x = (x1,x2,x3)
⊤, y = (y1,y2,y3)

⊤ be two unit spoke directions in S2 and v = (v1,v2)
⊤ a point

in TpS2. The expp and logp maps are in this case:

expp(v) = R−1
p

(

v1
sin‖v‖

‖v‖
, v2

sin‖v‖

‖v‖
, cos‖v‖

)

, logp(x) =

(

y1
θ

sinθ
, y2

θ

sinθ

)

(2)

where Rp is the rotation of p to the north pole, ‖v‖=(v2
1+v2

2)
1
2 , y= Rpx and θ = arccos(y3).
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3.2 Statistics on Tangent Spaces

While it is possible to define distributions on manifolds [23], we shall focus on approximat-

ing Gaussian PDFs using the tangent space. Since it is a vector space, we can compute statis-

tics that, by definition of the tangent space, are consistent with the manifold. For instance,

the mean of N points xi on a manifold can be calculated as µ = argmin p ∑
N
i=1 d (xi, p)2

[17].

This is optimized iteratively using the expp and logp maps,

µ(t +1) = expµ(t)

(

δ

N

N

∑
i=1

logµ(t) (xi)

)

, (3)

until ‖µ(t+1)−µ(t)‖< ε for some threshold ε , with δ being the step size parameter. Given

the mean, it is then possible to estimate the covariance on the tangent space:

Σ =
1

N

N

∑
i=1

logµ(xi) logµ(xi)
⊤ . (4)

Knowing the mean value and the concentration matrix (Γ = Σ−1) we can write the distribu-

tion that maximizes entropy on the tangent space as a normal distribution centered on the

point µ ∈M, corresponding to the origin (ν = 0) in the tangent space:

Nµ(ν , Γ) = aexp

(

−
logµ(x)

⊤Γ logµ(x)

2

)

(5)

where a is normalization term that ensures the normal distribution over the tangent space

integrates to unity. If TµM≡ R
D this term simplifies to a−1 =

√

(2π)k det(Σ).
As the normalization term is dependent on the tangent space, it is not always easy to

obtain. However, it is possible to approximate this normalization factor based on maximum

entropy criterion computed directly on the manifold [23]. Since this situation is very unusual,

it is not further explored in this paper.

3.3 Unsupervised Finite Mixture Modeling

Our approach for fitting the mixture model relies on [9], a variant of the EM algorithm that

uses the Minimum Message Length criterion (MML) to estimate the number of clusters and

their parameters in an unsupervised manner.

Given an input dataset, this algorithm starts by randomly initializing a large number of

mixtures. During the Maximization (M) step, a MML criterion is used to annihilate com-

ponents that are not well supported by the data. In addition, upon EM convergence, the

least probable mixture component is also forcibly annihilated and the algorithm continues

until a minimum number of components is reached. [9] is designed to work with data in an

Euclidean space. To use it in Riemannian manifolds, we modify the M-step as follows.

We define each mixture component with a mean µk and a concentration matrix Γk = Σ−1
k

as a normal distribution on its own tangent space Tµk
M:

p(x|θk)≈Nµk

(

0, Σ−1
k

)

(6)

with θk = (µk,Σk). Remember that the mean µk is defined on the manifold M, while the

concentration matrix Γk is defined on the tangent space Tµk
M at the mean νk = 0.
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Figure 2: Quadratic Surface Example. (a) Section of the manifold with input data gen-

erated from 1500 points sampled from a mixture of 5 Gaussians. (b) Evolution of the cost

function where vertical lines represent iterations in which a cluster is annihilated. The op-

timal mixture is marked with a green dot. (c) Evolution of the number of clusters. All the

clusters from the solution are shown in (d) to (h).

Also note that the dimensionality of the space embedding the manifold is larger than the

actual dimension of the manifold, which in its turn is equal to the dimension of the tangent

space. That is, dim(Embedding(M)) > dim(TpM) = dim(M) = D. This dimensional-

ity determines the total number of parameters Dθ specifying each component, and, as we

will explain below, plays an important role during component annihilation process. For full

covariance matrices it can be easily found that Dθ = D+D(D+1)/2.

We next describe how the EM algorithm is extended from Euclidean to Riemmanian

manifolds. Specifically, let us assume that K components survived after iteration t−1. Then,

in the E-step we compute the responsibility that each component k takes for every sample xi:

w
(i)
k =

αk(t −1)p(xi|θk(t −1))

∑
K
k=1 αk(t −1)p(xi|θk(t −1))

, (7)

for k = 1, . . . ,K and i = 1, . . . ,N, and where αk(t −1) are the relative weights of each com-

ponent k.

In the M-step we update the weight αk, the mean µk and covariance Σk for each of the

components as follows:

αk(t) =
1

N

N

∑
i

w
(i)
k =

wk

N
, µk(t) = argmin

p

N

∑
i=1

d

(

N

wk

w
(i)
k x(i), p

)2

(8)

Σk(t) =
1

wk

N

∑
i=1

(

logµk(t)
(x(i))

)(

logµk(t)
(x(i))

)⊤
w
(i)
k (9)

After each M-step, we follow the same annihilation criterion as in [9], and eliminate those

components whose accumulated responsibility wk is below a Dθ/2 threshold. A score for
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the remaining components based on the Minimum Message Length is then computed. This

EM process is repeated until the convergence of the score or until reaching a minimum

number of components Kmin. If this number is not reached, the component with the least

responsibility is eliminated (even if it is larger than Dθ/2) and the EM process is repeated.

Finally, the configuration with minimum score is retained (see [9] for details), yielding a

resulting distribution with the form

p(x|θ) =
K

∑
k=1

αk p(x|θk) . (10)

3.3.1 Regression.

To use the generative model in regression tasks, we need to split the mix into two compo-

nents, x = (xA,xB) with µk = (µk,A,µk,B) and Γk =

[

Γk,A Γk,AB

Γk,BA Γk,B

]

. The regression function

can be written as:

p(xA|xB,θ) =
p(xA,xB|θ)

p(xB|θB)
=

∑
K
k=1 αk p(xB|θk,B)p(xA|xB,θk)

∑
K
k=1 αk p(xB|θk,B)

. (11)

Observe that this is a new mixture model p(xA|xB,θ) = ∑
K
k=1 πk p(xA|xB,θk), with weights:

πk =
αk p(xB|θk,B)

∑
K
j=1 α j p(xB|θ j,B)

, (12)

and p(xA|xB,θk) = Nµk,A|B
(νk,A|B,Γk,A|B), where the mean and concentration matrix can be

found to be:

νk,A|B = Γk,ABΓ−1
k,B logµk,B

(xB), Γk,A|B = Γk,A −Γk,ABΓ−1
k,BΓk,BA . (13)

3.4 Implementation Considerations

While using the tangent spaces allows a consistent PDF representation, this comes at a price

of higher computational cost. There are, though, several implementation considerations that

can be taken into account to improve the efficiency. For instance, as mentioned in [9], we

might consider using less expressive covariance matrices (e.g. diagonal ones). However,

when using tangent spaces, there is no global coordinate frame representation, as the or-

thonormal basis of the tangent space depends on the point at which it is calculated. Thus, in

general, purely diagonal matrices cannot be used.

Nevertheless, when working with a manifold which is the cartesian product of other

manifolds such as SAB = SA ×SB, it is possible to use a block-diagonal matrix of the form:

ΣSAB
= diag(ΣSA

,ΣSB
) = diag(Γ−1

SA
,Γ−1

SB
) = Γ−1

SAB

which by construction is a valid covariance matrix and avoids this issue. The null row and

column elements highly simplify the computational cost. By using less expressive covari-

ance matrices, the model has fewer degrees of freedom and generally converges in fewer

iterations, in addition to requiring less training data.
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Figure 3: Effect of cluster size and number of samples. We evaluate 100 times on dis-

tributions with increasing covariance sizes diag(σ ,σ) and three values of sampled points N

on the S2 sphere example. As evaluation criterion we consider the number K of estimated

clusters. The true number of clusters is 6. (b) Mean number of solution clusters found. (c),

(d) Ratio of solutions found with a number of clusters subject to different constraints.

In addition, while in the Euclidean case the mean of a set of points can be computed in

closed form, when working with manifolds we need to do this iteratively. In our implemen-

tation this is required in the M-step, where the parameters θk are estimated as a weighted

combination of terms. By considering only a subset of samples S such that ∑i∈S w
(i)
k > εs for

a certain threshold εs, it is possible to improve the computational efficiency without sacrific-

ing accuracy.

4 Results

We validate our algorithm on both synthetic and real data. Although we can handle any type

of distribution, for the synthetic experiments we focus on Gaussians1.

4.1 Synthetic Results

We present two experiments on 2D manifolds defined by

M=
{

(x,y,z) | cx2 + y2 + z2 = 1
}

. (14)

For the first experiment we generate 1500 points from a mixture of 5 Gaussians on the

manifold of Eq. (14) with c = −2, as shown in Fig. 2a. The distribution in this case is set

so that there is large overlap, and two Gaussians even share the same mean. The algorithm

is initialized with 15 clusters and uses the generic forms of the expp and logp operators that

rely on the derivative of the implicit manifold equation. Additionally the threshold εs is set to

0.999 to speed up the computations. In this scenario the underlying distribution is recovered

as shown in Fig. 2.

For the second experiment we analyze the effects of the non-linearities of the expp and

logp operators by evaluating the method on a sphere (Eq. (14) with c = 1) using 6 clusters

with parameters µi = [cos(iπ/3),0,sin(iπ)/3] and Σi = diag(σ ,σ) for i = 1, . . . ,6 and for

increasing values of σ . Several examples of input distributions with different covariances

1We plan to release the source code of the algorithm to allow other researchers to evaluate and use our method.
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Table 1: Results on recovering an original distribution on the Sphere manifold with 6 and

8 clusters. Results obtained from 100 different evaluations and 1000 samples per cluster.

We compare our method with using a single tangent space (1-TM) and Von Mises-Fisher

distributions (vMF).

6 Clusters 8 Clusters

Clusters Correct Clusters Correct

Ours 6.09 (0.32) 0.92 8.00 (0.00) 1.00

1-TM 7.05 (1.38) 0.46 15.25 (2.17) 0.00

vMF 16.59 (1.71) 0.00 19.86 (2.35) 0.00

are shown in Fig. 3a. The effect of the number of input samples is seen by testing with

N = {600,1800,6000}. We initialize with 30 clusters and εs = 0.999.

The results are shown in Fig. 3. With less spread Gaussians and little overlap, having

more data can be seen to be beneficial. However, with more overlap and samples, generally

the data gets partitioned into more clusters. These results seem to indicate that the algorithm

tends to implicitly favor smaller Gaussians over larger ones, suggesting that there shouldn’t

be problems with approximating distributions. It is also worth mentioning that these results

are for clustering. When estimating a probability density function, the number of clusters is

not particularly important as long as the underlying density is properly approximated.

Finally, in order to evaluate the benefit of using multiple tangent spaces over a single

one, we perform a comparison on the sphere manifold, in two situations: the same 6 clusters

as in Fig. 3 with Σi = diag(0.2,0.3), and when fully covering the sphere with two additional

clusters centered at (0,1,0) and (0,−1,0). We also compare against an approach that uses

von Mises-Fisher (vMF) distributions [2] and it is specifically designed to cluster data on a

sphere. For this, we use our implementation based on [9]. The results are shown in Table 1.

In the 6-cluster case our algorithm retrieves the correct number of clusters in a 92% of

the experiments, while one single plane only provides a 46% of success. Note that we

evaluate the performance of the methods based only on the number of clusters, and not

comparing the entire density probability. In the following subsection we will show that the

distributions obtained with one single tangent plane are also much less representative as those

obtained with the proposed approach. In the 8-cluster case our algorithm’s performance

improves and it always finds the correct clusters, while a single tangent space always fails,

with an average of 15 clusters found. Using vMF distributions results in an oversegmentation

of the data in both experiments. This is due to the fact that the vMF distributions use a

single parameter κ for the concentration of the data, while our model allows for much more

expressive covariances in the form of matrices. These results clearly show the advantage of

using multiple tangent planes to better approximate manifold distributions.

4.2 Human Pose Results

Despite having devoted most of our discussion to the mathematical description of our ap-

proach and synthetic results that help to clarify its potential, we have to keep in mind that

our main motivation is to approximate probability density functions for large datasets con-

strained on some manifold. This can be done to remove the need of additional criteria from

existing approaches in which sampling from manifold-constrained data plays a fundamental

role such as [20, 29] or provide a speed-up to the sampling [30]. To illustrate this point,
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Table 2: Comparing Our method against von Mises Fisher distributions (vMF), a single

tangent space (1-TM) and an Euclidean Gaussian Mixture Model (GMM) in the limb recon-

struction task. We show results using three different metrics: Mean Geodesic Joint Error

(MGJE), Mean Joint Error (MJE), and Mean Limb Length Error (MLLE).

Scenario 1 Scenario 2 Scenario 3

MGJE MJE MLLE MGJE MJE MLLE MGJE MJE MLLE

Ours 0.446 105.8 0.0 0.468 110.1 0.0 0.349 81.7 0.0

vMF 0.481 114.5 0.0 0.568 134.8 0.0 0.470 110.2 0.0

1-TM 0.522 123.0 0.0 0.640 148.7 0.0 0.535 124.9 0.0

GMM 1.111 103.1 19.0 1.167 106.6 27.5 1.152 77.6 11.3

Scenario 4 Scenario 5

MGJE MJE MLLE MGJE MJE MLLE

Ours 0.458 108.2 0.0 0.597 135.7 0.0

vMF 0.496 118.0 0.0 0.698 162.3 0.0

1-TM 0.548 130.2 0.0 0.765 175.1 0.0

GMM 1.272 101.0 14.2 1.401 127.3 24.8

we evaluated our approach on the Human3.6M Dataset [14, 15] which has many subjects

performing different activities.

As is common practice [15], we model the poses in an individual-agnostic way by nor-

malizing all the limbs by their segments and only modeling the rotation. The rotation of each

joint is represented on the S2 manifold which then are arranged in a tree structure [32, 33].

We note that other manifolds do exist such as one defined by using forward kinematics [12],

however, this approach does not have closed form solutions of the expp and logp operators.

A simplified model of the human with 15 joints is used because the dimensionality of the

model greatly increases the amount of the required data. This results in a 24-dimensional

manifold, represented by a block-diagonal covariance matrix with 46 non-zero elements.

We divide the dataset into its five base scenarios: S1, upper body movements; S2, full

body upright variations; S3, walking variations; S4, variations while seated on a chair; and

S5, sitting down on the floor. We train on subjects 1, 5, 6, 7, 8, 9 and 11 for each scenario

using only the first of the actions in each scenario and test on the second one. The algorithm

uses 2000 initial clusters and εs = 0.999 for all scenarios.

We evaluate on the task of hallucinating limbs, i.e., probabilistically recovering missing

parts xA from the rest of the body xB. This is done by obtaining the expectation of the

posterior p(xA|xB,θ) using a combination of the conditional means (Eq. (13)) at each tangent

space with xA = argmin p ∑
K
k=1 d

(

πkνk,A|B, p
)2

. We compare our method with von Mises

Fisher distributions (vMF), a single tangent space (1-TM) and a Gaussian Mixture Model in

Euclidean space (GMM). To compensate the fact that our approach is individual-agnostic,

was trained with the GMM with same individual that was being tested. We define three

metrics: Mean Geodesic Joint Error (MGJE), that accounts for the rotation error; Mean Joint

Error (MJE), representing the Euclidean distance with the ground truth in mm; and Mean

Limb Length Error (MLLE), which is the amount of limb length deformation in mm. All

four models are trained using exactly the same parameters for all scenarios. The results

are summarized in Table 2. Observe that while the MJE is similar for both our method

and GMM, our approach has roughly one third of the MGJE error. Additionally, as our

model is coherent with the manifold, there is no limb deformation (MLLE). Our model
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 4: Regression Example. We use the trained mixtures to perform regression on the

left arm (3 limbs) of subjects on the Human3.6M dataset. On the left we plot 30 random

samples from the full mixture. On the top-right we plot 30 random samples from the mixture

of the conditional distribution corresponding to a particular frames. On the bottom-right the

mean of the mixture is shown in red. The black lines indicate the input sample. As shown in

Scenario 4, the distribution can be multimodal, however, one of the modes is very close to

the true limb position.

also consistently outperforms the vMF and 1-TM approaches, which once again shows that

multiple tangent spaces with Gaussians can better capture the underlying distribution. The

1-TM approach has the worst MJE error but we can see it has a MGJE much closer to our

model than the GMM. We also outperform the vMF model. We show four specific examples

of the estimated distributions for our model in Fig. 4.

5 Conclusions

We have presented a novel data-driven approach for modeling the probability density func-

tion of data located on a Riemannian manifold. By using a mixture of distributions, each

with its own tangent space, we are able to ensure the consistency of the model while avoid-

ing most of the linearization error caused by using one single tangent space. The approach

has been experimentally validated on various synthetic examples that highlight their ability

to both correctly approximate manifold distributions and discover the underlying data struc-

ture. Furthermore, the approach has been tested on a large and complex dataset, where it is

shown to outperform the traditionally used Euclidean Gaussian Mixture Model, von Mises

distributions and using a single tangent space in a regression task.

Future works include exploiting the potential of this algorithm on different manifolds and

datasets, for instance for representing and further matching tree-like biologic structures [26,

27, 28]. We have presented results using Gaussian distributions and have focused on the S2

manifold. However, the algorithm presented here should work with any distribution and on

any manifold for which the exponential and logarithm map operators are provided, as shown

on a quadratic surface. For example, it should be possible to initially estimate unknown and

non-parameterizable manifolds [4] and use approximate operators [11].
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