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Abstract— We present a method for efficiently detecting
natural landmarks that can handle scenes with highly repetitive
patterns and targets progressively changing its appearance.
At the core of our approach lies a Random Ferns classifier,
that models the posterior probabilities of different views of the
target using multiple and independent Ferns, each containing
features at particular positions of the target. A Shannon entropy
measure is used to pick the most informative locations of these
features. This minimizes the number of Ferns while maximizing
its discriminative power, allowing thus, for robust detections at
low computational costs. In addition, after offline initialization,
the new incoming detections are used to update the posterior
probabilities on the fly, and adapt to changing appearances that
can occur due to the presence of shadows or occluding objects.
All these virtues, make the proposed detector appropriate for
UAV navigation. Besides the synthetic experiments that will
demonstrate the theoretical benefits of our formulation, we
will show applications for detecting landing areas in regions
with highly repetitive patterns, and specific objects under the
presence of cast shadows or sudden camera motions.

I. INTRODUCTION

Statistical methods for object detection and categorization
have achieved a degree of maturity that makes them robust to
several challenging conditions such as target scaling, 2D and
3D rotations, nonlinear deformations and lighting changes
[6], [8], [10], [14], [21], [19], [26], [28], [30]. Yet, most of
these approaches involve complex computations, preventing
its use in systems requiring online video processing. This
limitation is specially critical when designing perception
algorithms for Unmanned Aerial Vehicle (UAVs), where both
real time and robustness are mandatory characteristics.

Most current UAV perception algorithms use external
markers placed along the environment or on the object of
interest, which can be easily detected with RGB or infra-
red cameras. Tasks such target detection [12], [15], [18],
navigation [9], [31] and landing [7], [24] can be easily
simplified with the use of these markers. There are, however,
situations where the deployment of markers is not practical or
possible, especially when the vehicle operates in dynamically
changing and outdoor scenarios.

In this paper, we propose an efficient algorithm for
detecting the pose of natural landmarks on input video
sequences without the need of using external markers. This
is especially remarkable, as we consider scenes like the one
shown in Fig. 1, where the target is a chunk of grass in
which identifying distinctive interest points is not feasible,
preventing thus the use of keypoint recognition methods [13],
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Fig. 1. Detecting natural landmarks. Top: Kind of outdoor scenario
we consider. Some of the challenges our detector needs to address are
light changes, shadows and repetitive textures. Bottom: Schematic of the
approach we propose. It consists of two stages, an offline learning stage
where a general model of the object’s appearance is learned, and an online
stage, where the object’s model is continuously updated using input images.

[20]. In addition, our approach continuously updates the
target model upon the arrival of new data, being able to adapt
to dynamic situations where the its appearance may change.
This is in contrast to the previous approaches, which learn
object appearances from large training datasets, but once
these models are learned, they are kept unchanged during
the whole testing process.

As shown in Fig. 1, our approach consists of two main
stages. Initially, a canonical sample of the target is provided
by the user as a bounding box in the first frame of the
sequence (Fig. 1(a)). Through synthetic warps based on shifts
and planar rotations, new samples of the target are generated,
each associated to a specific viewpoint (Fig. 1(b)). All these
samples are used for training a classifier that models the
posterior of each view (Fig. 1(c)). At the core of the classifier
there are Ferns features [22] that given an input training
sample, model its appearance by combining random sets
of binary intensity differences. Yet, in contrast to [22] that
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Fig. 2. Failure of keypoint-based methods. Top: Matching of SIFT features (red lines) between the visual target (small top-left image) and a sequence
of image examples that includes lighting and viewpoint changes. Bottom: Output of the proposed detection approach (red circles) for the same target and
sequence. Black circles indicate the ground truth and the rectangle shows the detection rates: true positives (TP), false positives (FP) and false negatives (FN).

randomly picks the location of each Fern feature within the
image, we propose a strategy that uses an entropy reduction
criterion for this purpose. This will let us to both minimize
the number of Ferns to represent the target (making the
algorithm more efficient), and maximize the discriminative
power of the classifier. All this initial training is performed
offline, in matter of minutes.

In the second stage (Fig. 1(d)) the classifier is evaluated
at each input frame, and its detections are used to update the
posterior probabilities, which still contain the information of
the original target appearance that avoids drifting to false
detections (Fig. 1(e)). This allows a non-supervised adaption
of the classifier to progressive target changes.

All these ingredients (markerless, efficient and adapt-
able) make our approach appropriate for Autonomous Aerial
Robots applications. After showing the theoretical benefits
of the method using synthetic data, we will describe several
real experiments in which our classifier will be used to detect
the position and orientation of natural landmarks in outdoor
environments where a UAV is expected to operate.

II. RELATED WORK

Marker-based Approaches

The standard approach for estimating the location of an aerial
mobile robot or specific objects of its environment relies on
visual markers introduced in the scene. These markers can
be either perceived by RGB cameras [7], [24] or infrared
sensors [9], [17]. Especially the latter, provide very accurate
pose estimation results and at a high frame rate, allowing
to design accurate control laws and perform complex tasks
such as that of cooperative grasping and manipulation with
multiple aerial vehicles [16].

There are situations, though, in which deploying these
markers is not possible or convenient. For instance, the
response of an infra-red sensor is easily washed out by
sunlight in outdoors scenarios. In other circumstances, the
target to be tracked or detected is chosen on the fly, and is
not possible to place markers on it. In this kind of situations,
passive and non-invasive techniques such as those based in
vision alone, come into play.

Markerless Vision-based Approaches

Remind that our goal is to locate the position and the in-
plane orientation of a given target in an input image or
video sequence. One obvious solution for this is based on
algorithms that first extract points of interest from the input
and target images, represent them with a potentially complex
descriptor [1], [14], and match them using a robust algorithm
for outlier rejection [13], [20], [25]. Yet, in the situations
we consider with natural landmarks, repetitive patterns (like
grass) and lighting artifacts, extracting reliable and salient
points of interest is not an easy task. Observe, for instance,
the example in Fig. 2, where SIFT descriptors are used
to match points of interest of the natural target seen from
different viewpoints. Note that the percentage of matches is
very large for the first images but it decreases significantly
for the next ones because of lighting and viewpoint changes.
Therefore, these point based algorithms have been mostly
used in indoor applications with controlled light conditions.
Indeed, we can find some recent works that under these con-
straints have been shown effective for UAV navigation [4],
visual tracking [18] and target detection [27].

When single feature points are not reliable cues, one
can model the appearance of the whole target object. This
can be expressed as a classification problem, where each
target orientation corresponds to a different class. There are
potentially many algorithms which could be used for this
task, and which have been shown to give excellent results in
object detection applications [6], [8], [23], [26]. Yet, most
of them have a high computational cost and require rigorous
training procedures for being effectively implemented in
aerial robots.

The approach we present here falls within this group of
methods, but we alleviate the computational cost of our clas-
sifier using two strategies. First, we split the learning process
in two stages, one offline and the other online. This helps
to reduce the amount of information included in the model
and thus, reduces its complexity. And second, we propose
an optimization strategy based on entropy minimization, in
which the number of features is minimized while retaining
their discriminative power. The essence of this strategy is
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Synthetic training data. The canonical sample (left) is synthetically warped to generate new training samples (middle). These samples are

computed at different orientations and at different shift and blurring levels (right). The red circle and arrow indicate the target pose for each sample.
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Fig. 4. Fern-based classifier. Computation of the classifier using J = 2 Ferns with M = 2 binary features. Left: Schematic representation of the Ferns
structure using binary trees. At the bottom of the tree we plot the distributions which are updated for a training sample z. For instance, assuming the training
sample x belongs to the positive class and that F1(z) = (00)2 + 1 = 1, the bin of the positive class in z = 1 would be increased in one unit. The same
sample, would also increase in one unit the bin corresponding to z = 3 of Fb, as Fa(x) = (10)2 + 1 = 3. Right: Example of how the Ferns are tested
on an image sample x. Features are signed comparisons between image pixels. (u,v) denote the spatial coordinate, and ¢ the color channel coordinate.
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similar to what is done in recent works with two-class
classification problems [11], [29], [30]. Yet, these works are
not applicable to our multiview-classification problem.

III. APPROACH

We next describe the main steps for building the classifier:
generation of an initial set of synthetic samples, offline
construction of the classifier, a new criteria for selecting the
features, and finally, the online adaption of the algorithm.

A. Generating Synthetic Samples for Offline Training

We initially assume that we only have one single sample
of the target we seek to detect. This canonical sample is
provided by the user as a bounding box in the first frame
of the video sequence. In order to obtain a more complete
description of the target we synthetically generate new views
of the canonical shape.

As it is typically done in aerial imagery, the depth of the
target is assumed negligible compared to its distance w.r.t. the
camera. We therefore consider the canonical target as being
planar, and approximate the multiple views it can take as in-
plane rotations. Note, however, that our approach is equally
valid for non-planar objects. In that case, sample training
images could be either generated with more sophisticated
rendering tools or by simply acquiring real images of the
target from each of the viewpoints.

For the purposes of this paper, and as shown in the
example of Fig. 3, the canonical shape is rotated at W = 12
principal pose orientations, that will establish the classes
of our classification problem. In addition, for each pose
w € {1,2,..,W} we further include 6 additional samples
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with random levels of shifting and blurring. This helps to
model small deviations from the planar assumption, as well
as the blurring produced by sudden motions of the camera.
A final subset with a similar number of background samples
(random patches chosen from background) per pose is also
considered. We denote this whole initial training dataset as
D = {(wi,y:)}Y., where z; € X' corresponds to a sample
in the image space X, N is the number of samples, and
y; = {+w;, —w;} is the class label, indicating if the sample
belongs to the pose w or background classes, respectively.

B. Building the Classifier

In order to perform online learning and object detection,
we use Random Ferns (RFs) [22]. This classifier can be
understood as an extreme and very fast implementation of a
random forest [5] which combines multiple random decision
trees. Furthermore, subsequent works have shown the RFs to
be robust to over-fitting and that they can be progressively
computed upon the arrival of new data [11], [29]. The most
distinctive characteristic of RFs compared to the classical
random forests is that the same test parameters are used in
all nodes of the tree level [5], [22]. We show this in Fig. 4-
left, where we can see two Ferns F', each one with two
decision tests or binary features f.

More formally, the online classifier is built as an average
of J Ferns in which each Fern F}; consists of a set of M
binary features, F; = {f{, fJ,..., f1;}, representing binary
comparisons between pairs of pixel intensities. This can be
written as

f(x) = I(x(ug,v1,c1) > x(ug, vz, c2))



where x is the image sample, x(u, v, ¢) indicates the image
value at pixel coordinates (u,v) with color channel ¢, and
I(e) is the indicator function:

]I(e){(l)

As we will describe in the following subsection, and in
contrast to the original Ferns formulation [22], the location
of these pairs of pixels is computed during the training stage
according to a criterion of entropy minimization. Fig. 4-
right shows a simple example of how two different Ferns
with two features are evaluated in an image sample x. The
combination of these binary features determines the Fern
output, F'(z) = z, where z = (f1,...,fm)2 + 1, is the
co-occurrence of the features and corresponds to the Fern
leaf where the sample x falls (See Fig. 4-left).

So far, we have discussed how a single Fern is evaluated
on an image sample. Let us now explain how the classifier
is built, from the response of J Ferns F = {Fy,..., F}.
The response of the classifier, for an input sample image x
can be written as

[ +1 if conf(z € w) > f
H(z) = { —1 otherwise,

if e is true
if e is false

where w is the estimated pose of the sample, conf(z € W) is
the confidence of the classifier on predicting that = belongs
to the class w, and [ is a confidence threshold whose default
value is 0.5. Thus, if the output of the classifier for a
sample x is H(z) = +1, the sample is assigned to the target
(positive) class w. Otherwise, it is assigned to the background
(negative) class. The confidence of the classifier is defined
according to the following posterior:

where 0 are parameters of the classifier we will define below
and y = {4+w, —w} denotes the class label.

The estimated pose w is computed by evaluating the
confidence function over all possible poses, and picking the
one with maximum response, i.e.:

conf(z € W)

v =argmaxp(y = tw|F(x),0), w=1,...., W

As said before, this posterior probability is computed by
combining the posterior of the J Ferns:

p(y = +w|F(z) Zp (y = +w|Fj(z) = 2,0j,20),
where z is the Fern output, and 0; - is the probability that
a sample in the Fern j with output z belongs to the positive
class with pose w. Since the posterior probabilities follow a
Bernoulli distribution

p(YlF)(x) = 2,0 2.0)
with we can write that

p(y = Fw|Fj(x) = 2,0j.0) =

~ Ber(y|0j,z,w)a

Hj,z,w

The parameters of these distributions are computed during
the training stage through a Maximum Likelihood Estimate
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Fig. 5. Feature selection process. Example of the kind of distributions
we consider in the Fern leaves, for a case where we have two classes or
poses w. Each distribution H encodes the amount of positive and negative
samples, for each of the classes.

(MLE) over the labeled set of synthetic samples D we have
previously generated. That is,
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where N,/ 1 is the number of positive samples that fall into
the leaf z of the Fern j. Similarly, NV, ¥ corresponds to the
number of negative samples for the Fern j with output z. The
reader is referred to Fig. 4-left for an illustrative example.

C. Feature Selection

In all previous works that use RFs classifiers, the Ferns
features, i.e, the pairs of pixels whose intensities are com-
pared, are chosen at random [11], [22], [29]. In this paper we
claim, and we will demonstrate it in the results, that a more
principled approach for selecting those features can lead to
increased levels of efficiency and robustness.

For this purpose we propose a methodology to choose the
binary features that reduce the classification error over the
training data D. As an approach to this, we will seek for the
features that minimize the Shannon Entropy &, which gives
a measure about the impurity of the tree (i.e, how peaked
are the posterior distributions at each Fern), and about the
uncertainty associated with the data [3], [26].

More specifically, each Fern F is independently computed
from the rest of Ferns, and using a different and small
random subset S C D of the training data. Partitioning the
training data will avoid potential overfitting errors during
testing [3], [5]. Let us now assume we have a large and
random pool of binary features, and we want to pick the
best of them for a Fern F;. At each node level m, we will
choose the binary feature f,, that minimizes the entropy of

the Fern £(F;), computed as
2" N
EF)=> ~ |§‘25(”HZ), E(H.) = —H.logH.,
z=1

where N; . is the number of samples falling into the leaf z
and | S| is the size of the samples subset .S. The variable 7,
is the distribution of samples across poses w in the leaf z, and
is represented trough a normalized histogram (See Fig. 5).
Once the feature f,, that minimizes £(F}) is chosen, it
is added to the set of features of F. This is repeated until
a maximum number of features M (corresponding the the
depth of the Fern) is reached. The pseudocode of the whole
procedure for building the classifier is presented in Alg. 1.
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Random Ferns (Top) vs Entropy-based Ferns (Bottom). Left: The proposed approach is compared to standard RFs in a two-class synthetic

problem. Cyan and red symbols correspond the the two main classes, positive and negative respectively, and the + and O are two additional values that
each element of every class can take. Black symbols indicate misclassified samples. Middle: Maps showing the response of the classifiers on the dense
sample space. Right: Distributions of positive and negative classes according to the confidence conf(x) of the classifiers, computed from Eq. 1.

In order to highlight the advantages of the Entropy-based
approach for selecting features, compared to the standard
random approach, we have performed the toy experiment
summarized in Fig. 6. The problem consists in building a
classifier for a two-class (red and cyan classes) problem,
where each class element may take two possible values
(“4+” and “0”). The binary features in this example are
axis-aligned split functions (2D decision stumps) with a
random threshold. That is, given a sample = with coordinates
(u,v) € [0,1] x [0,1] we compute binary features as

fl@)=@>N,

where p = {u,v} corresponds to one of the axis, and \ a
random threshold in the interval [0, 1]. We train the classifiers
with 20 Ferns and 7 such features per Fern.

The left-most column of Fig. 6 shows the response of
both classifiers to new testing data, where black “0” or
“+” symbols are misclassified samples. As expected, the
classification results are consistently better when using the
Entropy for selecting the features. This is also illustrated
in the dense classification maps shown in Fig. 6-middle,
where the response of the our classifier, clearly yields a more
precise information about the spatial layout of each of the
classes.

Another advantage of the proposed classifier is that it
provides a greater separation between positive and negative
classes than standard RFs, being thus more discriminative.
This is shown in the right-most column of Fig. 6, where we
plot the confidence value of Eq. | for each of the classes.

D. Online Learning

The offline training procedure described in the previous
section can be done in about one minute (for M =~ 3 features
and J = 20 trees). Then, at runtime, the resulting classifier is
evaluated over the input data and it is continuously updated
in order to adapt to potential changes undergone by the target
object.

As shown in the approach overview in Fig. 1, during
the online learning process, new detections are fed into the

Algorithm 1: Feature Selection & Building the Classifier

Input:
-J: Number of Ferns.
-M: Number of binary features.
-D = {(=;,y;)},: Training dataset consisting of N
image samples = € X, where y; € {+w, —w} is the
label for the target and background classes with pose
w, respectively.
Output: Visual target classifier H(x).

1for j=1;5<Jdo

2 Sample at random a reduced set of images S C D
from the training data D.
3 for m =1;m < M do
4 Compute a set of K random binary features.
5 for k=1;k < K do
6 Test feature fi on the sample set S.
7 Compute the entropy of the current Fern j,
2™ Ny
E(Fy) =2 ooy — T E(H2)
8 Select the feature f,, that minimizes £(Fj).
9 | Add feature fy, to the Fern f,, — Fj.
10 | Assemble the computed Ferns F; — F.

classifier to update the posterior probabilities. These samples
are labeled as either positive, corresponding to the target, or
negative, when they correspond to the background.

The labeling is done based on the confidence value about
the input sample  computed using Eq. 1. If a sample x with
pose w has a confidence value conf(z) > £, it is assigned to
the positive class +w. Otherwise, the sample is considered
negative —w. The parameter [ is the threshold of the
classifier and to reduce the risk of misclassification it is set to
the Bayes error rate. Yet, since an incorrect labeling might
lead to drifting problems and loss of the target, we make
use of a more rigorous rejection criterion [2], and we set a
confidence interval « around 3 to indicate predictions with
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Fig. 7. 2D classification problem. Evaluation of ERFs (first and third columns) against RFs (second and fourth columns). Left: Classification performance
of both classifiers measured trough precision-recall rates. Right: Degree of overlapping between positive and negative class distributions.

ambiguous confidence values. Samples within this interval
are not further considered in the updating process.

The labeled samples that pass the confidence test are then
used to recompute the prior probabilities 0, . ., of Eq. 2, and
update the classifier. For instance, let us assume that a sample
z is labeled as +w;, and that it activates the output z of the
fern F}, i.e, Fj(x) = z. We will then update the classifier by
adding one unit to the ¢-th bin of the histogram of N j’zw . This
is repeated for all ferns. With these new distributions, we can
recompute the priors 6; . .,, and thus, update the classifier.

IV. EXPERIMENTS

We next evaluate the proposed method, dubbed ERFs (for
Entropy-based Random Ferns), using both synthetic data and
real experiments of detection of natural landmarks.

A. 2D Classification Problem

This experiment has already been presented in the previous
section to evaluate different characteristics of the ERFs and
compare them against a classifier whose Ferns are computed
completely at random (RFs). In Fig. 6 we have already
shown some qualitative results that visually demonstrate the
advantages of our approach. We next present a more in-depth
analysis of two approaches.

We first analyze the amounts of Ferns and features used to
compute both types of classifiers. Fig. 7-(two leftmost plots)
represents the classification performance of these approaches
through the Equal Error Rate (EER) over precision and recall
scores. Note that the classification rates grow with the size
of the classifier, and that ERFs consistently obtain higher
classification rates than RFs, even when for smaller amounts
of features and Ferns.

Another advantage of the proposed classifier is that it
yields larger degrees of separability between the positive and
negative classes. We already qualitatively observed this in
Fig. 6. In the new Fig. 7-(two rightmost plots) we numer-
ically demonstrate this using the Bhattacharyya coefficient,
that measures the amount of overlap between distributions.
We clearly see that ERFs provide lower coefficients than the
classifier computed at random (RFs). This is critical for on-
line learning and detection, as it reduces the misclassification
error and possible drifting problems.
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Fig. 8. Detection of ground patches. Left: Detection rates according to
the number of Ferns used to compute the classifier. Right: Speed of the
classifier (frames per second) for different amounts of features and Ferns.

B. Detection of Ground Patches

We next use the ERFs classifier to detect specific patches
on the ground, in a field containing a mixture of grass
and soil. While this is a very useful task for detecting
landing areas for UAVs it is extremely challenging, due to
the presence of many similar patterns, and the lack of salient
and recognizable visual marks. Fig. 12-(top, middle) shows
a few sample images.

Like in the previous experiment, we again compare the
ERFs and RFs. To this end, we evaluate the classifiers in
a video sequence containing 150 images of a ground field,
that suffers from several artifacts, such as sudden camera
motions, and light and scale changes (see Fig. 12-top). In this
experiment, we considered 9 features per Fern. The detection
performance rate of both methods are presented in Fig. 8-
left, where we detail the PR-EER (Equal Error Rate over
the Precision-Recall curve) values for classifiers trained with
different numbers Ferns. Note again that the ERFs classifier
yields better results and is less sensitive to the number of
Ferns, thus allowing for more efficient evaluations. This is
verified in Fig. 8-right where we provide the computation
time of the classifiers in frames per second. Some sample
images with the outputs of the ERFs (red circles) and the
RFs (green ones) are depicted in Fig. 12-top. Observe that
the ERFs are able to accurately detect the visual target, even
when it is difficult for the human eye.

Fig. 12-middle shows another experiment of recognizing
ground landmarks. This experiment contains 64 images
where the target appears at multiple locations and under
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various rotations. In this experiment, the classifiers are
trained with W = 16 in-plane possible orientations. The
detection rates of both the ERFs and the RFs are shown
in Fig. O-left. Again, the ERFs provide better results. In
addition, if we analyze the degree of overlapping between
the target and background classes through the Bhattacharyya
coefficient (Fig. 9-right), we see that ERFs provide much
higher separation of classes, and therefore, much higher
confidence values in its detection. Observe in Fig. 12-middle
a few sample results where both the position and orientation
of the target are correctly estimated. Indeed, the proposed
method yields a detection rate over 95% (PR-EER) and an
orientation accuracy of 93%.

C. 3D Object Detection

We have also tested our approach in objects that do not
satisfy the assumption we made of having a depth which is
negligible compared to its distance to the camera. Fig. 12-
bottom shows a few samples of a 120 frames sequence of a
bench seen from different viewpoints and scales.

In this case we have included in the analysis a template
matching approach based on Normalized Cross Correlation
(NCC), widely used for detecting specific objects. The recog-
nition results of all methods are summarized in Fig. 10-left.
Observe that the performance of NCC is quite poor. This
is because a plain NCC template matching can not adapt
the appearance changes produced different viewpoints. The
same limitation would suffer our approach without the online
adaption, shown in the figure as ERFs (Off). This behavior
is also reflected in Fig. 10-right that plots the confidence
conf(x) of each classifier along the sequence. ERFs (Off.)

ERFs: TP 0DE FP 000 FN 0048 ERFs: TP 013 FP 000 FN 005

"'
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b T

Fig. 11. 3D target detection. Our approach is able to learn and detect 3D
targets in outdoor environments. Red circle indicates the classifier output,
whereas black one is the ground truth or visual target.

and NCC give very high scores for the first frames, but these
values rapidly fall when the viewpoint changes. On the other
hand, the online approaches continue updating the classifiers
with new incoming samples and maintain high recognition
scores.

The circles in Fig. 12-bottom, represent the detection
results of the ERFs (red), NCC (cyan) and ground truth
(black), for a few sample frames. Note that the ERFs are
able to effectively handle viewpoint change.

Finally, Fig. 2 (which we already introduced in Sect. II)
and Fig. 11 show additional examples where our classifier
is used to detect 3D objects, in this case specific trees,
which can help for performing UAV navigation and obstacle
avoidance tasks. Our ERFs classifier is able to learn these
visual landmarks on the fly and to detect them despite
illumination variations, self-occlusions, viewpoints changes
and repetitive textures. As we already showed in Fig. 2-top,
methods based on feature-point descriptors like SIFT [14]
would not succeed in theis kind of scenarios, as they would
seldom find good matches.

V. CONCLUSIONS

We have proposed an efficient and robust vision-based
approach for learning and detecting natural targets in outdoor
environments. Applications like UAV landing area detection
of obstacle avoidance benefit from this outcome, and con-
trasts with the most of recent detection approaches which
typically rely on artificial markers spread over the scene. Our
solution includes an online classifier that is used to learn the
model of the target on the fly and is able to update that model
online with the new incoming observations. In addition, we
have proposed a theoretically grounded strategy based on
Entropy minimization to guarantee a high discriminative
power of the classifier while keeping its efficiency. The
advantages of our method are demonstrated by thorough
testing on both synthetic data and real scenes with natural
targets.
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