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Abstract— In this paper, we propose a new approach for model-based leak detection and location in water distribution 

networks (WDN), which considers an extended time horizon analysis of pressure sensitivities. Five different ways of using 

the leak sensitivity matrix to isolate the leaks are described and compared.  The first method is based on the binarization 

approach proposed in (Pérez, 2011a).  The second, third and fourth methods are based on the comparison of the 

measured pressure vectors with hte leak sensitivity matrix using different metrics (correlation, angle between vectors and 

Euclidean distance, respectively); the fifth is based on the least square optimization method proposed in (Pudar, 1992).  

The performance of these methods is compared when applied to two academic small networks (Hanoi and Quebra) widely 

used in the literature. Finally, the three methods with better performance are applied to a district metering area (DMA) 

of the Barcelona WDN using real data.  

I. INTRODUCTION 

Water leaks in water distribution networks (WDN) can cause significant economic losses in fluid transportation 

and an increase on reparation costs that finally generate an extra cost for the final consumer. In many WDN, losses 

due to leaks are estimated to account up to 30% of the total amount of extracted water. Such burden is a very 

important issue in a world struggling to satisfy water demands of a growing population. 

Several works have been published on leak detection and isolation methods for WDN. For example, in Colombo 

et al. (2009), a review of transient-based leak detection methods is offered as a summary of current and past work. In 

(Yang, 2008), a method has been proposed to identify leaks using blind spots based on previously leak detection that 

uses the analysis of acoustic and vibrations signals (Fuchs, 1991), and models of buried pipelines to predict wave 

velocities (Muggleton, 2002). More recently, Mashford et al. (2009) have developed a method to locate leaks using 

Support Vector Machines (SVM) that analyzes data obtained by a set of pressure control sensors of a pipeline 
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network to locate and calculate the size of the leak.  

Another set of methods is based on the inverse transient analysis (Covas et al, 2001, Kepler et al, 2011). The main 

idea of this methodology is to analyze the pressure data collected during the occurrence of transitory events by 

means of the minimization of the difference between the observed and the calculated parameters. In (Ferrante et al. 

2003a; 2003b), it is shown that unsteady-state tests can be used to pipe diagnosis and leak detection. The transient-

test based methodologies are used exploiting the equations for transient flow in pressurized pipes in frequency 

domain and in the second part, information about pressure waves is taken into account as well. 

Model based leak detection and isolation techniques have also been studied starting with the seminal paper of 

Pudar (1992) which formulates the leak detection and location problem as a least-squares estimation problem. 

However, the parameter estimation of water network models is not an easy task (Savic, 2009). The difficulty lies in 

the non-linear model of water networks and the few measurements usually available with respect to the large 

number of parameters to be estimated that leads to an underdetermined problem. Alternatively, in (Pérez, 2011a; 

2011b), a model based method that relies on pressure measurements and leak sensitivity analysis is proposed. This 

methodology consists in analyzing the residuals (difference between the measurements and their estimation using 

the hydraulic network model) on-line regarding a given threshold that takes into account modeling uncertainty and 

the noise. When some of the residuals violate their threshold, the residuals are compared against the leak sensitivity 

matrix in order to discover which of the possible leaks is present. Although this approach has good efficiency under 

ideal conditions, its performance decreases due to the nodal demand uncertainty and noise in the measurements. 

This methodology has been improved in (Casillas et al. 2012) where an analysis along a time horizon has been taken 

into account and a comparison of several leak isolation methods is offered. In case where the flow measurements are 

available, leaks could be detected more easily since it is possible to establish simple mass balance in the pipes. See 

for example the work of Ragot (2006) where a methodology to isolate leaks is proposed using fuzzy analysis of the 

residuals. This method finds the residuals between the measurements with and without leaks. However, although the 

use of flow measurements is viable in large water transport networks this is not the case in water distribution 

networks where there is a dense mesh of pipes with only flow measurements at the entrance of each District 

Metering Area (DMA). In this situation, water companies consider as a feasible solution the possibility to installing 

some pressure sensors inside the DMAs. Pressure sensors in this situation are preferred because they are cheaper and 

easy to install and maintain.  



Recently, Goulet et al. (2013) proposed a model falsification leak detection and isolation approach as well a 

sensor placement for leak detection and isolation technique. Here, a leak–scenario falsification is developed in order 

to evaluate the performance of the network as well as to model and to measure the uncertainties during the leak 

detection process. However, this work is able to find leaks of big magnitudes and needs a large instrumentation in 

pipes. 

The model calibration of a water distribution network is an important problem related to the leak detection task 

because the leakages are not all real. In (Koppel et al. 2012), an optimization procedure is proposed to obtain the 

proportion of real and apparent leakages. There are some works devoted to the prediction and correction of models. 

An hydraulic state estimation technique using statistical data to estimate future demands is proposed in (Preis et al. 

2011). This work uses genetic algorithms to calibrate the model with a modified least squares fit method. Model 

calibration using genetic algorithms is also studied in (Nicolini et al. 2011, Shu 2010). Nodal demand calibration has 

been studied (Cheng et al. 2011) using singular value decomposition in order to identify and understand the 

parameters of the model. However, for a limited number of monitoring sensors, this problem is underdetermined and 

the parameter estimation is too complex. Herrera et al. (2010) offer a description and comparison of predictive 

models for forecasting water demand where models are obtained using time series data for water consumption in an 

urban area of a city and applying predictive regression models, machine learning algorithms and Monte Carlo 

simulations. In Wu et al. (2010), a method for leakage detection and hydraulic model calibration is presented. This 

work shows that leak detection improves with the accuracy of the hydraulic model calibration and by identifying the 

unknown leakages and the non-revenue water consumptions. Moreover, this research demonstrates that water 

utilities can exploit the latest innovations of modeling technology to manage, detect, control and reduce water 

leakages. Wu et al. (2011), find that velocities and head loss needs to be increased over normal values for the 

pressure based leak detection work. They found that the effect of closed valves and model errors obscures leaks. 

In this paper, a new approach for model-based leak detection and location in water distribution networks (WDN) 

is presented. This approach considers an extended time horizon analysis of pressure measurements and sensor leak 

sensitivities. This approach has been combined with five leak location methods in order to find the best one. A first 

method, called Sensitivity Matrix Binarization, is based on the transformation of the real-valued leak sensitivity 

matrix to a binary matrix, according to a threshold as suggested in (Pérez 2011a; 2011b). Three methods are based 

on the comparison of measured pressure vectors with leak sensitivity matrix using different metrics (Correlation, 



Angle between vectors and Euclidean distance, respectively). Finally, also a method based on the Least-square 

optimization method proposed in (Pudar, 1992) is tested. In order to find the method with the best performance, the 

five methodologies are tested in simulation with two academic small water distribution networks (named Hanoi and 

Quebra) assuming that the pressures in all the nodes are measured. Finally, the three methods with better 

performance are applied to a district metering area (DMA) of the Barcelona WDN, named Nova Icària, considering 

that only few sensors are available in practice which implies more difficulties in determining the leakage area. 

This paper is organized as follows: Section II describes an overview of the proposed methodology. Section III 

explains the leak location strategies. Section IV presents the networks considered in the experiments including the 

Barcelona WDN. In Section V, the experiments and results for the academic networks are detailed while in Section 

VI, the application and results obtained with the different methodologies in the real case are presented. Finally, 

Section VII concludes this work. 

II. OVERVIEW OF THE PROPOSED METHODOLOGY 

A. Introduction  

The main objective of the proposed methodology is to detect and isolate leaks in a water distribution network 

using pressure measurements and their estimation using the hydraulic network model. A leak will be considered as a 

water flow loss through a defect of a network element that is being monitored. The proposed approach assumes the 

existence of a single and continuous leak from the appearance time. Moreover, all the leaks are assumed to be 

located in the nodes of the network. This is a standard assumption in model based leak detection and location 

literature (see for example, Pudar (1992)).    

The leak detection is based on computing the difference (residual) between the pressure measurements ( )ip k   

against their estimation ˆ ( )ip k  by means of the simulation of the hydraulic model: 

 𝑟𝑖(𝑘) = 𝑝𝑖(𝑘) − �̂�𝑖(𝑘)     𝑖 = 1, … , 𝑛 (1) 

where 𝑛 is the number of pressure sensors available in the network. These residuals are evaluated against a threshold 

i  that is selected to take into account the measurement noise and model uncertainty. If for a given time window a 

residual violates its threshold (i.e, ( )i ir k  ) then, the location process is initiated. The leak location is based on 



comparing the residual vector (obtained from the difference between measured and expected pressures of each 

sensor) against the leak sensitivity matrix that contains the effect of each possible leak in each residual. The 

candidate leaks are those whose effect matches the best in a time window when compared to the observer residual 

vector using some metric (see Section III for more details). Once the candidate leak has been isolated, an estimation 

of the leak could even be provided by means of the residual leak sensitivity. Figure 1 summarizes graphically the 

proposed methodology including the leak detection, location and estimation processes.  

 

Figure 1 Proposed methodology for model based leak detection, location and estimation. 

 

Remark 1: As any model based approach, the results of the proposed methodology rely on the quality of the model. 

Thus, leaks will not be detected if the effects of leaks on pressure are masked by the cumulative effect of model 

errors (e.g. connectivity, closed valves) and demand variations not accounted for by the model.  

 

Remark 2: Unexpected demands changes due to special days/events or some test/changes in the network could 

induce the methodology to indicate a leak when in fact there is not (false positives).  For this reason, the proposed 

methodology should be used in combination with the DMA monitoring methodology proposed in (Quevedo et al., 

2012) that analyses the night flows altogether with the supplied/billed amount of water. When a leak is detected with 

the methodology, then proposed leak location could be safely used to locate approximately where the leak is located. 

Finally, the technicians will go to field using acoustic based leak location equipment to precisely locate the point 

where the leak is and to repair it. 



B. Leak sensitivity matrix   

As discussed above, leak location is based on the evaluation of the effect of all possible leaks in the available 

pressure measurement sensors using a sensitivity analysis. As a result of this analysis the sensitivity matrix (Pérez, 

20009a) is obtained as follows:  

 𝑺 =

[
 
 
 
 
𝜕𝑝1

𝜕𝑓1
⋯

𝜕𝑝1

𝜕𝑓𝑚
⋮ ⋱ ⋮

𝜕𝑝𝑛

𝜕𝑓1
⋯

𝜕𝑝𝑛

𝜕𝑓𝑚]
 
 
 
 

 (2) 

where each element ijs  of the sensitivity matrix S measures the effect of  a leak jf  in the pressure of sensor ip (i.e. 

the difference of pressure between the expected pressure and the one measured when a leak of magnitude f occurs in 

the node j). Each element is normalized according to the leak magnitude. The sensitivity matrix S has as many rows 

as sensors and as many columns as considered leaks. It is extremely complex to calculate S analytically in a real 

network since the model is based on a huge set of implicit non-linear equations. Instead, this work proposes to 

generate the sensitivity matrix by simulation thanks to an hydraulic simulator (as EPANET) and using increments of 

pressure while maintaining constant the leakage flow. First, the computation of the sensitivity matrix needs the 

construction of the non-faulty operation scenario of the network in a 24-hours’ time horizon, which allows to obtain 

the vector 𝒑(𝑘) for the non-faulty pressure of each node of the network  

 𝒑(𝑘) = [
𝑝1(𝑘)

⋮
𝑝𝑛(𝑘)

] (3) 

where 𝑝𝑖(𝑘)  represents the pressure of node 𝑖 at time 𝑘 without the presence of leak and n  is the number of sensors 

in the network. 

Then, leak scenarios are considered in simulation by introducing a leak at a time in each node of the network. The 

pressures of the sensors in case of each considered leak scenario are stored in the matrix: 

 𝑷𝒇 (𝑘) = [
𝑝1

𝑓1(𝑘) ⋯ 𝑝1
𝑓𝑚(𝑘)

⋮ ⋱ ⋮

𝑝𝑛
𝑓1(𝑘) ⋯ 𝑝𝑛

𝑓𝑚(𝑘)

] (4) 



where 𝑝
𝑖

𝑓𝑗(𝑘) is the pressure of the sensor 𝑖 at time instant 𝑘 when a leak is present at node 𝑗, m is the number of 

nodes in the network (possible leaks) and n  is the number of sensors in the network. 

Finally, using vector (3) and matrix (4), the sensitivity matrix S for each time instant of the horizon considered is 

computed as follows 

 𝑺(𝑘) =

[
 
 
 
 
 𝑝1

𝑓1(𝑘) − 𝑝1(𝑘)

𝑓1
⋯

𝑝1
𝑓𝑚(𝑘) − 𝑝1(𝑘)

𝑓𝑚
⋮ ⋱ ⋮

𝑝𝑛
𝑓1(𝑘) − 𝑝𝑛(𝑘)

𝑓1
⋯

𝑝𝑛
𝑓𝑚(𝑘) − 𝑝𝑛(𝑘)

𝑓𝑚 ]
 
 
 
 
 

 (5) 

where each element 𝑠𝑖𝑗(𝑘) measures the effect of leak 𝑓𝑗 in the pressure of sensor 𝑝𝑖  at the instant 𝑘. Thus, the 

sensitivity matrix is composed of (n × m) elements where each element is determined by computing the difference 

between the non-leaky and the leaky pressure obtained by simulation normalized with respect to the magnitude of 

the leak used  to obtain the sensitivity matrix. 

III. LEAK LOCATION SCHEMES 

Leak location is based on analyzing the residuals (1) along the proposed time horizon, trying to find some 

inconsistency between the pressure measurement and their estimated value in order to establish which node is the 

most affected and thus has the highest probability of presenting leakage.  In this paper, a comparison of five 

different methods to isolate leaks that use the sensitivity matrix (5) is performed. The proposed methods can be 

divided in direct and indirect methods. The direct methods can be classified as binary or non-binary. The non-binary 

direct methods considered are based on residual correlation, Euclidean distance and the angle of the residual vector 

with the leak signature vectors stored in the sensitivity matrix. On the other hand, the indirect method is based on a 

least-square optimization method. In all these methods, a sensitivity matrix (2) that quantifies the effect of all 

possible leaks in all nodes and pressure sensors in the network is needed to initiate the detection of the leak.  The 

five approaches are described in the following. 

A. Binarized sensitivity method  

The binarized sensitivity method works as follows (see Pérez et al. (2011a) for more details): 

a) The sensitivity matrices (5) are binarized according to an established threshold 



b)  𝑠𝑖𝑗
𝑏𝑖𝑛(𝑘) = {

1       𝑖𝑓 𝑠𝑖𝑗(𝑘) > 𝜌

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

where 𝑠𝑖𝑗
𝑏𝑖𝑛(𝑘) represents the element of the 𝑺𝒃𝒊𝒏(𝑘) sensitivity.  

b) The current residual vector 𝒓(𝑘) defined in (1) is computed and binarized in a similar way than the 

sensitivity matrix in the previous step 

𝑟𝑖
𝑏𝑖𝑛(𝑘) = {1      𝑖𝑓 𝑟𝑖(𝑘) > 𝛽

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

where 𝑟𝑖
𝑏𝑖𝑛(𝑘) are the elements of the actual residual vector 𝒓𝒃𝒊𝒏(𝑘). 

c) The residual vector is compared against each column of the sensitivity matrix. When the algorithm finds a 

matching at given time instant, i.e. 𝒓𝒃𝒊𝒏(𝑘) = 𝒔−,𝒋
𝒃𝒊𝒏(𝑘),  then the leak 𝑓𝑗  associated to the column j that 

matches is indicated as a candidate leak.  

d) Because the leaks are analyzed for a time horizon of 24 hours, it is necessary to count the coincidences 

found on previous step in order to find the leak with the maximum number of coincidences. As result of 

this comparison, a matrix 𝚽  is created in which the binary indicators of the existence or absence of the 

leak will be saved 

𝜙𝑗𝑘 = {
1     if 𝒓𝒃𝒊𝒏(𝑘) = 𝒔−,𝒋

𝒃𝒊𝒏(𝑘) 

0                       otherwise 
       𝑗 = 1, … ,𝑚 (8) 

and where k is the time instant. To calculate the leak in the time horizon, we look for the index that appears 

the most through the time horizon L and this index is assigned as the leak index during the considered time. 

This is formulated as follows: 

 𝛾𝑗 = ∑ 𝜙𝑗(𝑘) 

𝐿

𝑘=1

 (9) 

where 𝜸 is a vector that contains the number of fault indications for the possible leaks according to the row 

that is occupying. Thus, if the maximum of this vector is found, then the index of the node that contains the 

leak in the desired time horizon is obtained by 

𝑙𝑒𝑎𝑘𝑖𝑛𝑑𝑒𝑥 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗∈{1,⋯,𝑚}

(𝛾𝑗).   (10) 

 



e) Finally, the leak magnitude can be estimated using the residual vector (1) and the sensitivity matrix column 

corresponding to the candidate leak 𝑓𝑗 identified using (10). 

min𝑓𝑗
∑ |𝒓(𝑘) − 𝒔−,𝑗(𝑘)𝑓𝑗|

2
    𝐿

𝑘=1      (11) 

B. Angle between vectors method 

The angle method is based on evaluating the angle between the current residual vector 𝒓(𝑘) and each column of 

the leak sensitivity matrix as follows  

 𝛼𝑗(𝑘) = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝒓𝑻(𝑘)𝒔−,𝒋(𝑘)

|𝒓(𝑘)||𝒔−,𝒋(𝑘)|
)     𝑗 = 1… ,𝑚 (12) 

Then, the mean angle in the selected time horizon L is computed as: 

 𝛼�̅� =
1

𝐿
∑ 𝛼𝑗(𝑘)

𝐿

𝑘=1

    𝑗 = 1, … ,𝑚 (13) 

 and the candidate leak proposed is the one that presents the smallest mean angle 

 
 

 j


index
j 1,…,m

leak = arg min                                                                 (14) 

After locating the leak, its magnitude can be estimated using the residual vector and the leak sensitivity matrix using 

(11). 

C.  Correlation method 

 

The correlation method is based on correlating the current residual vector 𝒓(𝑘)  with each column of the leak 

sensitivity matrix as follows 

 
𝑐𝑗𝑘 =

∑ (𝑟𝑖(𝑘) − 𝑟(𝑘)̅̅ ̅̅ ̅̅ )(𝑠𝑖𝑗(𝑘) − 𝑠𝑗(𝑘)̅̅ ̅̅ ̅̅ ̅)𝑛
𝑖=1

√∑ (𝑟𝑖(𝑘) − 𝑟(𝑘)̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1
√∑ (𝑠𝑖𝑗(𝑘) − 𝑠𝑗(𝑘)̅̅ ̅̅ ̅̅ ̅)

2𝑛
𝑖=1

   𝑗 = 1, … ,𝑚 
(15) 

where ( )r k  is the mean of the k residual vector and 𝑠𝑗(𝑘)̅̅ ̅̅ ̅̅ ̅ represents the average along the j vector of the k 

sensitivity matrix. 



Then, the mean correlation in the selected time horizon L is computed and the candidate leak proposed is the one 

with the smallest value. 

 𝑐�̅� =
1

𝐿
∑ 𝑐𝑗(𝑘)

𝐿

𝑘=1

    𝑗 = 1, … ,𝑚. (16) 

Then, looking at the maximum correlation along the time horizon, we can find the leaky node as follows 

  
index j

j 1,…,m
leak = arg min (c ) .   

(17) 

As in the previous method, after locating the leak, its magnitude can be estimated using the residual vector and 

the leak sensitivity matrix using (11). 

D.  Euclidean distance method  

 

Alternatively to the previous methods, the Euclidean distance between the current residual vector 𝒓(𝑘) and each 

column of the leak sensitivity matrix can be used to isolate the leaks at a given instant time 

 𝑑𝑗(𝑘) = √∑(𝑟𝑖(𝑘) − 𝑠𝑖𝑗(𝑘)𝑓𝑛𝑜𝑚)
2

𝑛

𝑖=1

          𝑗 = 1,⋯ ,𝑚 (18) 

where fnom  is the nominal leak used to compute sij and is different from fj computed using (11). Then, the distance 

vector for the time horizon is calculated as   

 �̅�𝑗 =
1

𝐿
∑ 𝑑𝑗(𝑘)

𝐿

𝑘=1

     𝑗 = 1, … ,𝑚 (19) 

Since each element of this vector represents the Euclidean distance to every possible leak, we conclude that the 

candidate leak can be found determining the minimum value of that vector 

 
 

 


jindex
j 1,…,m

leak = arg min d  (20) 

This method only when the leak has the same magnitude as the one used to compute the sensitivity matrix. If it is 

not the case, it does not provide good results.  



Similarly to what is performed when using the previous methods, after the leak is located, its magnitude can be 

estimated using the residual vector and the leak sensitivity matrix using (11). 

E. Least square optimization method 

This method works in an opposite way than the other methods, i.e. it computes an inverse optimization problem in 

order to find an appropriate leak size that explains the pressure measurements present in every node. Then, it 

performs an analysis of the minimum error in order to find the node affected by a leak. 

This method also uses the leak sensitivity matrix and solves the following optimization problem for each 

candidate leak:  

1, ,j mj
j

L
2

f -, j j
f

k=1

J = min k - k fr s( ) ( )                                                (21) 

Then, the leaky node is found as the one that produces the smallest index  

  
jfJindex

j=1,…,m
leak = arg min  (22) 

As one can see, this method allows obtaining more information about the leak since it provides the leak size that 

fits the best for the observed pressure data. The leak that provides the smallest value in (22) is the candidate leak. 

IV. DESCRIPTION OF THE WATER NETWORKS USED IN THE EXPERIMENTS 

To test the aforementioned methodologies, two academic networks were used. The Hanoi network (from 

Fujiwara, 1990), and the Quebra network (provided as an example coming with EPANET software). As discussed in 

Section II, all the leaks are located in the nodes of the network. In simulation, this can be performed in two ways. 

The first one is to add an extra demand of water at a specific node and to use two patterns of water demands: one to 

simulate the non-leaky water demand and the other one to simulate the leak. A secondary is to find the 

corresponding emitter coefficient that provides the desired leak magnitude in the network. In (Rossman, 2000), it is 

shown that in EPANET the emitter coefficient is specified for individual leaks according to the equation:  

 𝐸𝐶 = 𝑄/𝐹𝑝 
𝑃𝑒𝑥𝑝 (23) 

where 𝐸𝐶 (in 
0.5

lps

m
 ) is the emitter coefficient, 𝑄 is the flow rate, 𝐹𝑝 is the fluid pressure and 𝑃𝑒𝑥𝑝 is the pressure 

exponent.  



  In the academic networks used in this paper, the leak is simulated as an extra demand with a unitary pattern along 

the time horizon considered, i.e. we will take into account that the leak is single and continuous along a determinate 

time window. In the contrary in the real case application of the Barcelona Network, the leak is simulated using an 

emitter coefficient approach described previously. This allows us to consider that leaks depend as well of the 

pressure in the node where they appear. 

   To compare the efficiency of each location method presented in Section III, changes in the leak magnitude, noise 

in the measurements and nodal demands were simulated. A time horizon window of 24 hours was considered for the 

simulations. Matlab
® 

and Epanet were combined to simulate the leaks and to obtain and analyze the network data 

using the algorithms proposed in the paper. 

A. Hanoi network 

 

This network is presented in Figure 2. It will allow us to analyze the effectiveness of the proposed methods in a 

network with big flows. 

The demand pattern is designed according to (Fujiwara et al 1990). A simulation of 24 hours with a sampling time 

of 15 minutes is carried out. This is because the demand is measured each 15 minutes. This gives a total of 97 

samples.  



 

Figure 2 Diagram of Hanoi network 

 

This network has 31 demand nodes with indexes from 2 to 32. A leak with a magnitude of 50 liters per second is 

used to compute the sensitivity matrices shown in Figure 3.  

 

Figure 3 Leak sensitivity matrices for the Hanoi network 

B. Quebra network   

 



This network is presented in Figure 4. It will allow analyzing the performance of the proposed methods using a 

network of bigger size than the Hanoi network. Quebra is a network designed according to the method presented in 

the EPANET webpage.  

 

Figure 4 Diagram of Quebra network 

 

In this network, the demand is measured with a sampling time of one hour. The simulation is carried out for 24 

hours giving a total of 25 samples (0-24h). The following parameters used in the simulation of the network are 

established: The network is composed of 55 nodes and the samples are taken every hour. The sensitivity matrices are 

calculated with a leak magnitude of 0.01 liters per second. Figure 5 shows the values of the sensitivity matrix for 

node 34 at the sample instant of maximum consume (left) and with a leak (right). 



 

Figure 5 Leak sensitivity matrices for Quebra network 

In Hanoi and Quebra academic networks, the leak magnitude used to compute the sensitivity matrix and those 

magnitudes for the simulated leaks are chosen according to the observed demands along the time horizon. The idea 

is to introduce leaks that, based on the considered, will affect the pressur in order to probe that the methodology can 

be applied. Later we will see what happens when we apply the methods in a real case.   

C. Barcelona network 

 

Finally, the proposed approach is applied to a real network simulated in EPANET. This network is located in 

Nova Icaria area in Barcelona, Spain. It is composed of 3320 nodes, where 1900 are demand nodes and the rest is 

used to simulate street or junction nodes. In our case, we propose to simulate the possible leaks for the total of 3320 

nodes. Using the method presented in (Pérez, 2009b), a first optimal sensor placement of 15 sensors where 

considered (see Figure 6). Later, taking budget restrictions of the Barcelona water company, 6 sensors were installed 

optimally located using the same method proposed in (Pérez, 2009b) (see Figure 7).  

Once we know the localization of the sensors, we can establish the parameters to compute the sensitivity matrices. 

When 15 sensors are used, sensitivity matrices are evaluated with a nominal leak of 3 lps which corresponds to an 

emitter coefficient of EC=0.48 and in the case of 6 sensors, we propose an EC=0.25. The reason for using these 

values comes from the fact that in a first trial we took 15 sensors within our experimentation, trying to isolate leaks 

whose magnitudes were between 0.7 and 6.3 liters per second. Then, when the first part of the work was done, we 

decided to change the size of the nominal leak, knowing that the leak sizes to be located, according to the water 

company, are between 0.7 and 3 liters per second. In the same way, we noticed from the results obtained in the first 



part of the experimentation that when the real leak is close to the value of the nominal leak, it can be located more 

easily. 

 

Figure 6 Optimal sensor placement in the case of 15 sensors for the Nova Icaria network. 

 

Figure 7 Optimal sensor placement in the case of 6 sensors as validated by the water company for the Nova Icaria network. 

 

V. APPLICATION TO THE ACADEMIC NETWORKS 

A. Experiments 

 

In the case of the academic networks, the following experiments were developed to test the proposed methodologies: 

1. Impact analysis of the leak magnitude. 



2. Application of random demand noise between ±2% and ±4% of the medium demand along the time horizon. 

3. A study of the effect of the measurement noise, applying Gaussian white noise around of ±2% of the pressure 

measurements. 

4. Application of both uncertainties introduced in Step 2 and Step 3 

5. Finally, both effects were tested with 200 random leaks location with and without noise whose size depends on 

the network, i.e., with sizes around 20 to 80 liters per second for the Hanoi Network, and from 0.01 to 1 liter per 

second for the Quebra network.  

In all the experiments performed, the proposed angle method is compared first with the least square optimization 

method and then with the correlation method. In all the cases, the efficiency achieved by each method is evaluated 

and compared with the one achieved when all the network pressures are fully accessible. 

B. Results 

 

The results of tests 1, 2, 3 and 4 are shown in Table I and Table III. It can be observed that each method delivers 

very good results. The results of test 5 are shown in Table II and Table IV where it can be observed that best method 

is the proposed angle between vectors. 

In all the tables, the effectiveness is shown in percentage obtained according to the number of leaks detected 

satisfactorily divided by the number of tests realized. It is important to mention that the network structure has an 

important impact in the results. It means that introducing appropriate structural changes in the network, even better 

performance of the methods could be achieved.  

Table I 

Efficiency (%) in tests applied to the Hanoi network 

 TEST OF EFFECT OF 2% NOISE ON DEMAND AND MEASUREMENTS  

Leak size Binarization Correlation Angle Distance Optimization 

50 51.61 96.77 100 100.00 96.77 

10 38.71 83.87 90.32 3.23 83.87 



20 38.71 93.55 96.77 3.23 87.1 

30 38.71 90.32 96.77 6.45 90.32 

40 51.61 96.77 100 32.26 100 

60 58.06 96.77 100 54.84 93.55 

70 58.06 96.77 100 45.16 96.77 

80 61.29 96.77 100 38.71 100 

Average efficiency 48.76 93.84 97.93 35.48 93.38 

 

Table II 

Efficiency (%) in random tests for the Hanoi network 

  

Test 
Binarization 

method 

Correlation 

method 

Angle 

method 

Distance 

Method 

Optimization 

method 

No noise 100 100 100 33.33 100 

Demand noise 86 90 98 46.67 94 

Measure noise 60 70 98 60 98 

Noise in both 48 60 98 46.67 96 

 

Table III 

Efficiency (%) in tests applied to Quebra network 

 TEST OF EFFECT OF 2% NOISE ON DEMAND AND MEASUREMENTS  

Leak size Binarization Correlation Angle Distance Optimization 

0.01 62.96 88.89 92.59 98.15 88.89 

0.03 46.3 79.63 81.48 1.85 85.19 

0.02 66.67 94.44 94.44 46.30 94.44 

0.08 79.63 98.15 98.15 20.37 98.15 

0.15 83.33 96.3 98.15 16.67 98.15 

0.2 85.19 96.3 98.15 16.67 98.15 

Average efficiency 69.2 92.05 93.63 19.04 93.69 

 



Table IV 

Efficiency (%) in random tests for Quebra network 

  

Test 
Binarization 

method 

Correlation 

method 

Angle 

method 

Distance 

method 

Optimization 

method 

No noise 98 100 100 26.67 100 

Demand noise 98 100 100 33.33 100 

Measure noise 72 94.5 97.5 40.00 98 

Noise in both 71.5 94.5 98.5 13.33 98.25 

 

Seeing tables presented above, we are able to conclude that binarization and Euclidean distance methods are not 

efficient enough locating leaks. In the case of binarization method, this may be due to the fact that we have to 

establish a threshold in order to binarize the vectors and in several cases it is not possible to know the correct value. 

In the case of the Euclidean distance, noise factors and demand pattern changes tend to decrease the similarity 

between corresponding vectors and becomes difficult the location. However, we have seen that correlation, 

optimization and the proposed angle method can be efficient techniques in the leak location task. After analyzing the 

result of the tests, it can be concluded that methods based on optimization and vector angle provide excellent results.  

VI. APPLICATION TO THE BARCELONA WATER NETWORK 

A. Experimental scenarios 

 

From the tests performed in the academic networks, we noticed that the angle, optimization and correlation 

methods have a better efficiency regarding the localization task when all the pressure measurements are available.  

In order to test the performance of the considered methods in the real case where not all pressure measurements are 

available, several scenarios have been proposed in this paper. In these scenarios, we test: 

- the location of a nominal leak without noise, 

- the location of non-nominal leak without noise, 

- the location of non-nominal leak with noise.  

In the previous scenarios nominal means that the leak has the same magnitude as the one used to compute the 

sensitivity matrices, while non-nominal means that the leak has a different magnitude. 



This section shows the results obtained when considering only one of the leaky nodes, subject to different conditions 

corresponding to the scenarios described below and for the methods considered in the network. In the figures 

showing leak location results, the nomenclature presented in Figure 8 will be used.  

 

Figure 8 Nomenclature for the leak location results. 

1) 15 sensors case 

 

The first scenario involves the presence of a nominal leak affecting the network. In this case, the three methods 

find exactly the node where the leak is present. Figure 9 presents the location of a nominal leak without noise 

applying the angle method. In that case, the correct location of the leak node is achieved, as noticed, the absence of 

noise and nominal leak magnitude tested, facilitate the location of the leak. 

 

Figure 9 Location of a nominal leak without noise applying the angle method.  

  The second scenario involves the presence of a nominal leak taking also into account noise in the measurements 

and in the demands. In this case, the method efficiency is reduced. In Figure 10, we can see how the angle method 



locates the leak near to the real leak, while in Figure 11 we see that using the optimization method, the distance is 

slightly higher than using the angle method. 

 

Figure 10 Location of a nominal leak in presence of noise and when applying the angle method. The leak node is found only 6.14 meters 

farther than the real leakage node. 

 

Figure 11 Location of a nominal leak in presence of random noise, when applying optimization method The leakage node was located 14.24 

meters farther than the real leak. 

 



The third scenario corresponds to the case where there is a non-nominal leak present in the network and where 

the noise can be taken into account or not. In the experiments, we took the example of leaks whose magnitude 

varies from 0.7 and 6.3 liters per second. Figure 12 shows the behavior of the angle method when a non-nominal 

leak is occurring, despite the presence of noise, a leak is found near of the correct leak. Figure 13 shows the same 

experiment using the optimization method, where the distance found is higher than with the angle method. 

Finally, in Figure 14, we show the case of non-nominal leak and when random noise is added using the 

correlation method. In that case, the behavior is very similar to the one obtained with the optimization method. 

 

Figure 12 No nominal leak location using the angle method. Despite the presence of noise, the leakage node is found at a distance of only 5.92 

meters from the real leak location. 

 



 

Figure 13 Leak location of a 0.7 lps magnitude leak in case of random noise using the optimization method. The leakage node was located 

142.52 meters from the real leak. 

 

 

Figure 14 No nominal leak location using the correlation. The leakage node is found at 151.44 meters from the real leak node. 

 



2) 6 sensors case 

 

Similarly to the experiments where 15 sensors are involved, we performed the analysis for the case where 6 

sensors are installed. Below, we detail the behavior of the methods for the same type of scenarios as the ones 

previously presented. When a nominal leak without noise affects the network, the three methods find the exact leak 

location. The behavior of the methods in the case of a non-nominal leak and taking into account the presence of 

random noise is shown in the following. In Figure 15, we observe that using the angle method, even when only six 

sensors are present within the network, the potential leak is located about only 82 meters from the real leak. Figure 

16 shows the behavior of the optimization method taking into account the same case. As we can see, the leak is 

located further than using the angle method. Finally, using the correlation method to locate the same leak, the 

distance obtained is farther than the one obtained with the angle method but nearer than using the optimization 

method as we can see in Figure 17. 

 

Figure 15 Location of a non- nominal leak of a 6.3 lps magnitude in case of random noise. Using the angle method, the leakage node was 

located 82.76 meters from the real location. 



 

Figure 16 Location of a non-nominal leak using the optimization method. The presence of noise causes that the leakage node is found at a 

distance of 270.06 meters from the real leak node. 

 

 

Figure 17 Location of a non-nominal leak of a 6.3 lps magnitude in case of random noise using the correlation method, the leakage node was 

located 149.72 meters from the real leak. 



 

Another important case is when a leak begins during the process of simulation in a given point of the time horizon. 

Such a situation is shown in Figure 18 where the pressure and the demand change when a leak appears at the hour 8. 

Pressure is measured in meters water column and demand in liters per second.  

As one can see, the difficulty in this case is that when the leak appears at a given instant of the time horizon, it 

may be difficult to discriminate between measurement noise and a significant variation, i.e. the very small pressure 

change can lead to some confusion in the location process. 

 

Figure 18 Behavior of the demand and the pressure in case of a single leak appearing at the 8th hour in the time horizon. It shows that the 

pressure varies only slightly and that the noise may affects the detection and location. 

 

B. Results 

 

In the previous section, we have seen examples of results obtained for different types of scenarios. Here, we give a 

brief summary of the results obtained for each experiment performed and also a result discussion is provided.  

 In the following, we find the tables that sum up the efficiencies for each experiment. 



1) Angle method 

 

We first present the results in the case of 15 sensors and then the results in the case of 6 sensors. With 15 sensors, 

by computing a test where every possible leak was considered (i.e. we have simulated one by one all the possible 

leaks in the network), we observe how many have been found at the correct location which gives us the 

corresponding efficiency percentage of location. After performing this test, we found that the angle method is able to 

find the exact leakage node for 83.04% of the nodes, while almost 90% are localizable within a distance lower than 

to 2 meters from the real leak. According to the results of this test, we can say that 230 of the 3220 nodes are non-

localizable in the network or have a low level of confidence. In Table V, we can see the efficiency for a test where 

100 leak simulations have been performed using the angle method and 15 sensors. We observe that the mean 

distance even in cases with noise is lower than 200 meters.  

Table V 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE ANGLE METHOD AND USING 15 SENSORS 

Leak Size (lps) 
Maximum Distance 

(m) 
Mean Distance (m) Distance Between Ranges* (%) Random Noise 

3 (Nominal) 7.85 0.24 96 No  

0.7 504.86 75.46 61 No 

1.7 602.52 72.79 59 No 

6.3 728.11 75.95 60 No 

3 (Nominal) 331.44 109.66 60 Yes 

0.7 706.32 191.82 36 Yes 

1.7 723 135.88 51 Yes 

6.3 564.4 86.91 71 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

With 6 sensors and performing the mentioned location ability test, the ability to find the exact node is now 

80.06%, 88% of possible leaks are located within a distance lower than 2 meters and there are 266 non-localizable 

nodes. In Table VI, we can see the efficiency of the angle method when only 6 sensors are installed.  

Table VI 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE ANGLE METHOD AND USING 6 SENSORS 

Leak size (lps) 
Maximum distance 

Mean distance (m) Distance between ranges* (%) Random Noise 



(m) 

1.67 (Nominal) 383.37 17.50 82 No  

0.7 471.19 74.44 58 No 

3 284.22 53.03 64 No 

6.3 444.71 129.11 34 No 

1.67 (Nominal) 479.41 101.95 66 Yes 

0.7 449.15 119.88 58 Yes 

3 525.97 103.88 68 Yes 

6.3 554.85 112.27 58 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

These experiments show that the angle method is able to detect and isolate single leaks in a real network even in 

the worst case with a maximum distance of approximately 700 meters. However, it is remarkable to note that the 

mean distance for each experiment is close to 100 meters in presence of random noise. It is important to note that 

even when the number of sensors is reduced, the efficiency of the method is not severally affected. It means that we 

may reduce significantly the instrumentation of the network without affecting too much the efficiency of the 

location. 

 

2) Optimization method 

 

Similarly to the angle method,  the “leak location test” was performed for the optimization method. In the case of 15 

sensors, by computing the mentioned test, we found that the method is able to find the exact leakage node for 

81.08% of the nodes, while 89% are localizable within a distance lower than to 2 meters from the real leak. 

According to the results of this test, we can say that 212 of the 3220 nodes are non-localizable in the network or 

have a low level of confidence. With 6 sensors and according to the leak location test, the capacity of finding the 

exact node is in the case of optimization method 74.25%, while the percentage of finding a node within a distance 

lower than 2 meters is 84.78%. In  

 



Table VII and Table VIII we can see the efficiency of the optimization method in the case of 15 and 6 sensors 

installed respectively. 

 

 

Table VII 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE OPTIMIZATION METHOD AND USING 15 SENSORS 

Leak size (lps) Maximum distance (m) Mean distance (m) Distance between ranges* (%) Random Noise 

3 (Nominal) 1.04 0.04 100 No  

0.7 476.19 84.34 52 No 

1.7 1250.9 55.12 72 No 

6.3 551.56 66.07 61 No 

3 (Nominal) 331.44 109.66 56 Yes 

0.7 1218.6 188.41 37 Yes 

1.7 1046.4 146.07 56 Yes 

6.3 760.63 99.18 68 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

Table VIII 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE OPTIMIZATION METHOD AND USING 6 SENSORS 

Leak size (lps) Maximum distance (m) Mean distance (m) 
Distance between ranges* 

(%) 
Random Noise 

1.67 (Nominal) 15.04 1.34 88 No  

0.7 754.06 89.48 56 No 

3 1251.8 123.85 40 No 

6.3 768.85 181.1 26 No 

1.67 (Nominal) 794.52 143.95 56 Yes 

0.7 595.56 150.27 48 Yes 

3 684.16 155.86 56 Yes 

6.3 769.16 209.92 44 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

We have to highlight that even when the optimization method behavior is not as good as the angle method, it has 



the advantage that it provides an approximate leak magnitude and an error in the optimization that can be exploited 

as an extra information in order to improve the leak detection and location process.  

As we can see from the result tables of the optimization method, the location process is affected when we have 

low number of pressure sensors in a network with a large number of nodes. Moreover, this method is strongly 

affected when the difference between the nominal and the real leak is large. Nevertheless, these results proved that 

the method can be applied to a real network.  

 

3) Correlation method 

 

Finally, the results obtained with the angle and least square optimization methods are compared to the behavior of 

the correlation method that has been already applied to a real network in (Pérez, 2011a). We performed the same 

experiments with and without noise using such correlation method. Using the leak location test, we found that the 

correlation method is able to find the exact leakage location for 81.58% of the nodes when using 15 sensors and 

71.67% when using 6 sensors. The method locates 87% and 80% respectively within a distance lower than 2 meters 

from the real leak. Also, with this approach, there are 242 and 408 non-localizable nodes in the case of 15 and 6 

sensors, respectively. Results obtained with the exhaustive tests for 15 sensors case are shown in Table IX while the 

results for the case of 6 sensors installed are shown in  

 

 

Table X. 

 

Table IX 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE CORRELATION METHOD AND USING 15 SENSORS 

Leak size (lps) 
Maximum distance 

(m) 
Mean distance (m) Distance between ranges* (%) Random noise 

3 (Nominal) 11.82 0.55 92 No 

0.7 204 46.37 64 No 

1.67 292.43 41.74 74 No 

6.3 216.71 49.29 64 No 



3 (Nominal) 646.21 161.07 42 Yes 

0.7 1223.9 368.68 20 Yes 

1.67 982.49 223.59 46 Yes 

6.3 585.25 94.03 70 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

 

 

 

 

Table X 

EFFICIENCY IN THE RANDOM LEAKS LOCATION WITH THE CORRELATION METHOD AND USING 6 SENSORS 

Leak size (lps) 
Maximum distance 

(m) 
Mean distance (m) Distance between ranges* (%) Random noise 

1.67 (Nominal) 757.28 26.64 76 No 

0.7 453.46 86.88 52 No 

3 757.28 107.6 56 No 

6.3 614.24 136.15 40 No 

1.67 (Nominal) 920.42 240.39 30 Yes 

0.7 982.43 293.97 30 Yes 

3 893.7 193.47 36 Yes 

6.3 842.73 144.61 58 Yes 

*Ranges are: 3m for nominal leak without noise, 50m for non-nominal leak without noise, 100m for leak with noise. 

 

As we can see, both the mean distance and the distance between expected ranges reach higher values when using 

the correlation method than with the two other leakage location strategies. It means that even when the correlation 

methods can be applied to a real network with clearly efficient results, we have seen that the leak localization can be 

improved using other available methods that can be compatible with the leak sensitivity approach. 

 

C. Test in a real leak scenario 

 



The network described in Section IV.C is a part of the Barcelona water distribution network. In order to test our 

proposed methodology in a real case, the water company provided us with data of a real leak occurred between 

00:00 hours of December 20, 2012 and 6:30 hours of December 21, 2012, i.e. 30 hours and 30 min of a continuous 

leak. Then, in our case, we use a time horizon of 30 hours taking into account data from 00:00 hours until 6:00 hours 

of the next day.  

The resolution of the sensors strongly affects the performance of the leak location. In our case, the sensors 

installed were beneficiating of a 10cm resolution. In order to improve the resolution, the sensors were measuring the 

pressure each 10 minutes along the time horizon, while the residuals were computed with an hourly scheme such 

that each hourly measure is obtained as: 

6

10min

1

1

6 khr

k

p p


   

where phr  represents the pressure obtained after 6 measurements in an hour and p10min represents each 

measurement obtained with the sensors at a time step of 10 minutes. 

In a real application, some practical problems are quite common. In particular, one of the six sensors installed in 

the network was not working, and then, the leak location was performed using only five sensors. An emitter 

coefficient of 0.92 has been chosen to compute the sensitivity matrices. 

In Figure 19, we can see the probability of leak represented with the same nomenclature as the one proposed 

previously in the experimental scenarios. The leakage node was located at 93.204 meters from the real leak. It is an 

important result that demonstrates the efficiency of the methodology proposed when using real data. 

 



 

Figure 19 Real leak scenario location using angle method 

  

VII. CONCLUSION 

In this paper, a new approach for model-based leak detection and location in WDN, which considers an extended 

time horizon analysis of pressure sensitivities, has been proposed. Five different ways of using the leak sensitivity 

matrix to isolate the leaks have been described. The performance of these methods has been compared when applied 

to two academic small networks (Hanoi and Quebra networks). Finally, the three methods with better performance 

are applied to a district metering area (DMA) of the Barcelona WDN. Results have shown that the angle method 

increases the capability of isolating leaks in a great number of cases. Moreover, achieved distances between the 

estimation of the leak position and its real location are reduced by 200 meters in the presence of noise. Another 

interesting point is that we observed how reducing the number of sensors does not seriously affect the performance 

of the methods. A final important achievement of this work is the test of the proposed angle method when a real leak 

occurred in the network. In this test, we achieved close to the real leak location and demonstrated that the method is 

already applicable in real leak scenarios.  

As future work, we would like to perform an improved demand calibration and a better sensors placement based 

on the same principle as our location method in order to investigate the relationship between sensor placement and 



the method used for leak location. 
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