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Abstract— Wind turbines working close to other turbines
experience interactions that affect the power production. These
interactions arise as a consequence of wakes caused by up-
stream wind turbines. In order to achieve a more effective
and precise control of the power generated by wind farms,
the control strategy must consider these interactions. However,
the phenomena involved in wake effects are complex especially
in cases of large number of turbines. This paper presents
the implementation of a gradient estimation-based algorithm
as a model-free control for two different control schemes
aimed to maximize the energy capture of a wind farm. One
control is centralized, leaving to a supervisor the task of
command computation and the other topology is decentralized,
distributing the performing generation among wind turbines.
This latter scheme aims to increase the reliability of the wind
farm operation by reducing the communications needed to
fulfill the objective of maximizing energy capture. Both control
schemes are evaluated by simulation in the case of three-turbine
wind farm.

I. INTRODUCTION

Nowadays, wind turbines rarely operate geographically
isolated. Instead, they are commonly gathered in groups
called wind farms, which inject into the electrical power
grid values comparable to conventional power sources. As
a consequence of the high penetration levels of wind power
plants, it becomes crucial to control wind farms in order
to avoid undesirable effects in power systems and also to
provide ancillary services. Initially, these control strategies
were based on aggregate models representing wind farms as
a large equivalent wind turbine. However, this approach does
not take into account the interactions among turbines caused
by wakes. A turbine located in the path of wakes produced
by close turbines reduces the wind speed and is also exposed
to a more turbulent air flow. As a result, a common command
signal for all the wind turbines in the farm may not result so
effective than a control strategy using the particular operating
conditions of each turbine.

Control strategies considering non-aggregated models
have been investigated recently. The main difficulty in this
line is the complexity of the phenomena involved in the
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d’Ajust Universitaris i de Recerca AGAUR.

turbine interactions and wakes. For this reason, most of the
results seek to use model-free control techniques. Reliability
is also an important point to consider so the strategies
also aim at reducing the use of communication channels.
Marden et al. [5] use the safe experimentation dynamics to
propose a distributed control to maximize the energy capture
by employing local information and the value of the total
power produced by the wind farm. In this game-theoretical
approach, the total power is optimized by applying random
perturbations to the control variables. These control variables
are updated if an improvement of the total generated power is
obtained, and are not updated otherwise. An improvement to
this strategy is presented in [1], where the proposed control
approach only uses local information and achieves a faster
convergence with algorithms exploiting estimation of the
gradient of the objective function, although the optimum is
not global. Other works like [3], [9] use distributed model
predictive control aiming to reduce loads and improving
energy capture. The convergence is faster but the control
design requires a wind farm model.

The main contribution of this paper is the implementation
of a gradient-estimation-based algorithm as a model-free
control approach for two different control schemes. The
topologies comprise a centralized topology with a unique
algorithm, and a typical decentralized control scheme with
a controller per each wind turbine. Besides, the proposed
algorithm is inspired in a population game [7], whose set of
strategies corresponds to different coordinates in the domain
of an unknown function that is desired to maximize. Then,
gradients are estimated based on a unique (or multiple)
measurement(s) as in [8], corresponding to the strategies
in the population game. Finally, an update of the set of
strategies depending on the estimated gradients is made, and
the routine repeats.

It is important to highlight that the proposed algorithm
in this paper requires local information (i.e., each turbine
requires information about its own control signal) and the
value of the total power produced by the wind farm as in
[5]. However, different from [5], the proposed algorithm does
not make random experimentation to seek an improvement
in the generated power. In contrast, the proposed algorithm
uses gradient estimation as in [1]. Nevertheless, there are two
differences between the algorithm in [1] and the proposed
algorithm: i) the proposed approach uses multiple directions
of gradient estimations for each wind turbine based on stored
information, instead of only one gradient estimation per each
wind turbine; and ii) the proposed algorithm converges to
the global solution since it disposes of information about the



total generated power.
The remainder of this paper is organized as follows.

Section II presents the problem of controlling wind farms
and wake modeling. Section III introduces the proposed algo-
rithm based on gradient estimation and population dynamics.
Section IV shows a centralized scheme, and the decentralized
scheme. Afterwards, Section V presents results of a case
study with three wind turbines in a path topology for the
two discussed control schemes. Finally, concluding remarks
are presented in Section VI.

Notation: Calligraphy letters are used to denote sets,
e.g., S . The column vectors are denoted with bold font,
e.g., y. Every sub-index refers to elements corresponding
to strategies in a population, e.g., si(k) refers to a vector
associated to strategy i in a discrete time k. The cardinality
of a set is denoted as | · |, and the sign function is denoted by
sgn(·). Finally, R≥0 denotes the set of all the non-negative
real number and R>0 denotes the set of all positive real
numbers.

II. PROBLEM STATEMENT

Consider a wind farm composed by m wind turbines and
let W = {1, ...,m} be the set of turbines. The power
generated by a turbine i ∈ W is given by

Pi(ai, Vi) =
1

2
ρACP (ai)V

3
i , (1)

where ρ is the air density in kg/m3, A is the area swept by
the wind rotor in m2, and Vi is the wind speed experienced
by the turbine in m/s. In energy capture maximization, the
power coefficient CP can be considered as a function of the
axial induction ai according to

CP (ai) = 4ai(1− ai)2. (2)

For the purpose of wind farm control, the variable ai is
considered as the control input of the wind turbine. The
maximum power extraction is achieved when ai = 1/3.

In a wind farm, the energy captured by each turbine
depends not only on the freestream wind speed but also on
the interactions among turbines caused by the wake effects.
These interactions depend on the geographical distribution of
the turbines in the farm and on the wind direction. Figure 1
illustrates a simple wind farm layout of m turbines and the
wakes generated by other downstream turbines when the
freestream wind speed V∞ is perfectly aligned with all the
turbines. The wake effects on each turbine are quite complex,
but it can be obtained a proper estimation with rather simple
models such as the proposed in [2]. In the case that V∞ is
aligned with all the turbines, the wind speed experience by
the turbine i can be computed as

Vi = V∞

1− 2

√ ∑
j∈W:xj<xi

(ajcji)2

 , (3)

where cji = (Dj/(Dj + 2β(xi − xj)))
2, with Dj as the

diameter of the wind rotor in m, xj the position the turbine,

V∞

x1 x2

. . .

xm

V∞

Fig. 1. Illustration of a simple wind farm layout and the corresponding
wake effect.

and β a roughness coefficient that defines the slope of the
wake when passing through a turbine.

The control objective is to maximize the total power
captured by the wind farm

PT (a) =
∑
i∈W

Pi(a). (4)

The idea is to find the vector of axial coefficients
a = [a1, a2, . . . , am]> in order to maximize the total power
PT produced by the wind farm. As a consequence of the
wake effects, the maximum may not be reached at ai = 1/3
for all i ∈ W since turbines located upstream reduce the
wind speed experienced by the rotor of downstream turbines.

Due to the complexity of the expressions and the uncer-
tainty on the model parameters, it is desirable that the con-
sidered control algorithms do not depend on both the wake
and turbine models. This is the purpose of the algorithm
proposed in the next section.

III. ALGORITHM

The problem that the algorithm solves is to maximize an
unknown function f(y), where y ∈ Rm, and f : Rm 7→
R. This section presents the different components of the
proposed algorithm. The algorithm is developed based on a
population game that is solved at each iteration, and by using
the distributed gradient estimation proposed in [8]. Consider
a function with the mapping f : Rm 7→ R. Then, consider
two coordinates in the domain of f , i.e., c,d ∈ Rm. It is
assumed that the measurements f(c) and f(d) are available
in the coordinates c and d, respectively. The estimation of
an increasing rate and direction over the function f between
the points c and d is given by

G(c,d) = (f(d)− f(c))
d− c

|f(d)− f(c)|
.

Notice that the function G has a subtle modification
from [8] regarding the magnitud of the gradient. This has
been made since the requirement from the function G in



the proposed algorithm is mainly the information about an
increasing direction.

A. Population game approach

Consider a population with a finite and large number of
agents, which are elements in the population able to make
decisions. There are n available strategies in the population
every discrete time k ∈ Z≥0 (with a sampling time given by
∆t ≥ τ ) associated to a coordinate, then it is defined a set
of indices for the n strategies given by I = {1, ..., n}. Each
agent selects a strategy from the set of strategies denoted
by S(k) = {s1(k), ..., sn(k)}, where si(k) ∈ Rm, for all
i ∈ I, and S(k) ⊂ Rm. The scalar value pi(t) ∈ R≥0, 0 ≤
t ≤ τ , where t is the continuous time, is the proportion of
agents that are selecting the strategy si(k) ∈ S(k). All the
proportion of agents selecting the different strategies form a
strategic distribution or population state denoted by p(t) ∈
Rn, 0 ≤ t ≤ τ .

Moreover, the set of all possible population states is
given by a simplex denoted by ∆ = {p(t) ∈ Rn

≥0 :∑
i∈I pi(t) = 1, 0 ≤ t ≤ τ}, and the set of population

states in the interior of the simplex is denoted by int∆ =
{p(t) ∈ Rn

>0 :
∑

i∈I pi(t) = 1, 0 ≤ t ≤ τ}. Agents
have incentives to switch among available coordinates in
the population according to a fitness function given by
Fi(pi(t)) = (f(si(k)) − π)pi(t), 0 ≤ t ≤ τ , for all i ∈ I,
where π ∈ R>0 is an upper bound such that π > f(si(k)),
for all i ∈ I. This constant value affects all the fitness
functions to ensure that Fi is decreasing with respect to
pi(t). Then, it is ensured that the population game is stable
as defined next [7].

Definition 1: A population game F : ∆ 7→ Rn is a stable
game if z>DFz ≤ 0, for all z ∈ ∆T , p ∈ ∆, where ∆T is
the tangent space of the simplex given by ∆T = {z ∈ Rn :∑

i∈I zi = 0}. ♦
Additionally, suppose that the possible interaction among

agents choosing different coordinates is given by an undi-
rected non-complete communication graph Gc = (Vc, Ec),
where Vc = I is the set of vertices or nodes representing the
players, and Ec = {(i, j) : i, j ∈ Vc} is the set of edges or
links determining possible communication and information
sharing among strategies. The set of neighbors of the node
i ∈ Vc is given by Nci = {j : (i, j) ∈ Ec}.

In the proposed algorithm, the proportion of agents pi(τ)
represents a quality assigned to the strategy si(k) evaluated
in a time τ , i.e., how good the strategy maximizes the
function f with respect to the other available strategies S(k)
in the discrete time k ∈ Z≥0. The set of strategies S(k) has
an update based on gradient estimations over the function f
and the different qualities for all the strategies p ∈ Rn.

Remark 1: It is proposed to solve the population game
by using the distributed replicator dynamics [6]. Then, if the
sampling time τ is big enough, then p∗(τ) ∈ ∆ is the Nash
equilibrium of the game. Otherwise, the quality of strategies
at time k ∈ Z≥0 corresponds to a transitory tendency of the
proportion of agents in the population. Furthermore, τ is one
of the tuning parameters in the proposed algorithm. ♦

B. Using multiple measurements at each iteration

Suppose the simplest population of two strategies
S(k) = {s1(k), s2(k)} forming a communication graph1

Gc. For the initial condition, the population game has
two arbitrary strategies at discrete time k = 0 given by
s1(0) ∈ Rm and s2(0) ∈ Rm, respectively; and an arbitrary
initial population state p(0) ∈ int∆. The associated fitness
functions are given by F1(p1(t)) = (f(s1(k))−π)p1(t) and
F2(p2(t)) = (f(s2(k))− π)p2(t).

Remark 2: It is assumed that at each discrete time k ∈
Z≥0, the evaluation of the unknown function f(si(k)) is
measured in the corresponding node i ∈ Vc and for all i ∈ I.

♦
Since strategies with indices 1 and 2 dispose of informa-

tion each other, then the gradients G(s1(k), s2(k)) at node 1
and G(s2(k), s1(k)) at node 2 over f , can be determined and
agents can make decisions within the population. The update
of strategies in the population game is made as follows:
if f(s2(k)) > f(s1(k)), then strategy s1(k) changes to
another strategy in direction of player s2(k) to get closer to
it, whereas strategy s2(k) changes in opposite direction of
s1(k) getting farther, and avoiding a decreasing on the fitness
function that is offered by agents in the next iteration.

In the updating strategy process, strategies with more
quality have less change than those with less quality. More
change in the update is assigned to those with less associated
quality. The factor of change assigned to the updating of the
strategy si(k), i ∈ I is denoted by

θi(k) = (1− pi(τ))γ,

where γ is a common tuning factor for all strategies de-
termining the rate of change of θi(k), for all i ∈ I. For
two strategies with indices i, j ∈ I suppose that f(si(k)) >
f(sj(k)), then it is expected that pi(τ) > pj(τ). Conse-
quently, more change factor is assigned to the updating of
strategy sj(k) than to the updating si(k), i.e., θi(τ) < θj(τ).
Furthermore, it is proposed to consider another parameter
given by an exploration factor over the function f in the
strategy updating process given by a random value δ ∈
[−ε ε]m, ε ∈ R. Finally, the updating of strategies is given
by

si(k + 1) = si(k) +
θi(k)

|Nci|
∑

j∈Nci

G(i, j) + δ, ∀i ∈ I.

Figure 2a) shows a case of four strategies forming
a star communication graph Gc = (Vc, Ec), where
Vc = {1, . . . , 4}, and Ec = {(1, 2), (1, 3), (1, 4)}. For
the example presented in Figure 2a), f(s1(k)) > f(s3(k)),
f(s2(k)) > f(s1(k)) and f(s4(k)) > f(s1(k)), where
s1(k), s2(k), s3(k), s4(k) ∈ R2, and f : R2 7→ R. It can be
seen the superposition of influences of strategies with indices
2, 3, and 4 over the updating of strategy with index 1.

1In this algorithm, the communication graph is undirected, connected,
and non-complete. The estimation of the gradients is made over this graph
with partial information, i.e., each strategy estimates a gradient based only
on information from its neighbors.
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Fig. 2. Example of gradient estimation with four strategies
S(k) = {s1(k), s2(k), s3(k), s4(k)} (n = 4) and f : R2 7→ R (m = 2).
Vectors illustrate the direction for the strategies update and the superposition
of influences over strategy with index 1. a) Various available measurements
at each iteration, b) One available measurement at each iteration.

Notice that this approach is suitable in cases where there
are n available measurements of the function at the same
k ∈ Z≥0, i.e., at each iteration it is necessary to have the
values for the function corresponding to the strategies in the
population game. However, modifications over the algorithm
can be made to solve maximization problems in cases with
less available information at each iteration as shown in the
next section.

C. Using one measurement at each iteration

In this case, consider the population game introduced in
Section III-A. There is a set of n strategies at k ∈ Z≥0 given
by S(k) = {s1(k), ..., sn(k)}. It is important to clarify that in
this approach the undirected communication graph Gc must
be a complete graph2. Moreover, an algorithmic connected
undirected non-complete graph is introduced, denoted by
Ga = (Va, Ea), which is used by the algorithm to make
the gradient estimation.

In order to initialize the algorithm, suppose that, at k = 0,
the measurements corresponding to the unknown function
evaluated for the n strategies, i.e., f(s1(0)), ..., f(sn(0)) are
known. Notice that since it is necessary to have n measure-
ments to initialize the algorithm, and that each measurement
is taken every time determined by τ , then the initial condition
for the algorithm is guaranteed at least in a time given by
nτ .

Remark 3: In this case, there is only one available mea-
surement at each k ∈ Z≥0 given by f(s1(k)), and it is
assumed that this measurement is made at k ∈ Z≥0 by the
node 1 ∈ Vc for the strategy with index 1 ∈ I. ♦

In the algorithm, all the strategies are updated every
iteration. However, in the algorithm only one new mea-
surement appears at each iteration. The modification of the
algorithm to treat the constraint of available information at
each iteration is as follows:

s1(k + 1) =s1(k) +
θ1(k)

|Na1 |
∑

j∈Na1

G(1, j) + δ,

si(k + 1) =si−1(k), i = {2, ..., n}.

2Although the information sharing among the strategies must be guar-
anteed by a complete graph, this algorithm can be implemented for
decentralized control solutions as in the control design proposed in this
paper.

Figure 2b) shows an example with only one available mea-
surement at each iteration given by f(s1(k)). Notice that
at the next iteration k + 1, the evaluation of functions is
performed as f(s2(k + 1)) = f(s1(k)), f(s3(k + 1)) =
f(s2(k)), and f(s4(k+1)) = f(s3(k)), which is information
already stored by the algorithm.

IV. MODEL-FREE CONTROL OF WIND FARMS

For the defined set of wind turbines W , there is a
topology represented by an undirected connected graph
Gt = (Vt, Et), where Vt = W is the set of nodes
representing the wind turbines, and Et describes the possible
interaction and information sharing. In general, the graph
describing the system tolopogy is determined according to
the geographical position of the turbines. As mentioned
before, each wind turbine i ∈ W generates a power denoted
by Pi(a),a = [a1 · · · am]> ∈ Rm that depends on the
behavior of the rest of the wind turbines (since the behavior
of other wind turbines modifies the wind as shown in (3)).

Notice that in this control problem, it is only possible
to make one measurement at each time k ∈ Z≥0 (i.e.,
there is only information about the total generated power
for the current axial coefficients). Consequently, the suitable
update of strategies to solve the control problem is the
one introduced in Section III-C. In order to illustrate the
performance of the control approach with this algorithm,
two different control schemes are shown. First, it is assumed
that each wind turbine has total information of the whole
wind farm. Then, a centralized control scheme is presented.
Afterwards, it is assumed that each wind turbine has partial
information about the wind farm. Then, a decentralized
control scheme is proposed.

A. Centralized control scheme

Figure 3 shows the centralized control scheme. In this
scheme, each wind turbine sends the information of the
generated power to a central coordinator. Consequently, such
coordinator has full information about the wind farm, where
an algorithm computes the new axial induction factors.
Finally, the coordinator sends the computed axial coefficients
back to all wind turbines.
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. . .
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a1 a2 am PmV∞
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. . .

xm
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a1 a2 am

PmPT PT

Fig. 3. Centralized control scheme. Each wind turbine sends its generated
power to a central algorithm that optimizes the total power.

The optimization problem for the centralized algorithm is
given by

max PT (s) =
∑
j∈W

Pj(a),

where s = a ∈ Rm is considered a strategy as presented in
Section III, and PT : Rm 7→ R.



B. Decentralized control scheme

This control scheme, shown in Figure 4, is the typical one.
It consists of a scheme in which each wind turbine i ∈ W
disposes of the information about the total generated power
PT and its own axial induction factor ai.
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PmPT PT

Fig. 4. Typical decentralized control scheme. Each wind turbine has
information about the total generated power and its own axial induction
factor.

In order to solve this control problem, it is proposed
to have m algorithms computing in parallel, where each
algorithm is associated to a partitioning of the whole
optimization-based system. This scheme is decentralized
since there is not information sharing or communication
among the local algorithms. Let P = {1, ...,m} be the set
of partitions in this decentralized control scheme (there are
as many partitions as wind turbines in the wind farm, since
each turbine has an algorithm associated). The algorithm at
the wind turbine is in charge of solving the maximization
power problem by considering all the axial induction factor
of other wind turbines as exogenous parameters, i.e.,

max P p
T (s) =PT (s, a−i)

=Pi(a) +
∑

j∈W,j 6=i

Pj(a),

where P p
T is the objective function of the partition p ∈ P ,

a−i represents all the axial induction factors except ai,
which are considered exogenous signals. The strategy for
the population game is s = ai ∈ R and P p

T : R 7→ R.
Notice that the algorithm assumes that the total power

is represented by a function that only depends on the
argument ai, i ∈ W , i.e., the algorithm assumes that other
axial induction factors are exogenous signals. Moreover, the
measurement over P p

T is equal to the measurement over PT .

V. CASE STUDY AND SIMULATION RESULTS

In order to illustrate the proposed control approaches, a
wind farm with three turbines of 2 MW and 80 m of rotor
diameter aligned with the constant freestream wind direction
forming a path graph is controlled. The distance among
turbines is five times the rotor diameter (400 m). For this
scheme, the total generated power is given by

PT (a) =
1

2
ρA

(
Cp(a1)V

3
∞ + Cp(a2)V2(a)

3 + Cp(a3)V3(a)
3) ,

where, from (3),

V2(a) =V∞ (1− 2a1c12) ,

V3(a) =V∞

(
1− 2

√
a21c

2
13 + a22c

2
23

)
.

The model parameters have been set as β = 0.075 and
ρ = 1.225 kg/m3. For this simple example, the optimal
axial coefficients can be analytically computed considering
the model, and its result is a∗ = [0.208 0.232 0.333]> [4].

Regarding the algorithm parameters corresponding to the
presented simulation results, the centralized and decentral-
ized approaches consider four data each iteration (one data
for a current measurement, and three from stored data), i.e.,
n = 4, and the tuning parameters are selected to be τ =
0.01s, ε = 0.8/k, and γ = 0.4. Moreover, the communication
graph within the each algorithm is given by Gc = (Vc, Ec),
where Vc = {1, 2, 3, 4}, and Ec = {(1, 2), (1, 3), (1, 4)}.
Finally, in order to initialize each algorithm, it is necessary
to know the total generated power for m different initial
strategies (composed by arbitrary coordinates in the domain
of PT ). Initial conditions for the centralized approach are
given by the following arbitrary strategies:
• s1(0) = [0.1 0.3 0.2]>,
• s2(0) = [0.7 0.3 0.5]>,
• s3(0) = [0.2 0.2 0.2]>,
• s4(0) = [0.1 0.1 0.1]>.

The decentralized scheme is composed by three different
algorithms denoted by A1, A2, and A3, and their initial
conditions are given by the following arbitrary strategies3:
• A1: s1(0) = 0.1, s2(0) = 0.7, s3(0) = 0.2, and s4(0) = 0.1,
• A2: s1(0) = 0.3, s2(0) = 0.3, s3(0) = 0.2, and s4(0) = 0.1,
• A3: s1(0) = 0.2, s2(0) = 0.5, s3(0) = 0.2, and s4(0) = 0.1.
Figure 5 presents the results obtained using the two pro-

posed control schemes in Section IV, i.e., the centralized, and
decentralized schemes. In the top plots, it can be observed
the total power generated by the wind farm (Fig. 5a) and the
power generated and axial coefficients for the three turbines
(Fig. 5b and c, respectively). Clearly, for the freestream
wind speed perfectly aligned with the three turbines, to
set the axial coefficient of each individual turbine at the
optimal value does not lead to maximum power production
(3.77 MW). It can be seen than in less than 300 iterations
the centralized algorithm is able to find the optimum value
a∗ corresponding to the maximum power production. As
expected for this particular wind farm layout and wind speed
direction, the last turbine operates at maximum efficiency and
the other with less capacity in order the maximize the energy
capture.

In the bottom plots of Fig. 5, it can be observed the results
using the decentralized control scheme. In this case, the
algorithm needs more iterations to reach the optimal axial
induction coefficients. This is reasonable since each decen-
tralized algorithm do not have information about the axial co-
efficient of other wind turbines. Even though, the algorithm
is capable of finding the optimal solution rather fast. It is also
worth of noticing that even with only local information about
the axial induction factors, the decentralized control is able
to achieve the same maximum power production obtained
with the centralized scheme. Another advantage is the higher

3Notice that these initial conditions are the same for both the centralized
and decentralized control approaches in order to compare their performance.
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Fig. 5. Simulation results for the three wind turbine case study for the centralized scheme (Figures a), b), and c)), and for the decentralized scheme
(Figures d), e) and f)). Results show the total power (Figures a), and d)), power for each wind turbines (Figures b), and e)), and the axial induction factors
for the three wind turbines (Figures c), and f)).

reliability of the decentralized scheme given that it only uses
partial information about the axial induction factors.

VI. CONCLUSIONS AND FURTHER WORK

A model-free control for wind farms under centralized
and decentralized control schemes has been proposed. Main
differences with other algorithms in the literature have been
pointed out. It has been shown that the proposed algorithm
uses multiple gradient estimations to decide an improvement
direction to increase the total generated power. Furthermore,
it has been shown that the same convergence to the global
solution is obtained for both schemes.

The centralized control scheme is composed by one co-
ordinator that computes the m control variables and that
sends them back to all the m wind turbines, whereas the
decentralized control scheme is composed by m algorithms,
each one of them computing one control variable for each
wind turbine. In this regard, the algorithm in the centralized
scheme has a higher computational burden than each one
of the m algorithms in the decentralized approach (i.e.,
an algorithm with m decision variables with respect to an
algorithm with one decision variable).

As further work, it is proposed to study more and different
topologies. Moreover, it is challenging to solve the maxi-
mization power problem just by using partial information
about the total generated power, i.e., a distributed control
topology. For that, adaptations over the proposed algorithm
can be made. On the other hand, this paper has presented
an application of the algorithm in the maximization power
of a wind farm. However, this algorithm is suitable for the
solution of other model-free engineering problems in which
a function is wanted to be maximized (e.g., water problems,
transport problems, etc.), and where the only available in-
formation is obtained by measurements. Finally, due to the
fact that it is possible to obtain the same power coefficient
Cp(ai) for two different values of the axial coefficient ai

when Cp(ai) 6= 1/3, then it is possible to constrain the values
of the axial coefficients 0 ≤ ai ≤ 1/3, for all i ∈ W in the
proposed algorithm. Furthermore, it is proposed to develop
control strategies by using the proposed algorithm with a
different control action, e.g., a reference of power generation
at each turbine. In this regard, constraints of nominal power
at each turbine may also be considered within the algorithm.
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[9] V. Spudić, C. Conte, M. Baotić, and M. Morari. Cooperative distributed
model predictive control for wind farms. Optimal Control Applications
and Methods, 2014. (in press).


