
Active Pose SLAM with RRT*

Joan Vallvé and Juan Andrade-Cetto

Abstract— We propose a novel method for robotic exploration
that evaluates paths that minimize both the joint path and map
entropy per meter traveled. The method uses Pose SLAM to
update the path estimate, and grows an RRT* tree to generate
the set of candidate paths. This action selection mechanism
contrasts with previous appoaches in which the action set
was built heuristically from a sparse set of candidate actions.
The technique favorably compares agains the classical frontier-
based exploration and other Active Pose SLAM methods in
simulations in a common publicly available dataset.

I. INTRODUCTION

A representation of the environment is essential for several
problems in mobile robotics such as localization, motion
planning and autonomous navigation. Some of these methods
build a map while at the same time compute an estimate
on the robot localization. This is commonly referred as
SLAM [1]–[5]. However, SLAM methods often do not take
any decision on the robot trajectory.

Other methods to build maps tackle instead the problem
of exploration, which entails finding a path that maximizes
the knowledge about the environment. Most exploration
techniques [6], [7] do not take into account the uncertainties
in robot motion and sensing and limit themselves to pursue
full coverage.

Conversely, active localization methods [8], [9] do not pro-
duce a map, but instead drive the robot trying to minimize the
localization uncertainty in previously mapped environments.

We refer to the problem of simultaneously localizing
the robot, mapping the environment, and also planning for
the path that improves both the localization and the map
estimates as Active SLAM, and we consider it as one of the
most challenging problems of mobile robotics. The Active
SLAM problem has been approached in the past as an action
selection problem [10], [11], and entails two issues, the
computation of a utility or cost function to evaluate the effect
of each candidate action, and the process of generating such
action set. While the evaluation of actions is critical since
it determines which actions are finally executed, the action
set generation is also important since a good evaluation is
useless if the action set is sparse or naively built.

As the title of the paper unveils, our method uses Pose
SLAM which only estimates the robot trajectory [12]. To
build a map, an occupancy grid can be rendered at any time
from the trajectory means and their corresponding sensor

This work has been supported by the Spanish Ministry of Economy
and Competitiveness under project PAU+ DPI-2011-27510 and by the EU
Project CargoAnts FP7-605598.

The authors are with the Institut de Robòtica i Informàtica In-
dustrial, CSIC-UPC, Llorens Artigas 4-6, 08028 Barcelona, Spain.
{jvallve,cetto}@iri.upc.edu.

(a) dRRT*

(b) eRRT*

Fig. 1. Two examples of the resulting path candidates using the two
different cost functions proposed. Color of branches represent the value of
the information gain per meter travelled (Eq.1) of the path that ends in the
corresponding node. Red paths indicate better candidates. In gray, the Pose
SLAM nodes.

observations. The method discussed in this paper minimizes
the joint map and path entropy as in our previous work [13],
but additionally it also minimizes the distance traveled. In
contrast to previous approaches, an efficient method to esti-
mate the joint entropy change for several action candidates
as computed by the RRT* algorithm is also presented.

II. RELATED WORK

Active SLAM has been approached in the past as the
minimization of two independent terms, the map entropy
and the path entropy. Feder et al. [14], propose a metric
to evaluate uncertainty reduction as the sum of these two
independent entropies, but only for the last robot pose and
a limited set of landmarks with a one step exploration
horizon. Bourgault et al. [15] alternatively propose a utility
function that computes independently the potential reduction
of vehicle localization uncertainty from a feature-based map,
and the information gained over an occupancy grid. To
consider joint map and path entropy reduction, Vidal et
al. [16] tackled the issue taking into account robot and map
cross correlations for the Visual SLAM EKF case.

Torabi et al. [17] jointly computed the entropy reduction
directly in configuration space but for a limited number of

configurations. Our previous work [13], [18] computes joint
map and path entropy decrease estimates densely for the
entire configuration space finely discretized. But both, path
and map entropy decreases depend on the path taken to arrive
to each configuration, and our entropy decrease estimates did
not take into account the changes in entropy induced during
the path and only the estimated change at the final robot
configuration.

Action selection in Active SLAM has been approached in
the past as the analysis of the effect of a small heuristically
chosen set of path candidates with respect to various entropy-
based utility functions [10], [11]. Action candidates can be
paths to different goals containing revisiting configurations or
exploring frontier-based poses. But the optimal path in terms
of entropy reduction may not be included within these few
candidates. Moreover, the path itself may be as important for
entropy reduction as the goal itself. Not taking into account
the effect of the whole path implies renouncing to optimality
with respect to the chosen utility function.

The adaptation of probabilistic planning methods to the
exploration problem was introduced by Oriolo et al. [19].
In their approach called SRT, the robot executed motion
commands to a random pose sampled inside the newly
observed area that was not observed in previous nodes.
Posteriorly, Freda et al. presented a frontier-based SRT [20]
which randomly selected the frontier centroids of the last
observation as goals. However, both approaches directly
executed the first random sample without any optimality
evaluation.

Karaman et al. [21] presented the asymptotically optimal
planner RRT* designed for path planning given a goal and
using cost functions that satisfy the triangular inequality. The
expansive nature of the RRT* algorithm suggests that it can
be useful in the action set generation for Active Pose SLAM.
In this paper we benefit from the RRT* tree expansion
strategies and suggest the use of the same cost function for
tree expansion as for action selection.

In the following section we describe succinctly what Pose
SLAM is, and refer the reader to the original paper for a full
understanding for sake of space [12]. Then, in section IV we
explain our proposed optimization for Active Pose SLAM
and its efficient implementation, whereas in section V we
detail how we use the RRT* for the action set generation.
The last two sections include simulations and results and the
conclusions.

III. POSE SLAM

Pose SLAM [12] mantains a probabilistic estimate of
the robot pose history as a sparse graph with a canonical
parametrization p(x) = N−1(η,Λ), (with information vector
η and information matrix Λ). This parametrization has the
advantage of being exactly sparse [22] compared to the
traditional Kalman form (mean µ and covariance Σ). State
transitions result from the composition of motion commands
u to previous poses, and the registration of sensory data
z also produces relative motion constraints between non-
consecutive poses.

Graph links indicate relative geometric constraints be-
tween robot poses, and the density of the graph is rigorously
controlled using information measures. In Pose SLAM, all
decisions to update the graph, either by adding more nodes
or by closing loops, are taken in terms of overall information
gain.

Pose SLAM does not maintain a grid representation of the
environment in the filter itself. Instead, it can be synthesized
at any instance in time using the pose means in the graph µ
and the raw sensor data z. We use the method presented
in [18] that stores the observations in locally referenced
images and updates the occupancy map with new obser-
vations by aggregating them rotated and translated to their
corresponding pose means. After a loop closure, all local
coordinate images are once again rotated and translated to
their new pose means to synthesize a new occupancy map.

IV. EVALUATION OF ACTIONS

We refer to specific parts of the state x using subindexes.
So for instance, after executing a set of motions u1:t we
end up with a trajectory x1:t, which Pose SLAM estimates.
At this point we can render a map mt from its means µ1:t.
Now consider the exploration problem, an action (or path)
candidate at is defined as a sequence of relative motions
ut+1:T , which would produce a sequence of new robot
configurations xt+1:T , from where tentative measurements
zt+1:T would be made, and an expected map mT could be
rendered.

Continuing the work previously done in our group [11],
we approach exploration as a joint entropy minimization
problem. As seen in [18], the map entropy has a strong
relationship with coverage, whilst path entropy has some
relationship with the map quality since a better localization
produces a better map. In this work we add to the equation
the distance traveled, so that minimization is not independent
of the path length. In this way we can compare paths of
different lengths when searching for the optimal entropy
reduction action set and also minimize the distance traveled.
Consequently, we propose the minimization of the joint
entropy change divided by the distance of the path candidate,
maximizing information gain per meter traveled

a∗t = argmin
H(x1:T ,mT |u1:T , z1:T)−H(x1:t,mt|u1:t, z1:t

dist(ut+1:T)
.

(1)
The entropy terms in this equation take the form

H(x,m|u, z) = H(x|u, z) +

∫
x

p(x|u, z)H(m|x, u, z)dx.

As in [18], we approximate this function with

H(x,m|u, z) ≈ H(x|u, z) + α
(
p(x|u, z)

)
H(m|µ, z) (2)

where instead of averaging over the entropy of the resulting
map for each of the trajectories in the probability distribution,
we compute it only for the map rendered from the mean
trajectory estimate µ. And, different from the approximation
used by Valencia et al. [11], we add the factor α(p(x|u, z)).

This factor has an intuitive meaning, exploratory trajec-
tories that depart from well localized priors produce more
accurate maps than explorations that depart from uncertain
locations. In fact, sensor readings coming from robot poses
with large marginal covariance may spoil the map adding
bad cell classifications, i.e., adding entropy. Our approach
is to weight the entire entropy reduction map with the
inverse of the determinant of the marginal covariance at the
current configuration α

(
p(x|u, z)

)
= |Σtt|−1. Exploratory

trajectories that depart from uncertain configurations will be
weighted giving predominance to the path entropy reduction
term and vice versa. In this way, we modulate the importance
of the exploratory and relocalization behavior as proven
in [18], improving the strong sensibility with respect to the
motion noise.

Then, at the planning step t the current joint entropy is
directly obtained from Eq. 2. The following is an exhaustive
description of how we efficiently compute the other term in
Eq. 1, i.e. the hypothetical joint entropy estimate for any
action candidate H(x1:T ,mT |u1:T , z1:T).

A. Path entropy estimation

In order to evaluate the effect of a path candidate at, we
must estimate the path entropy after executing each motion
command uk and obtaining the measurements zk for k ∈
[t+ 1, T]. If we consider path entropy as the entropy of the
multivariate Gaussian x1:k, we might end up dealing with an
ill defined covariance matrix Σ1:k,1:k as explained in [10].
Hence, we opt for the same approximation also used in [11],
[13], [18], which averages over all individual pose marginals

H(x1:k|u1:k, z1:k) ≈ 1

k

k∑
i=1

ln
(
(2πe)

n
2 |Σii|

)
, (3)

being n the dimension of the individual pose vector, n = 3
in our case.

One alternative would be to simulate a Pose SLAM filter
for each path candidate and to evaluate Eq. 3. Since we want
to evaluate several path candidates, this method would not
be efficient at all. Instead, we compute an iterative estimate
of the path entropy change efficiently in open loop and after
a loop closure as follows.

1) Path entropy estimation in open loop: In open loop, a
new node is added to the filter without changing the rest of
the marginal covariances. Then, the path entropy at the kth
time step from Eq. 3 becomes

H(x1:k|u1:k, z1:k) ≈ k − 1

k
H(x1:k−1|u1:k−1, z1:k−1)

+
1

k
ln
(
(2πe)

n
2 |Σkk|

)
. (4)

So we compute an estimate of the path entropy in open
loop from the entropy estimate at the previous pose and the
current marginal covariance Σkk which can be effectively
computed by linearly propagating the previous one using the
motion Jacobians as in Pose SLAM.

2) Path entropy estimation at loop closure: In Pose
SLAM, the parameter match area is defined as the intervals
in x, y and θ where loops can be closed with a given sensor.
When a candidate robot configuration xk falls inside the
match area of any pose within the Pose SLAM estimate xl,
l ∈ [1, t], the observation zk may produce a loop closure,
hence a state update. A state update entails changes in the
state estimate, and new marginal covariances need to be
computed for the estimation of the path entropy decrease
to evaluate Eq. 3.

To compute these marginals, the natural step would be to
simulate the Pose SLAM filter and to recover the marginal
covariances from the new estimate. As said before, doing
so for several path candidates would be computationally
expensive. We could instead use the information gain from
closing such loop as defined in [12]. However, that technique
assumes that we are estimating entropy for the whole mul-
tivariate Gaussian, and as we said before this is an ill-posed
problem. Instead we approximate this value as follows.

After a loop closure, all marginal covariances Σii (∀i ∈
[1, k]) change to new values Σ′ii, so the path entropy change
is, following Eq. 3,

∆H(x1:k|u1:k, z1:k) =
1

k

k∑
i=1

ln
|Σ′ii|
|Σii|

=
1

k
ln

k∏
i=1

ρi. (5)

The marginal covariance determinant ratios ρi =
|Σ′ii|/|Σii| determine the path entropy change after a loop
closure. We approximate them with two assumptions. First,
we assume “clean” loops, meaning that no node in the
loop has more than two connections. Assuming that, a
loop closure to the lth node will affect only the marginal
covariances included in the loop, so ρi = 1, ∀i < l (eq. ??).
Knowing the loop closure sensor noise, the new loop nodes
marginal covariances Σ′ll and Σ′kk can easily be computed
so also their respectives determinant change ratios ρl and ρk.
Secondly, we approximate the rest of the determinant change
ratios lineraly:

∆H(x1:k|u1:k, z1:k) ≈ 1

k
ln

k∏
i=l

ρi (6)

≈ 1

k
ln

k−l+1∏
j=1

(
ρl +

ρk − ρl
k − l + 1

j
)
. (7)

B. Map entropy estimation

The entropy of the occupancy map mT with cell size s
can be computed as the scalar sum

H(mT |µ1:T , z1:T) = −s2
∑

c∈mT

(
pc ln pc+(1−pc) ln(1−pc)

)
,

(8)
where pc is the classification probability of cell c. The
reduction in entropy that is attained after moving to new
locations and sensing new data depends on the number of
cells that will change its classification probability, i.e. will
be discovered either obstacle or free.

Each intermediate pose xk of each action candidate will
produce a different observation of the environment zk, so

(a) For a robot configuration example, the expected visible cells (white)
taking into account the known obstacles (black). In red and green the ray
directions detailed in the frame below.

O
b

s
ta

c
le

c
o

n
v
o

lu
ti
o

n
K

e
rn

e
l
in

ro
b

o
t

p
o

s
it
io

n
A

d
d

it
io

n

 Obstacles Robot Obstacle

V
is

ib
le

c
e

lls

(b) Example of convolution results in the two specific ray directions
depicted in the above frame in their respective colors.

Fig. 2. Example of ray casting for a particular robot configuration.

different cells will be classified producing different map
entropy changes. For each action candidate, the map entropy
change will depend on the number of cells discovered in
all observations made during the action at. In order not to
overcount cells discovered by different poses of the same
path, we do not need a method for computing how many
cells but which ones will be discovered from any robot pose
xk. Then, for the sequence of poses of a candidate path
at, we will be able to estimate the accumulated number of
discovered cells.

Extending the work in [13], [18], we developed an ef-
ficient method to compute ray casting from several robot
configurations over the known environment making use of
convolutions and pre-computing most of the process.

Given a robot configuration candidate xk, for each ray
direction within the sensor spread we compute which cells
are between the sensor and the nearest obstacle (if there

is any) and not furher than the maximum simulated sensor
range (see Fig. 2.a). We use a convolution using a kernel
of zeros except for the cells in a specific direction which
have exponentially decreasing values. For each ray direction,
convolving this kernel with an image of ones at the obstacles,
and substracting it from the kernel centered at the robot
position, the discovered cells will be those with positive
values (see Fig. 2.b).

This operation must be computed for each ray direction
included in the sensor spread and for all robot configurations
of all action candidates. However, we can pre-compute most
of it. Firstly, the kernel for each of all 360o discretized
directions is computed once at the begining of the algorithm.
Secondly, at each planning step, the convolution over the
obstacles can be precomputed for all discretized directions.
Then, for a robot configuration candidate xk, we only need to
translate all direction kernels, substract the convoluted obsta-
cles and binarize. Then we accumulate the discovered cells
from the directions within the sensor spread corresponding
to the robot orientation (Fig. 2.a). Finally, accumulating the
discovered cells in all robot configurations xt+1:T , we can
estimate its map entropy change using Eq. 7.

Tunning as a parameter the sensor maximum range, i.e.
the kernel size, we can be more conservative or optimistic
in the estimation of cells discovered. Using the same value
as the real sensor, we will assume that all the unknown
cells are free whereas when using a lower value, we will
assume the existence of obstacles. This value depends on
the environment morphology and is fixed experimentally.

V. RRT*: GENERATING AND EVALUATING THE ACTION
SET

The RRT* algorithm presented by Karaman et al. [21] is
an asymptotically optimal version of the rapidly-exploring
random trees by Lavalle et al. [23]. It was designed to find
an optimal path from the current robot pose to a given goal
in a known environment.

The RRT has a simple extend routine: a new node in the
RRT is added in the direction of a random sample from the
nearest node with a distance ν. The RRT* extend routine is
more complex. After creating a new node as in the RRT, it is
not automatically connected to the tree from its predecessor.
Instead, it is connected to one of its neighbors according to
a given cost function. After that, is checked if the new node
can yield a lower cost to any of each near neighbors and it
is rewired if it is the case. This two actions allow the RRT*
be asymptotically optimal.

The expansive nature of the RRT and RRT* algorithms
suggests that they can be useful to generate the action set
in Active Pose SLAM since they provides several collision
free paths from the current robot pose to several free config-
urations. Knowing that, we propose to grow an RRT* in the
known and free environment and then take each one of the
RRT* nodes and the path to reach it as an action candidate at.
After the tree is grown, the best action candidate a∗t is chosen
from all the paths to each node according to the evaluation
introduced in section IV.

Frontier-based Heuristic EDE dRRT* eRRT*
Active Pose SLAM Active Pose SLAM Active Pose SLAM

Final map entropy 527.92 nats 670.93 nats 584.23 nats 526.58 nats 558.80 nats
Final path entropy −5.06 nats −10.11 nats −6.55 nats −6.34 nats −5.57 nats
Total time 1089.15 s 78997.9 s 1083.70 s 8752.13 s 59785.42 s
Loops closed 22.6 43.2 25.4 18.8 34.4
Coverage 741.32m2 514.10m2 660.86m2 749.96m2 707.10m2

Map error 130.80m2 87.84m2 106.34m2 126.56m2 112.22m2

TABLE I
AVERAGE COMPARISON OF THE PERFORMANCE OF SEVERAL EXPLORATION METHODS IN THE FREIBURG 079 MAP.

The cost function used in RRT* extend routine will affect
the resulting paths of the tree. Using the distance as cost
function, as usual, the algorithm will provide the shortest
paths to several free configurations. However, if we use other
cost function the tree will grow and rewire differently and
the resulting RRT* paths will not be optimal in distance
traveled but in that cost function. So, we propose two action
set generation alternatives using the RRT*. The first is using
the distance as the cost function (dRRT*) and the second
one is to use the entropy change divided by the distance
(eRRT*), which is the cost function defined in Eq. 1.

In RRT*, once a solution path is found, the extension
process is continued for a time in order to keep improving
this solution. Some heuristics can be set to end the extension
once the solution have been sufficiently improved. In our
case, we do not have a specific goal to reach with the RRT*.
Instead, our objective is to have several paths to several free
configurations spread over the free discovered environment
and we want these paths to be optimal in terms of the cost
function used. We stop extending after certain amount of
nodes per free square meter is reached. This value is fixed
experimentally since it depends on the morphology of the
environment.

The evaluation of the cost function is computed using
the method explained in section IV during the extension
of eRRT*, and once the extension processes is stopped for
dRRT*. Figure 1 shows the resulting action set of dRRT*
and eRRT*. The color corresponds to the evaluation of the
cost function of each path. Both frames share the same color
scale, the more red, the better the path. It can be seen how
eRRT* branches are better than the dRRT* since the rewiring
occurred according to the action selection cost function as
well.

VI. SIMULATIONS

We now compare the performance of the two RRT*
variants of the presented Active Pose SLAM method against
three other exploration approaches. The first method is the
typical frontier-based exploration [6]. This method drives the
robot to the closest frontier larger than a threshold (90 cm
in our case), without considering the localization and map
uncertainties. When there are no frontiers of that size, this
threshold is reduced progressively. The path to the selected
frontier centroid is planned using the RRT* planner.

The second method to which we compare is Active
Pose SLAM by Valencia et al. [11], which evaluates three
heuristically generated action candidates including one re-
visiting path and the two closest frontiers. And finally, the
third method evaluated is our entropy decrease estimation
(EDE) method [13] that precomputes an estimate of the
joint entropy decrease at each robot pose of the discretized
configuration space and plans a path to the most informative
robot configuration using RRT*. In contrast to our approach,
this method does not take into account the change in entropy
during path traversal for each explored path, but only the one
occurring at the end of the paths.

Five simulations are performed in the commonly used
Freiburg 079 map [24]. In all of them, robot motion was
estimated with an odometric sensor with a noise covariance
factor of 15%. The robot is fitted with a laser range finder
sensor with a match area of ±1 m in x and y, and ±0.35 rad
in orientation. This is the maximum range in configuration
space for which we can guarantee that a link between
two poses can be established. Relative motion constraints
were measured using the iterative closest point algorithm
with noise covariance fixed at Σy = diag(0.05 m, 0.05 m,
0.0017 rad)2. Laser scans were simulated by ray casting over
a ground truth grid map of the environment using the true
robot path, and corrupted with similar values of Gaussian
measurement noise. The initial uncertainty of the robot pose
was set to Σ0 = diag(0.1 m, 0.1 m,0.09 rad)2. Pose SLAM
asserted loops more informative than 2.5 nats.

A number of different metrics were used to compare the
performance of the five methods with respect to the distance
traveled. We stored average values for the 5 runs of path
and map entropy for each of the methods; the average map
coverage, measured as the number of cells labeled in the
occupancy map; and the average map error, measured as
the number of cells in the occupancy map which were
inconsistent with at least one rendered sensor data point
measured at the respective mean of the estimated path pose.
Two other measures of performance computed were total
execution time, including all the different processes of each
method except for the map rendering, and the total number
of loop closures computed by each of the methods. Table I
shows the final average values of each metric for each
method. The average evolution of the map and path entropies
along the traveled distance for all methods can be observed

0 50 100 150 200 250
500

600

700

800

900

1000

1100

distance travelled (m)

m
a

p
 e

n
tr

o
p

y
 (

n
a

ts
)

Heuristic Active Pose SLAM .
Frontier−based
EDE
dRRT* Active Pose SLAM
eRRT* Active Pose SLAM

0 50 100 150 200 250
−11

−10

−9

−8

−7

−6

−5

distance travelled (m)

p
a
th

 e
n
tr

o
p
y
 (

n
a
ts

)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

coverage (m
2
)

m
a

p
 e

rr
o

r
(m

2
)

Fig. 3. Average results for the five simulation runs in Freiburg 079 map.

in the left and center frames of Fig. 3. The map error with
respect with coverage is plotted in the right frame of the
same figure.

The computational cost of eRRT* is significantly larger
than dRRT* because the cost function evaluation is computed
several times for each node in the eRRT* extension process
due to the rewiring, whereas in the dRRT* it is only
computed once for each node. This is a time consuming step
because the cost function requires also the estimation of the
joint path and map entropy. Nonetheless, both approaches are
less computationally expensive than the use of the Heuristic
Active Pose SLAM method. The frontier-based and the EDE
methods are much faster but they do not evaluate the effect
of the paths with regards to entropy reduction, but only seek
to minimize distance to precomputed goals.

The frontier-based method, reaches a low level of map
entropy but with a high path entropy value, and thus large
map error, since it only pursues to maximize coverage.
Active Pose SLAM performance is characterized by a very
conservative behavior with regards to localization uncertainty
because of the absence of the factor α(p(x|u, z)) in its
entropy approximation function (see Eq. 2). For the same
plant and sensor noise levels, the technique weights more
localization than exploration and hence coverage grows much
slower than in the other methods.

While the EDE method ends the simulations with lower
path entropy values, the two Active Pose SLAM methods
proposed, dRRT* and eRRT*, are better in terms of map
entropy on average. At the final part of the simulations, both
methods have lower levels of map error for the same cover-
age levels than the rest (Fig. 3.c). Moreover, we see how the
dRRT* reaches higher coverage in the same distance traveled
while the eRRT* improves over map error. The performance
of eRRT* is slightly better than dRRT* with regards to map
error, and significantly better than the heuristic Active Pose
SLAM with regards to both coverage and error. However,
entropy evaluation is time consuming in RRT* extension,
thus an action set generation that only takes into account
distance traveled as in dRRT* is an adequate compromise.

Next, we analyze the effect of loop closures in the final
exploration results. For instance, the frontier-based method
finalizes with higher path entropy values on average than

EDE and dRRT*, even after closing a similar amount of
loops. This is because the loops closed by frontier-based
were not optimally chosen to reduce uncertainty, but rather
closed by chance. Obviously, the conservative behavior of
heuristic Active Pose SLAM results in a large amount of
loop closures in average. The eRRT* also closed a large
amount of loops in average because using the entropy based
cost function, the RRT* generates paths that include such
loop closure poses.

Figure 4 shows single simulation runs for the five methods.
In the first frame, we can observe the final localization
error of the frontier-based exploration with the last sensor
observation in blue. The heuristic Active Pose SLAM final
graph is largely connected and all the trajectories remained
near the initial robot pose, leaving the rest of the scene
largely unexplored, as can be observed in Fig. 4 b. The EDE
and dRRT* final graphs (frames c and d) contain straight
paths due to the distance cost function used in the RRT*.
Conversely, the eRRT trajectory presents neither straight
paths to the goal, nor strong loop closing trajectories, but
rather a combination of the two for which the cost function
is minimal.

VII. CONCLUSIONS

We presented an Active Pose SLAM approach that max-
imizes coverage while mantaining accurate map and path
estimates. Actions are evaluated in terms of the joint en-
tropy change per distance travelled. Our method optimally
generates a set of path candidates to explore using RRT*.

The method has been tested with two strategies to generate
the action set: growing an RRT* with the typical Euclidean
distance as cost function, and doing so with entropy change
per meter traveled. The results show that the combined strat-
egy of evaluating path candidates using entropy minimization
per traveled meter, but generating the action candidates
minimizing Euclidean distance provides the best compromise
between execution time, coverage, and map and path errors.

Further comparisons with other datasets and on real time
experiments are left as immediate actions for further re-
search.

(a) Frontier-based exploration.

(b) Heuristic Active Pose SLAM.

(c) Entropy Decrease Estimation.

(d) dRRT* Active Pose SLAM.

(e) eRRT* Active Pose SLAM.

Fig. 4. Final trajectories after a 250m exploration simulation of the Freiburg
079 map for all methods compared. In red the path estimate, in green
loop closure links, in black the whole raw sensor data rendered at the path
estimate, and in blue the marginal robot pose estimate for the current state
(mean and variance) along with the sensed data at that location.

REFERENCES

[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map

building (SLAM) problem,” IEEE Trans. Robotics Autom., vol. 17,
no. 3, pp. 229–241, 2001.

[2] M. Montemerlo and S. Thrun, FastSLAM: A Scalable Method for
the Simultaneous Localization and Mapping Problem in Robotics, ser.
Springer Tracts in Advanced Robotics. Springer, 2007, vol. 27.

[3] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robotics Res., vol. 23, no. 7-8, pp. 693–716,
2004.

[4] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, 2008.

[5] S. Williams, V. Indelman, M. Kaess, R. Roberts, J. Leonard, and
F. Dellaert, “Concurrent filtering and smoothing: A parallel architec-
ture for real-time navigation and full smoothing,” Int. J. Robotics Res.,
vol. 33, pp. 1544–1568, 2014.

[6] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE Int. Sym. Computational Intell. Robot. Automat., Monterrey,
1997, pp. 146–151.

[7] R. Shade and P. Newman, “Choosing where to go: Complete 3D
exploration with stereo,” in Proc. IEEE Int. Conf. Robotics Autom.,
Shanghai, May 2011, pp. 2806–2811.

[8] A. Corominas-Murtra, J. Mirats-Tur, and A. Sanfeliu, “Action evalua-
tion for mobile robot global localization in cooperative environments,”
Robotics Auton. Syst., vol. 56, no. 10, pp. 807–818, 2008.

[9] D. Fox, W. Burgard, and S. Thrun, “Active Markov localization for
mobile robots,” Robotics Auton. Syst., vol. 25, no. 3-4, pp. 195–207,
1998.

[10] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using Rao-Blackwellized particle filters,” in Robotics:
Science and Systems I, Cambridge, Jun. 2005, pp. 65–72.

[11] R. Valencia, J. Valls Miró, G. Dissanayake, and J. Andrade-Cetto,
“Active Pose SLAM,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Vilamoura, Oct. 2012, pp. 1885–1891.

[12] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
Pose SLAM,” IEEE Trans. Robotics, vol. 26, no. 1, pp. 78–93, 2010.

[13] J. Vallvé and J. Andrade-Cetto, “Dense entropy decrease estimation for
mobile robot exploration,” in Proc. IEEE Int. Conf. Robotics Autom.,
Hong Kong, May 2014, pp. 6083–6089.

[14] H. J. S. Feder, J. J. Leonard, and C. M. Smith, “Adaptive mobile robot
navigation and mapping,” Int. J. Robotics Res., vol. 18, pp. 650–668,
1999.

[15] F. Bourgault, A. Makarenko, S. Williams, B. Grocholsky, and
H. Durrant-Whyte, “Information based adaptative robotic exploration,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Lausanne, Oct. 2002,
pp. 540–545.

[16] T. Vidal-Calleja, A. Sanfeliu, and J. Andrade-Cetto, “Action selection
for single camera SLAM,” IEEE Trans. Syst., Man, Cybern. B, vol. 40,
no. 6, pp. 1567–1581, 2010.

[17] L. Torabi, M. Kazemi, and K. Gupta, “Configuration space based
efficient view planning and exploration with occupancy grids,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., San Diego, Nov. 2007, pp.
2827–2832.

[18] J. Vallvé and J. Andrade-Cetto, “Potential information fields for mobile
robot exploration,” Robotics Auton. Syst., 2015, in press.

[19] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The SRT method:
Randomized strategies for exploration,” in Proc. IEEE Int. Conf.
Robotics Autom., New Orleans, Apr. 2004, pp. 4688–4694.

[20] L. Freda and G. Oriolo, “Frontier-based probabilistic strategies for
sensor-based exploration,” in Proc. IEEE Int. Conf. Robotics Autom.,
Barcelona, Apr. 2005, pp. 3881–3887.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Res., vol. 30, no. 7, pp. 846–894,
2011.

[22] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters for view-based SLAM,” IEEE Trans. Robotics, vol. 22,
no. 6, pp. 1100–1114, 2006.

[23] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Comp. Sc. Dept., Iowa St. Univ., Tech. Rep. 98-11, 1998.

[24] A. Howard and N. Roy, “The robotics data set repository (Radish),”
http://radish.sourceforge.net, 2003.

