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Abstract

This paper presents an integrated simulation and optimization modelling approach

in order to provide the optimal configuration for the large scale water supply sys-

tem (LSWSS) in real time. Model Predictive Control (MPC) has been chosen

to handle the complex set of objectives and also being shown its effectiveness.

The computation of control strategies by MPC uses a simplified model of the

network dynamics. The use of the combined approach of optimization and simu-

lation contributes to making sure that the effect of more complex dynamics, better

represented by the simulation model, may be taken into account. Coordination

between simulator and optimizer works in a feedback scheme, from which both

real-time interaction and also extensive validation of the proposed solution have

been realized by realistic demonstrations. The Catalunya regional water network

has been used as the case study.
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1. Introduction

Impacts of climate changes are likely to give rise to uncertainties in water

availability and water demands, which may results in major economical and eco-

logical consequences. [1] presented a discussion of uncertainty paradigms in wa-

ter resources, and provided his views on water management tools that can be used

in the future.

LSWSS, which is composed of various physical elements such as reservoirs,

channels, pumping stations, irrigation area and urban water supply systems, oper-

ates to supply water for municipal, industrial and irrigation needs. Management

of these systems from planning to operation is very challenging since the prob-

lem deals with many complex modelling issues related to inflows, transportation

delays, storage, irrigation and industrial as described at [2]. An effective manage-

ment of LSWSS requires a supervisory control system that takes optimal decisions

about the current operational configuration of the whole network. Such decisions

are implemented automatically or offered as a decision support to operators and

managers. The control system should take into account operating constraints,

costs and consumer demands. The decisions of the control systems are translated

into set-points to individual, localized, lower level systems that optimize the pres-

sure profile to minimize losses by leakage and provide sufficient pressure. The

whole control system responds to changes in network topology (ruptures), typical

daily/weekly profiles, as well as major changes in demand as discussed in [3].

A number of systems analysis techniques involving simulation and optimiza-

tion algorithms have been developed and applied over the last several decades
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to study LSWSS and also have been reviewed in [4], [5] and [6]. [4] provides

a comprehensive state-of-the-art review of theories and applications of systems

analysis techniques to LSWSS with a strong emphasis on optimization methods.

LSWSS simulation and optimization models were reviewed by [5] who evaluated

the usefulness of each approach for different decision support situations in order

to provide better understanding of modelling tools which could help the practi-

tioner in choosing the appropriate model. [6], in his review on optimal operation

of LSWSS, suggested the need to improve operational effectiveness and efficiency

of water resources systems through the use of computer modelling tools. Contin-

uous development in information technology (hardware and software) creates a

good environment for transition to new decision making tools. Spatial decision

support systems using object oriented programming algorithms are integrating

transparent tools that will be easy to use and understand at [1]. A number of text

books on modelling and systems analysis of water resources including LSWSS

are available like [2], [7], [8], [9], [10], [11] and [12].

MPC has been proven to be one of the most effective and accepted control

strategies for the global optimal operational control of large-scale water networks

in [13]. Applications to different large-scale infrastructures as LSWSS as in [14],

sewer networks in [15], open-flow channel networks at [16] or electrical networks

in [17] prove the applicability of this technique. The main characteristic is that

after the plant dynamical model has been obtained, the MPC design just consists

of expressing the desired performance specifications through different control ob-

jectives (e.g., weights on tracking errors and actuator efforts as in classical linear

quadratic regulation), and constraints on system variables (e.g., minima/maxima

of selected process variables and/or their rates of change) which are necessary to
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ensure process safety and asset health.

SIMULINK, as talked about in [18], is an environment for multi-domain sim-

ulation and model-based design for dynamic and control systems. It provides an

interactive graphical environment and a customizable set of block libraries that

allow to design, simulate, implement, and test a variety of systems, used in com-

munications, control, signal processing, video processing, and image processing.

According to these properties, SIMULINK is appropriate to develop a water net-

work simulation environment that allows to include a network model and the cost

function computation. This model allows to interface the controller, developed in

this work in MATLAB using the MPC method, which provides the set points of

the related elements and meanwhile close a control in a feedback loop as in [19].

The aim of this article is presenting simulation, optimization and integrated

simulation-optimization modelling approaches in order to provide the optimal

configuration for LSWSS in real time. MPC has been chosen to handle the com-

plex set of objectives and also being shown its effectiveness. The computation

of control strategies by MPC uses a simplified model of the network dynamics.

The use of the combined approach of optimization and simulation contributes to

making sure that the effect of more complex dynamics, better represented by the

simulation model, may be taken into account. Coordination between simulator

and optimizer works in an feedback scheme. The remainder of the paper is or-

ganized as follows. Control-oriented modelling methodology of MPC optimizer

is first provided in Section 2. Then, in Section 3, controlling problem statement

is described. In Section 4, integrated simulation and optimization scheme is ex-

plained in detail. Case study and preliminary results are outlined at Section 5 and

finally, conclusion is provided at Section 6.
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2. Control-Oriented Modelling Methodology

Several modelling techniques dealing with the operational control of LSWSS

have been presented in the literature, see [14], [20] and [21] and the references

therein. Here, a control-oriented modelling approach is outlined, which follows

the principles presented in the reference by [22] and [23]. The extension to include

the pressure-model can be found in the references provided by [14] and [20].

A LSWSS generally contains tanks, which store the drinking water that comes

from the network sources, a network of pressurized pipes and a number of sinks.

Valves and/or pumping stations are elements that allow to manipulate the water

flow according to a specific policy and to supply water requested by the network

users.

2.1. Tanks and Reservoirs

Water tanks/reservoirs provide the entire network with the water storage ca-

pacity. The mass balance expression relating the stored volume v, the manipulated

inflows qi, j
in and outflows qi,l

out (including the demand flows as outflows) for the i-th

tank can be written as the discrete-time difference equation

vi(k + 1) = vi(k) + ∆t

∑
j

qi, j
in (k) −

∑
l

qi,l
out(k)

 , (1)

where ∆t is the sampling time and k denotes the discrete-time instant. The physical

constraint related to the range of admissible water in the i-th tank is expressed as

vi ≤ vi(k) ≤ vi, for all k, (2)

where vi and vi denote the minimum and the maximum admissible storage ca-

pacity, respectively. Although vi might correspond to an empty tank, in practice
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this value can be set as nonzero in order to maintain an emergency stored volume

enough to supply for facing extreme circumstances.

For simplicity purposes, the dynamic behavior of these elements is described

as a function of volume. However, in most of the cases, the measured variable is

the tank water level (by using level sensors), which implies the computation of the

water volume taking into account the tank geometry.

2.2. Actuators

Two types of control actuators are considered: valves/gates and pumps (more

precisely, pumping stations). The manipulated flows through the actuators repre-

sent the control variables, denoted as qu. Both pumps and valves/gates have lower

and upper physical limits, which are taken into account as system constraints. As

in (2), they are expressed as

qui
≤ qui(k) ≤ qui, for all k, (3)

where qui
and qui denote the minimum and the maximum flow capacity, respec-

tively.

2.3. Nodes

These elements correspond to the points in the whole water system where wa-

ter flows are merged or split. Thus, the nodes represent mass balance relations,

being modelled as equality constraints related to inflows (from other tanks through

valves or pumps) and outflows, the latter being represented not only by manipu-

lated flows but also by demand flows. The expression of the mass conservation in

these nodes can be written as∑
j

qi, j
in (k) =

∑
h

qi,h
out(k). (4)
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Node inflows and outflows are still denoted by qin and qout, respectively, de-

spite the fact that they can be manipulated flows and hence denoted by qu, if

required.

2.4. River Reaches

A single canal reach can be approximated by using the modelling approach

proposed by [24] that leads to the following relation between the upstream (qups)

and downstream (qdns) flows:

qdns(k + 1) = a1qdns(k) + b0qups(k − d) (5)

where d = τd/Ts, τd is the downstream transport delay, Ts is the sampling time,

b0 = 1 − a1 and a1 = e−
Ts
T .

2.5. Demand and Irrigation Sectors

Demand and irrigation sectors represent the water demand made by the net-

work users of a certain physical area. For the purpose of computing control ac-

tions, it is considered as a measured disturbance of the system at a given time

instant. The demand in urban areas can be anticipated by a forecasting algorithm

that is integrated within the MPC closed-loop architecture in [13]. The demand

forecasting algorithm typically uses a two-level scheme composed by (i) a time-

series model to represent the daily aggregate flow values, and (ii) a set of different

daily flow demand patterns according to the day type to cater for different con-

sumption during the weekends and holidays periods. Every pattern consists of

24 hourly values for each daily pattern as explained in [25]. This algorithm runs

in parallel with the MPC algorithm. The daily series of hourly-flow predictions

are computed as a product of the daily aggregate flow value and the appropriate
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hourly demand pattern. On the other hand, irrigation demand is typically planned

in advance with farmers. Pre-established flows for irrigation are planned for agri-

cultural areas in certain periods of the year.

3. Control Problem Statement

Because of the complex large scale property and multi-variable control char-

acteristic of LSWSS as described in Section 2, a feasible and efficient control

method is needed.

MPC is one of the most advanced control methodologies which has made a

significant impact on industrial control. MPC does not consider a specific control

strategy but a very wide range of control methods which make an explicit use of

the process model to obtain the control signal by minimizing an objective function

which represents the desired control goals. MPC can handle multi-variable con-

trol problems and it can consider actuator limitations as well as operational and

physical constraints.

The standard MPC problem based on the linear discrete-time prediction model

is considered as described in [26]:

x(k + 1) = Ax(k) + Bu(k), (6a)

y(k) = Cx(k), (6b)

where x(k) ∈ Rnx is the state vector and u(k) ∈ Rnu is the vector of command

variables at time step k, and y(k) ∈ Rny is the vector of the measured outputs.

Following the formalism provided by [26] for the basic formulation of a predictive

control, the cost function is assumed to be quadratic and the constraints are in

the form of linear inequalities. The model (6) is obtained applying the control-
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oriented modelling methodology presented in previous section taking into account

the LSWSS topology and physical parameters.

3.1. Operational Goals

The main operational goals need to be achieved in LSWSS are:

• Goal 1. Cost reduction (Jcost): Economic cost is usually includes water

source costs and water transportation costs two parts. Water source cost is

usually related to acquisition, which may have different prices at different

sources, while transportation cost is affected by power tariffs which may

vary during different time steps in a day.

Assuming Wa as the related weight of Goal 1, the vectors ũ, a1 and a2

contain control variables, cost of water source and pumping at time step k,

respectively, the object function of Goal 1 is

Jcost = Wa(a1 + a2(k))̃u(k), (7)

• Goal 2. Operational safety (Jsa f ety): This criterion refers to maintain appro-

priate water storage levels in dams and reservoirs for emergency-handling.

Operated in both supply and transportation layers.

Assuming Wx̃ as the related weight of Goal 2, x̃(k) and x̃r represent real-

time water level and emergency-handling level in dams and reservoirs at

time step k, respectively, the object function of Goal 2 is

Jsa f ety = (x̃(k) − x̃r)>Wx̃(x̃(k) − x̃r), (8)
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• Goal 3. Balance management (Jbalance): This is operated only at supply layer

which is necessary for keeping rivers or reservoirs consumed in a balanced

way and escaping water deficit problem for both of the two rivers in the long

run.

Assuming wm̃ as the related weight of Goal 3, xi and x j are two main reser-

voirs located in two different rivers, the object function of Goal 3 is

Jbalance = (
(
0 . . . 0 1

xi′max
0 . . . 0 −1

x j′max
0 . . . 0

)
x̃(k))

>

wm̃ (9)

× (
(
0 . . . 0 1

xi′max
0 . . . 0 −1

x j′max
0 . . . 0

)
x̃(k)) (10)

• Goal 4. Demand management (Jdemand): This is especially important in

the supply layer when urban and irrigation demands exist since irrigation

demands allow some degree of slackness.

Assuming w f̃ as the related weight of Goal 4, ε(k) is vector of irrigation

demand slackness, the object function of Goal 4 is

Jdemand = ε(k)>W fε(k), (11)

• Goal 5. Minimizing waste (Jmwaste): To take into account that the river water

eventually goes to the sea, this term gets to avoid unnecessary water re-

lease from reservoirs (releasing water that does not meet any demand and is

eventually wasted).

Assuming ww̃ as the related weight of Goal 5, variables ũi... j(k) are the flows

from the rivers to the sea. ũs(k) are their ecological penalty levels, the object

function of Goal 5 is

10



Jmwaste = (̃ui... j(k) − ũs(k))>Ww̃(̃ui... j(k) − ũs(k)), (12)

• Goal 6. Environment conservation (Jecological): Water sources such as bore-

holes, reservoirs and rivers are usually subject to operational constraints to

maintain water levels and ecological flows. The objective function of Goal

6 is contained in (8) because that water flows in the rivers are modelled as

additional state variables as discussed before.

Above mentioned goals lead to the following optimized function:

J = Jsa f ety + Jdemand + Jmwaste + Jbalance + Jcost (13)

= εx̃(k)>Wx̃εx̃(k) + ε(k)>W fε(k) (14)

+ (̃ui... j(k) − ũs(k))>Ww̃(̃ui... j(k) − ũs(k)) (15)

+ (
(
0 . . . 0 1

xi′max
0 . . . 0 −1

x j′max
0 . . . 0

)
x̃(k))

>

wm̃ (16)

× (
(
0 . . . 0 1

xi′max
0 . . . 0 −1

x j′max
0 . . . 0

)
x̃(k)) (17)

+ Wa(a1 + a2(k))̃u(k) (18)

where

εx̃(k) = x̃(k) − x̃r

The weight tuning method proposed in [27], based on computing the Pareto

front of the multi-objective optimization problem presented in (13), is used in this

paper. The initial step of this tuning approach is to find what are known as the
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anchor points that correspond to the best possible value for each objective ob-

tained by optimizing a single criterion at a time. Then, a normalization procedure

is applied, a Management Point (MP) defined by establishing objective priorities

is defined, and the optimal weights are determined by computing those that mini-

mize the distance from the solutions of the Pareto front and the MP.

4. Integrated Simulation and Optimization Scheme

Simulation could be the starting point in the planning of LSWSS but in view

of the large number of configuration options, capacity and operating policy, sim-

ulation without preliminary screening through optimization would be very time

consuming. The studies of large scale systems at [28] and [29] have indicated

that even with the use of simple programming approaches such as LP, valuable

improvement can be obtained to organize simulation.

Identifying effective pre-defined operating rules for simulating complex water

supply systems is a challenging task. To overcome this problem the researchers

generally employ optimization methods to simulation models like [29] and [30].

4.1. General Structure

In LSWSS, simulation and optimization are integrated in the feedback way as

provided in Fig. 1. It shows that, simulation and MPC optimization models are

working interactively by communicating mutual information. In every iteration,

the MPC optimizer provides optimized control actions as set-point flows to the

simulator. After being simulated, the produced state variables, which represent

tanks/reservoirs volume, are sent back to the MPC optimization model as initial

tanks/reservoirs volume for the next iteration.
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Figure 1: Feedback structure of Simulation and Optimization

4.2. Simulation

In spite of the development of optimization methodologies, simulation mod-

elling techniques remain in practice a prominent tool for LSWSS planning and

management studies. Simulators associated with LSWSS are usually based on

mass balance equations and dynamic behavior of reservoir systems using inflows

and other operating conditions. Application of simulation techniques to LSWSS

planning and management started with U.S. Army Corps of Engineers (USACE),

who built simulations of Missouri River. The famous Harvard Water Program ap-

plied simulation techniques to the economic design of water resources as shown

in [31]. The simulated models produced the behavior for power generation, irri-

gation and flood control as reported in [2].

At the beginning, the simulator requires the parameters of every elements and

the values of the actuator set-point or the demands as explained in [19]. All these

data, are loaded from the database to the workspace, which has been saved in a

different structure for each different element. When the simulator is connected

directly to a controller developed in MATLAB, otherwise, the values of the simu-

lation results have already been in the workspace, and it is sufficient to insert them

in the correct structures.
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Figure 2: Main window of simulator

Fig. 2 is the main window of the LSWSS simulator environment, which in-

cludes inputs, outputs and also all the functional blocks needed during the whole

simulating process. The blocks at the left side are the main inputs, providing and

updating the required parameters (e.g. water demands, objective weights or elec-

tricity price of pumps) to the simulator by loading related data file. Blocks on

the right side are the main outputs for visualizing the simulating results. Inside

the center part, embedded the complete water network, see Fig. 4, which is the

simulating of the regional water network of Catalunya case study as an example

(see Section 5 for more detail).

4.3. Optimization

The MPC optimizer of LSWSS is presented in this section. The controller

computes the optimal solution with a predictive horizon and a multi-objective cost

function, which reflects the control strategy of water networks. At any time inter-

14



val, only the first set-point value is used and at the next time interval a new compu-

tation is started. The results are obtained interfacing the simulator described in the

section above, with the MATLAB platform with the help of TOMLAB/CPLEX

optimizer.

4.3.1. Formulation of the optimization problem

The objective function (13) of the MPC problem can be formulated in the

following way:

J = zT Φz + φT z + c (19)

where

z = [∆ũ εx̃ ε]T (20)

∆ũ(k) = ũ(k) − ũ(k − 1)

and c is a constant value produced by vector calculation.

This allows to determine the optimal control actions at each instant k by solv-

ing a quadratic optimization problem by means of quadratic programming (QP)

algorithm of the form:

min
z

z>Φx + φ>z

A1z ≤ b1

A2z = b2

4.4. Integration scheme of Simulator and Controller

As described in Fig. 1 at the section above, the MPC controller coordinates

with the simulator by communicating and exchanging mutual information. This
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integration is achieved by the two S-functions (see SIMULINK manual for more

details) S −controller and S − simulator, where they produce, transfer and receive

the useful information in a closed loop as shown in Fig. 3. In this closed loop,

the optimizer will first produce the optimized control actions and send them to the

simulator as set-points. After the simulation, the updated states and the imple-

mented control actions are transferred into the controller as state estimation and

initial set-point values respectively for the next optimizing process. Initial data

for the first optimizer process is provided. The scheme is working emulating real

time operation by receiving and updating the demand and the measurements of

the network real state from the telemetry system provided by SCADA system.

Figure 3: Integration of optimization and simulation blocks

In order to make sure the optimizer and simulator in the integrated scheme can

work at a consistent pace, variable sampling steps have been used.

There are two sampling time deltaT and mindeltaT , where deltaT is the sam-

pling time for MPC optimizer, which equals with 10800 seconds, while mindeltaT

is the sampling time for simulator, here equals with 30 seconds. The two different
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sampling time synchronize the simulator and optimizer as presented in Algorithm

1 and are selected according to the network dynamics.

5. Case Study: The Catalunya Regional Water Network

5.1. Description

The Catalunya Regional Water Network lies within the Catalunya Inland Basins,

and supplies the Metropolitan area of Barcelona, where most of the population is

concentrated (approximately 5.5 million people). The sources of the Catalunya

Regional Water Network are related mainly to two rivers (Llobregat and Ter).

An assessment based on data obtained by the supply companies in the Barcelona

metropolitan area shows that in 2007, 81 percent of the water input came from

surface sources. Of the total water input, 90 hm3 came from the Llobregat system

and 124 hm3 from the Ter system. The water flow supplied by the Ter and Llobre-

gat rivers are regulated respectively by three and two reservoirs and purified by

one and two water treatment plants, respectively.

Fig. 4 is the whole simulation network scheme of Catalunya Regional case

study, where the two part at the sides are two rivers which names Llobregat and Ter

and the center part is the aggregated network of water transportation in Barcelona

city.

5.2. Results

Among demands in this network, some demands can receive water from both

of the two rivers. In practical applications, there are three kinds of scenarios

divided by the amount of water in Llobregat and Ter rivers, they are:

• Scenarios 1: More water in Llobregat than in Ter.
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Algorithm 1 Integrated Simulation and Optimization Algorithm in S-functions
1: DeltaT := 10800 seconds

{sampling time of optimizer}

2: mindeltaT := 30 seconds

{sampling time of simulator}

3: K := Tsim/mindeltaT

{scenario of simulator, Tsim is the simulating time}

4: for k := 1 to K do

5: if mod(k ∗ mindeltaT, deltaT ) == 0 then

6: i := (k ∗ mindeltaT )/deltaT

{step of optimizer}

7: if i == 1 then

8: xinit (i) = XINIT

{XINIT is known value}

9: S im.U (k) = Optimizer ( xinit (i), block (i) )

{Run MPC optimizer}

{ block (i) are known values of demands, objective weights, electricity price.}

10: end if

11: end if

12: S tate (k) = S imulator ( S im.U(k), block(k) )

{Run Simulator}

13: if mod(k ∗ mindeltaT, deltaT ) == 0 then

14: i := (k ∗ mindeltaT )/deltaT

15: xinit (i + 1) = S tate (k)

16: end if

17: end for
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Figure 4: Simulation network scheme of Catalunya Regional Case Study
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• Scenarios 2: More water in Ter than in Llobregat.

• Scenarios 3: Abundant water in both of the rivers.

For the first two scenarios, when water in one river is adequate while in another

river is limited, management policies will set the shared demands ask water from

the abundant river. For the scenario 3, when water is abundant in both of rivers,

according to the balance management, which is one of control objectives in the

MPC controller, water consumption in both of rivers will be proportional to their

supplying ability. In this paper, only scenario 3 is considered as the case study.

The following results are used to show the usefulness of this tool and also

the benefits of the integrated scheme that make the water supply and transport

keep the supply of both rivers balanced. In Section 5.2.1, optimal results of the

MPC controller are provided while integrated results between MPC controller and

simulator are described in Section 5.2.2.

5.2.1. Results of Optimization

In the Catalunya Regional Water Network, water transportation implies eco-

nomic cost when pumped from the lower elevation to the higher elevation. As

Goal 1, the MPC controller optimized this cost to produce the most optimal so-

lution. Figure 5 shows a comparison between pump flow and its electricity fee

where the pump works more during the cheaper time while it nearly does not

work when the electricity price is high.

Fig. 6 shows water level of one reservoir comparing with its safety level,

where the required storage is kept for emergency handling, which corresponds to

the Goal 2.

Table 1 provides detailed results and also improvement of water usages in the
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Figure 5: Pump flow with electricity price

Figure 6: Water of reservoir comparing with safety level
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two rivers achieved by the balanced management, as explained in Goal 3, in the

MPC optimizer. In this table, Source means flow into the rivers from external

sources, Fixed Demand refers to demands which cannot choose their water source

while Variable Demand is the demand which can receive water from more than

one river. BD, abbreviation of Balanced Demand, is water volume that has been

consumed from each of the reservoirs and PB, abbreviation of Proportion of Bal-

anced demands, is the proportion of BD for the two reservoirs. PR, abbreviation

of Proportion of Reservoir capacity, is the proportion of storage capacities of the

two reservoirs. The similar values for PB and PR is what the multi-layer scheme

seeks to achieve. And SA, abbreviation of Supplying Ability, is water supply abil-

ity (in days) of the whole water network before meeting deficit problem in case

of no rain and no external water flow into the reservoir. The comparisons prove

that, after adding the objective of balance management, the proportion of water

usage from both rivers (58.93%, which is ratio of Llobregat/Ter) is much closer

to the proportion of their storage capacities (53.48%). Moreover, the Catalunya

Regional Water Network can supply water 65 days longer than without balance

management, which is a good benefit regarding the sustainable usage of water

resource in the long term perspective.

5.3. Result of the integrated Scheme

In the integrated scheme, simulator and MPC controller keep communicating

at every time step. MPC optimizer send control action as set-point to the simu-

lator, after simulating, state variables used as initial value for the next iteration.

The computation of control strategies by MPC uses a simplified model of the net-

work dynamics. The use of the combined approach of optimization and simulation

contributes to making sure that the effect of more complex dynamics, better repre-
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Table 1: Water usage comparison of Scenarios 3

Sc. MPC optimizer with balancing management

Es. Source Fixed Demand Variable Demand BD PB PR SA

L. 3008 2981 724 697
58.93% 53.48% 242 Days

T. 3532 3518 1196 1182

Sc. MPC optimizer without balancing management

Es. Source Fixed Demand Variable Demand BD PB PR SA

L. 3008 2981 7.6 -19.4
-1.02% 53.48% 177 Days

T. 3532 3518 1914 1900

sented by the simulation model, may be taken into account. State variables, which

represent water volume evolution produced by this integrated scheme should be

similar with that provided by the independent MPC controller which means MPC

controller without communicating with simulator. As Fig. 7 shows, the solid

line is water volume evolution from the integrated scheme, while the dashed line

shows the water volume produced by independent MPC controller, which work in

a similar way.

Another hand, according to the simulation structure, flow in nodes have to

keep balance in every simulating and optimizing iteration. In Fig. 8, the number

1 means demands satisfaction and node flow balance.

Fig. 9 compares the value of each operational goal in the objective function of

the integrated and the independent control models. These values do not differ by

significant amounts, so that the integrated approach does not significantly increase

the operational cost.

Table 2 provides results in detailed numbers and compares the obtained con-

trol results in terms of economical and computational performance over four days
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Figure 7: Volume comparison achieved by optimizer and by the integrated scheme

Figure 8: Demands satisfaction and node balance
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Figure 9: Comparisons of operational goals achieved by optimizer and by integrated scheme

Table 2: Closed-loop performance results (all values in e.u.)

Define

Day

Current Control Integrated Scheme

Ele. Wat. Tot. Comp.(in s) Ele. Wat. Tot. Comp.(in s)

1st 240 100 340 23 141 40 181 58

2nd 239 106 345 21 170 39 209 57

3rd 246 94 340 19 171 41 212 61

4th 264 110 374 21 168 42 210 62

Prop. -34% -61% -42% 183%

between the control techniques using heuristic strategies by human operators (sim-

plified as current control) and this integration scheme.

In the Table 2, Wat., abbreviation of Water, refers to water cost during the day,

while Ele., abbreviation of Electricity, refers to electricity cost, Tot., abbreviation

of Total, means the total cost which includes both water and electricity and Comp.,
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abbreviation of Computation time, which means the needed computation time for

that optimization process. The column of Proportion is the improved proportion

with respect to the current control. In this table, the result shows that the integrated

scheme is much better than the current controller at the point of economical cost.

On the other hand, computation time is worse because of the size of the water

network and also communicating between the two models. In order to solve the

computational problem, partitioning or multi-layer integration of simulation and

optimization for LSWSS is necessary for the future research.

6. Conclusions

This paper presents an integrated simulation and optimization modelling ap-

proach which combines the strategic operational control modules with network

monitoring in a smooth and synergic way for the real-time LSWSS. This com-

bined approach provides the optimal configuration for LSWSS which is able to

optimize and monitor large water systems including reservoirs, open-flow chan-

nels for water supply and transport, water treatment plants and so on. MPC, which

is the control approach, has been proved the effectiveness of handling complex set

of objectives, which can generate flow control strategies from the sources to the

consumer areas to meet future demands. Operational goals such as network safety

volumes, optimal economic cost, least wasted water, balanced usage of two rivers

and flow control stability are represented by a multi-objective function which is

optimized by MPC as comparisons of Table 1. Real-time network monitoring is

provided by the simulator, which reflects the natural behavior of water flow in a

graphically way, and dynamic behaviors of reservoirs in order provide graphical

data to the supervisory control and data management system. Comparisons be-
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tween integrated scheme also versify the feasibility of the proposed solution. The

case study of Catalunya regional water network has been also emphasize practical

meaning of the proposed approach.
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