
A Friction-model-based Framework for Reinforcement Learning of
Robotic Tasks in Non-rigid Environments

Adrià Colomé, Antoni Planells and Carme Torras

Abstract— Learning motion tasks in a real environment with
deformable objects requires not only a Reinforcement Learning
(RL) algorithm, but also a good motion characterization, a
preferably compliant robot controller, and an agent giving
feedback for the rewards/costs in the RL algorithm. In this
paper, we unify all these parts in a simple but effective way to
properly learn safety-critical robotic tasks such as wrapping a
scarf around the neck (so far, of a mannequin).

We found that a suitable compliant controller ought to have
a good Inverse Dynamic Model (IDM) of the robot. However,
most approaches to build such a model do not consider the
possibility of having hystheresis of the friction, which is the
case for robots such as the Barrett WAM. For this reason, in
order to improve the available IDM, we derived an analytical
model of friction in the seven robot joints, whose parameters
can be automatically tuned for each particular robot. This
permits compliantly tracking diverse trajectories in the whole
workspace.

By using such friction-aware controller, Dynamic Movement
Primitives (DMP) as motion characterization and visual/force
feedback within the RL algorithm, experimental results demon-
strate that the robot is consistently capable of learning tasks
that could not be learned otherwise.

I. INTRODUCTION

The interest in human-robot interaction is growing nowa-
days, thanks to the increasing availability of more compliant
robots with low inertia, that makes them safer to move in
a soft or fragile environment, in which we could include
interaction with humans. Tasks like placing a scarf on a
mannequin (see Fig. 1) can be taught to the robot by using
Dynamic Movement Primitives (DMP) and then reproduced
with high precision. However, in compliant environments,
there is usually a tradeoff between precision and safety as,
making the robot more precise (commonly with a high error-
compensating term) will make its motion stiff, which makes
it dangerous for a human. For this reason, model-based
controllers such as Computed Torque Control (CTC) [1] can
be used, for which we need an IDM of the robot, i.e., the
mapping from the position, velocity and acceleration to the
total torques acting on the robot. The IDM of a robot can be
computed by derivating its mechanical energy, or by iterative
methods (see [2], Chapter 7), or fitted by a regression model
from real execution data with different machine learning
methods [3]. Nevertheless, none of these methods generally
takes into account the impact of high hystheresis on the

*This work was supported by CSIC project MANIPlus (201350E102).
A. Colomé is also supported by the Spanish Ministry of Education, Culture
and Sport via a FPU doctoral grant (AP2010-1989).

Authors are with Institut de Robòtica i Informàtica Industrial (UPC-
CSIC), Barcelona (SPAIN), [acolome,aplanells,torras]
at iri.upc.edu

dynamics of some robots, as the occurs for the Whole Arm
Manipulator (WAM), where for non-high speed motion the
friction is usually the second highest torque acting on the
robot after gravity.

Not properly representing this hystheresis reduces the
accuracy of the IDM. As a consequence, a higher error-
compensating gain is needed to ensure good trajectory track-
ing, thus making the robot less compliant. For this reason, in
Sec. II we propose an analytical formulation of the friction,
which can be easily tuned with real data and then computed
online, providing good results in the whole joint space of the
robot.

Once having this IDM, we built a learning framework
(see Fig. 2), using DMPs for the motion characterization
and a model-based External Force Estimation (EFE) [4] to
obtain the interaction torques with the environment. Within
this framework, starting from an initial demonstration, ex-
ploration on the DMP parameters progressively improves the
robot’s performance and, using a Policy Improvement with
Path Integrals (PI2) [5] algorithm, better robot behaviours are
learned relying on a cost function based on vision, kinematics
and dynamics.

Fig. 1. Kinesthetic teaching of a task to a WAM robot (left) and motion
reproduction with a compliant controller (right).

In Sections III and IV, we detail how the friction model
is used to track a trajectory provided by a DMP and its
embedding in a RL setting, to later show an experiment with
a real robot in Section V.

II. BUILDING A FRICTION MODEL

A. Robot Dynamics Equation

The dynamics equation of a robot in joint space [2] is

M(q)q̈ + C(q̇,q) + G(q) + Ffric = uc − ue, (1)

Fig. 2. Global scheme of the proposed framework. The DMP sends
the desired trajectory to the feed-forward controller, which uses the inverse
dynamic model to track the trajectory compliantly. The robot performs the
task, which may include an interaction with the environment, estimated
by the external force estimator. The latter is used together with the
camera feedback and the acceleration measurements, to obtain a reward/cost
function, which is used by a policy search algorithm to, after a certain
number of rollouts, update the DMP.

where M(q) is the inertia tensor of the robot, C(q̇,q) is the
term containing the coriolis and centripetal forces, G(q) the
gravity, Ffric the robot friction, uc the controller torque and
ue the external forces on the robot.

As mentioned, in the absence of external forces, we can
model/compute the inertia, coriolis, centripetal and gravity
forces, and the controller torques are assumed to be known,
thus we can infer the values of friction as:

Ffric = uc −M(q)q̈−C(q̇,q)−G(q), (2)

and use them to fit a friction model. To obtain the terms in
(2) in the case of the WAM robot [6], the code provided by
the manufacturer already included an application to calibrate
the gravity values, while geometry, masses and inertia terms
are also provided by the manufacturer and can be used to
obtain the coriolis, centripetal and inertia terms.

B. Basic Friction model
As mentioned in the introduction, the friction torque

applied in any joint of the robot when it moves at low
speed is usually the second highest torque acting on the
robot after gravity. This friction has a high hysteresis in its
dynamic behavior which makes it very difficult to model.
The reason to fit the friction as an hystheresis function, rather
than with a complete set of basis functions, is that we know
the qualitative behaviour of the friction, thus using a proper
fitting function will be more efficient than using any other
type of kernel, in terms of precision, number of parameters,
and samples required for the fitting process.

At first, this torque was modeled as a viscous friction
Ffric = cq̇, where q̇ is the joint’s velocity and c is a constant
that varies depending on the joint that moves. This model
was not very precise and did not model the friction with a
high degree of accuracy because some other variables had
not been considered, such as the position of the joints.

In [7], the friction is modelled with an initial model as:

F ifric = b1atan(sq̇i) + b2q̇i, (3)

where q̇i, is the ith joint velocity and b1, b2 and s are
parameters obtained with least-squares techniques.

However, this model not only is independent from position
(which we observed as a fact from data), but also has no
hysteresis value (friction is zero for zero velocity). Thus we
added a term to model this hystheresis with a parameter z
defining its width and the sign of the acceleration of the joint,
which we will consider as our basic model:

F ifric = b1atan(sq̇i + zsign(q̈i)) + b2.q̇i, for i = 1..7
(4)

This basic model did not offer the level of accuracy
required because it did not show the linear dependence the
friction could have with the position of the joints, along
with other phenomena that could be seen. One of this other
phenomena that could be observed were some oscillations
depending on the position of the joints.

C. Advanced model for the WAM robot

To improve the basic model some changes were made and
new variables and terms were added:

• A linear term in position, which was observed through
data analysis.

• A basis of Fourier functions on the joints position,
divided in two layers, depending on the sign of the
velocity of each joint.

These Fourier basis functions were added to model an
oscillating curve wrt the position of the friction. However,
the authors observed different oscillations for positive and
negative velocities, thus two sets of Fourier basis were fitted
for them, and activated with the help of a sign function, as
we can see in Eq. (5). These Fourier terms approximate the
oscillations seen wrt position, ignoring the noise data due to
the PID controller that was used to obtain the data.

This brought us to a friction model for each of the joints
of the robot with the following expression:

F ifric = b1qi + b2q̇i + b3atan(sq̇i + zsign(q̈i))

+0.5(1 + sign(q̇i))(b4f1 + b5f2 + b6f3 + b7f4 + b8f5)
+0.5(1− sign(q̇i))(b9f1 + b10f2 + b11f3 + b12f4 + b13f5),
for i = 1..7,

(5)

where fj =
4

π

sin((2j − 1)hqi)

2j − 1
, j = 1..5 are the sine

Fourier basis functions. We negleted the cosine functions
assuming an antisymmetric behaviour of the friction. qi, q̇i
i q̈i are the position, the velocity and the acceleration of the
ith joint. All the constraints bk, k = 1..13, s, z i h were
obtained with least-squares techniques and vary according
to each joint.

Most of the terms in (5) have a physical interpretation.
Firstly, b2 is the viscous friction coefficient of any joint of the
robot, while b3atan(sq̇i + zsign(q̈i)) models the histeresis
of the friction through the parameters b3, s and z: b3 allows
to set the vertical amplitude of the hysteresis, s defines the
transition speed between the two levels and z defines the
width of the hysteresis. Finally, the terms b1qi and the sine
Fourier functions are used to model the motor cogging effect,
and some of the model uncertainties. The parameter h is used
to select the frequency of the oscillations seen in Fig 3.

This friction model has a high degree of accuracy only
when joints were moving separately and did not take into
account that some of the joints shared part of their friction
due to the coupling between their engines.

Joints 1, 4 and 7 do no present this phenomenon, but joints
2-3 and joints 5-6 do when they move together in pairs. In
order to model the friction torque of a pair of joints that
share the coupling effect when they move we had to find a
new model so that the friction torque was fitted with enough
accuracy when this happened.

In this case, after several observation experiments, it could
be seen that the friction torque applied on a joint was reduced
when the other joint of the pair moved at a higher velocity.
This reduced friction torque showed the same non-linear
hysteresis behaviour but with a smaller range of values and
was modeled with the same expression but with different
least squares parameters.

After modeling this reduced friction, a transition between
models had to be established so that the friction torque was
fitted correctly at every timestep. Defining modAi as the
friction model of the ith joint when it moves at a higher
velocity than its pair j (non reduced friction torque), modBi
as the friction model of the same ith joint when it moves
at a lower velocity than its pair j (reduced friction torque)
and defining modi(t) the friction model of the ith joint at
timestep t:

modi(t) = modAi(t), if |q̇i(t)| ≥ |q̇j(t)|+ ε

modi(t) = modBi(t), if |q̇j(t)| ≥ |q̇i(t)|+ ε

modi(t) = modi(t− 1), otherwise,

for the pairs (i = 2, j = 3), (i = 3, j = 2), (i = 5, j = 6)
and (i = 6, j = 5), where ε is used to avoid chattering
between the friction models of each one of the coupled joints.

After defining this transition when the coupling phe-
nomenon appears, the dynamic friction torques of each of
the joints of the robot are modeled with enough accuracy,
even if all the joints move together at the same time.

D. Fitting performance

In order to compare the performance of the different
models in equations (3), (4) and (5), we fitted the three mod-
els with a dataset of 80 oscillation movements at different
speeds, moving joints individually at different positions and
also with coupled movements.

We built another dataset to validate the models and our
proposed friction model in Eq. (5) showed to perform the
best in all cases. In Fig. 3, we can see an example validation
trajectory with the data obtained from Eq. (2). Also, in Table
I, we show the error indicators used in order to validate
the advanced model against the initial and basic model with
the new validation dataset. The error indicators used were
the Mean Absolute Error (MAE), the Mean Squared Error
(MSE) and the maximum sample error in the dataset. It can
be clearly seen that this approach outperforms previous ones
in terms of numerical error.

TABLE I
FRICTION VALIDATION RESULTS

Initial Model Basic model Adv. model
MAE 0.5907 0.5115 0.4277
MSE 0.7613 0.5611 0.3511
Max error 4.7281 3.6624 2.5849

Performance indicators for a set of N validation trajectories for the Barrett
WAM joint 1. We indicate the MAE, MSE and maximum error, all of

them averaged over 8 validation trajectories.

Fig. 3. Example of the fitting of the three models for a trajectory of
the first joint of the Barrett WAM. Our proposed function outperforms the
previous approaches.

III. CONTROLLING AND REPRODUCING TRAJECTORIES

Given the friction model in Section II, we can build an
IDM that can be used to track a desired trajectory, In this
section, we explain how to build such trajectories and the
controller used for tracking them.

A. DMP

In order to learn a task, a robot must have a framework
characterizing its motion. Along this work we used Dynamic
Movement Primitives (DMP) [8], [9], which characterize a
movement by means of a second order dynamical system,
using a position error, a velocity term and an excitation
function for obtaining the acceleration profile generating the
movement:

ż/τ = αz (βz (yg − y)− z) + f(x)
f(x) = Θg(x),

(6)

where y is the joint position vector, yg the goal/ending joint
position, τ a time constant, x is a transformation of time
verifying ẋ = −αxx/τ and z = ẏ/τ a rescaled velocity
vector. In addition, Θ is a parameter matrix, where each
row represents the parameters used for each joint to learn an
initial move, applied to a set of basis functions g(x) defined
as:

gi(x) =
φi (x)∑
j φj (x)

x, i = 1..Nf , (7)

where φi (x) = exp
(
−0.5(x− ci)2/di

)
, and ci, di represent

the fixed center, usually taken equally spaced in time, and
width of the ith Gaussian used of a total of Nf per degree-
of-freedom. The DMP gives, at each timestep, a value of
desired acceleration, which can be integrated to obtain a
desired position and velocity.

With this motion representation, the robot can be taught
a demonstration movement, to obtain the weights and Gaus-
sians of the motion by using least squares techniques on the
isolated excitation function f :

f
(j)
de (x) = ż

(j)
de /τ+αz

(
βz

(
y

(j)
de − y

(j)
g

)
+ z

(j)
de

)
= θT(j)g(x),

(8)
where (j) indicates the jth joint, the subscript de represents
the demonstration movement taught to the robot and θT(j) the
j-th row of Θ. The DMP representation of trajectories has
good scaling properties wrt. trajectory time and initial/ending
positions, has an intuitive behaviour, does not have an ex-
plicit time dependence and is linear in the parameters, among
other advantages over alternative motion characterizations
[8]. For these reasons, DMP are being widely used with
policy optimization RL, where the general goal is to optimize
the policy parameters Θ so that the expected reward (cost) is
maximal (minimal). After each rollout, the reward/cost func-
tion is evaluated and used to search for a set of parameters
that improve the performance over the initial movement.

When executing a motion with a robotic arm, the robot
can run into an obstacle, or a person may be manually
preventing it to move. If using a controller with an error-
proportional torque component, the error will increase over
time while the robot is prevented to move, making the
controller send an increasing torque signal to the motors. If
the robot is then released, the robot will move quickly - and
dangerously - towards the far away goal position. For this
reason, the phase variable x must be slowed down when the
controller’s positioning error is large. A common approach is
to modify ẋ to make it dependent on the positioning error:
τ ẋ = − αxx

1+eT
p Λep

, given a positive-definite matrix Λ, that
will indicate how strong is the influence of the error on
the time-slowing effect. Also, for complex motions, fitting a
demonstrated robot trajectory often requires a large number
of Gaussian kernels to properly encode it with DMPs. For
this reason, in [10], the authors proposed to separate the layer
reproducing the initial trajectory from the exploration layer.
In this work, we used the kernels in Eq. (7) for both layers,
with less and wider kernels for the exploration layer.

B. Controller

Once given a desired trajectory, provided by the DMP or
a similar framework, we need a proper controller to track
it in a way that the robot is not dangerous. The default
controller provided with the WAM robot is a PID controller
with large gains: uc = Kpe+Kvė+KI

∫ τ=t

τ=0
eτ . However,

as already mentioned before, a pure PID controller may not
be suitable to interact with humans or deformable objects,
thus we needed to implement another controller.

1) Feed-Forward Controller: In order to properly track
the reference trajectories generated by the DMPs, we include
a Computed Torque Controller [1], in which we add an
Inverse Dynamic Model (IDM), that allows us to use a low-
gain error-compensating term, i.e.: we reduce the stiffness of
the robot while performing the motion.

uc = uPD + uIDM where uPD = Kpep + Kvėp is a PD
controller and the IDM is approximated by

uIDM 'M(q)q̈ + C(q̇,q) + G(q) + Ffric, (9)

where the Inertia, Coriolis, centripetal terms, as well as
gravity were obtained with linear parameter identification
(see Sec 7.2 in [2]). Using this controller, the robot will
have a much more compliant, or soft behaviour, as the IDM
would just provide the necessary torque to follow the desired
commands, while the PD part of the controller takes care
of error compensation. In fact, the PD torque only acts to
compensate model errors and external perturbations.

C. Force Estimation

In [4], the authors proposed an External Force Estimation
based on a disturbance observer which, by using a previously
learned dynamic model, estimates the external forces on the
robot with the kinematics data and the control commands
sent to the robot. This can be useful not only to predict
interaction with the environment or detecting whether the
robot is holding something, but also to try to minimize the
interaction forces between the robot and its environment so
as to reduce the stress on the manipulated objects.

IV. LEARNING FRAMEWORK

To learn a task, we use the scheme in Fig. 2, with a Policy
Search [11] algorithm called Policy Improvement with Path
Integrals (PI2) [5], [12], relying on a parametrization of the
task with DMPs and three different feedbacks from the robot:
desired acceleration, external force estimate, and visual scarf
location.

A. Policy Improvement with Path Integrals

The PI2 algorithm [5] is a Policy Search (PS) algorithm
derived from stochastic optimal control principles that per-
forms well in many situations. It executes several rollouts
and gathers a timestep reward associated with each parameter
variation for each rollout, and then updates the policy (in this
case, the DMP weights) according to the rewards obtained.
One of the advantages of the PI2 algorithm is that it only
requires two extra parameters: the cost comparison eliteness
λ, used to weight the Gaussian parameters according to the
rollout cost, and the exploration variance. This exploration
variance had been set manually by trial-and-error until the
CMA [13] approach was presented, in which the exploration
covariance matrix was updated after each epoch (set of
rollouts). This approach helps to modify the exploration
magnitudes in cases where one does not have a good initial
guess, but it does not significantly improve performance
when such initial guess is available. CMA needs more
rollouts per policy update, and it is recommended to be used

with a base-level exploration to avoid premature convergence
or that the algorithm favours too much a single parameter
direction if the eliteness parameter is too large.

V. EXPERIMENTATION

As an experimental setup for the scheme in Fig.2, we
decided to put a scarf to a boy-sized mannequin, placed at a
fixed position wrt. the robot, and use a color camera to check
if the scarf was properly placed after each rollout. This is a
very hard to learn problem, due to the scarf dynamics being
very difficult to model and, thus, only real-robot experiments
provide information to the task.

To that purpose, we initialized the DMP with 25 Gaussian
kernels per degree-of-freedom, fitting a poor-performing
motion which does not achieve such a task, and improve it
over 20 epochs of 12 rollouts each. Using the CTC defined
previously, which includes the friction model in Section
II, we reproduced the motions and obtained the costs by
evaluating the cost function. The PI2 algorithm, with the
CMA and a dual layer of Gaussians as proposed in [4], with
8 kernels per degree-of-freedom, was then used to update
the policy. The variance for exploration was initialized with
a value ΣΘ = 10I8·dof and updated with a filtered version of
the CMA algorithm in [13], keeping only the diagonal part
of the matrix for simplicity.

A. Cost function

As a reward function to optimize, we use a timestep cost
ct, t = 1..T and a final cost cT , which depend on the
acceleration, interaction torques and visual feedback.

The total cost for a trajectory is then CT = cT +
∑T
t=1 ct,

where ct is a timestep cost given by a quadratic form of the
acceleration commands sent to the robot by the DMP, and
the terminal cost ct = ccam+ ctorque is the sum of the costs
given by the color camera and the EFE at the end of the
rollout.

1) Desired Acceleration: To penalize those task attempts
where the policy (DMP parameters) tells the robot to move
with high acceleration, we added a penalizing term to the cost
function, consisting of a quadratic form on the acceleration
at each timestep of the trajectory.

2) External Force Estimation: In order to punish those
motions in which the robot tries to push or pull the scarf
and/or mannequin too much, we estimate the external torques
resulting from the interaction of the robot and the scarf,
which will also include the transfered torque from the scarf-
mannequin interation to the robot at each timestep. For
simplicity, we used the average of the absolute value of the
estimated interaction torques all through the motion.

3) Visual Feedback: At the end of each rollout, we use
a color camera to check if the scarf was properly placed
by the robot. Using HSV color segmentation to distinguish
the colors with the code provided in [14], such as the
mannequin color, scarf, and a mark placed on its nose.
As a descriptive element, we used the distance d from the
nose of the mannequin to the color-segmented scarf, in the
vertical line from the nose. If the scarf is well-placed, this

distance will be close to a reference value dref . Otherwise,
the scarf might be hanging too close to the nose or not
covering the neck. We defined the scarf position cost as
ccam = 10 max ((d− dref)/dref , 1)

α
+ 3Ihanging , for a

given exponent α (a value of 1.2 was used throughout this
paper), and a penalizing factor with the indicator function
Ihanging , which is 1 if the scarf is not hanging on the
right side of the mannequin or it is hanging in its left side,
assuming we want the scarf only to be hanging on the
mannequin’s right side (see Fig. 4). In this case, the reference
distance dref was 62 pixels for the color camera placed at
a 1m distance from the mannequin.

This visual feedback cost is very rudimentary and was
implemented only to demonstrate the performance of the
entire system. Of course it can be replaced by most elaborate
task-dependent cost measures.

Fig. 4. Two examples of the camera output, measuring the distance (in
pixels) from the marker to the hanging scarf, and the lenght of the part
hanging on the sides up to a certain level.

B. Results

In Fig. 6, we show the learning curve of the scarf-placing
task, in which we can consider that a cost below 3 represents
a motion that effectively placed the scarf around the man-
nequin’s neck, hanging on the right side but not on the left
side (see Fig. 5). We observe that, after 10 policy updates
(i.e., 120 rollouts), the task has already been learned and,
after that, the policy gradually reduces its variance, despite
not being refined further, mainly due to all the uncertainties
in the process of manipulating clothes. This experiment
illustrates that certain difficult tasks can be achieved with the
provided framework. Other similar experiments have been
performed, also placing the scarf on a person instead of a
mannequin, as shown in the video included as supplemental
material and available at http://www.iri.upc.edu/
groups/perception/#ScarfTask.

VI. CONCLUSION

In this paper, we provided a simple but efficient way of
going all through the process of learning a robotic task with
a real robot, using a compliant controller that ensures human
safety in physical interaction tasks involving deformable
objects. To that purpose, we developed a new friction model

http://www.iri.upc.edu/groups/perception/#ScarfTask
http://www.iri.upc.edu/groups/perception/#ScarfTask

Fig. 5. WAM after placing the scarf around the mannequin’s neck.

Fig. 6. Learning curve for the scarf experiment. The red continuous line
shows the exploration-free policy cost after each update, while the blue
shaded area shows the mean and standard deviation for all the exploration
rollouts at each epoch. The horizontal black line represents the cost value of
3, which is considered by the authors to be the threshold indicating whether
the task was successfully completed or not.

that is well suited for the case of the Barrett WAM robot
and does not require as many samples as other IDM fitting
aproaches [3]. The IDM resulting from that friction model
proved to be precise enough to compliantly but precisely
track reference commands with a CTC. Such controller
was a key element to learn this kind of tasks, as a high-
gain controller may likely harm the mannequin or a person
interacting with the robot.

Given the model-based controller, we represented trajec-
tories with DMP, which were demonstrated to the robot by
kinesthetic teaching and encoded, to later be used within an
RL algorithm, where we separated the initial fitting from
the exploration layer of Gaussians in order to overcome the
possible curse of dimensionality. We also implemented a PI2
algorithm with CMA, which helped to automatically update
the variance of the DMP parameters for exploration.

Finally, we used a combination of kinematic, dynamic
and visual feedback within a cost function in order to
take all possible factors into account: Accelerations telling
how smooth the desired trajectory was, estimated contact
torques evaluating if there was a too hard interaction with
the mannequin, probably due to the robot hitting or wrongly
pushing it, and also a simple color-based segmentation that
efficiently measured whether the robot was successful at the
performed task.

The difficulties of simulating deformable objects and hu-
man environment force RL algorithms to require all these
elements to be successful but safe while learning. In this
work, we provided an initial framework to safely learn tasks
involving deformable objects in close proximity to humans.

As future work, we plan to include a timestep torque
feedback in the cost function, as well as try to use other
RL algorithms within this framework to accomplish diverse
complex tasks.

ACKNOWLEDGEMENTS

We would like to thank Felip Martı́ for his help in the im-
plementation of the visual detection part in the experiments.

REFERENCES

[1] Duy Nguyen-Tuong, M. Seeger and J. Peters. ”Computed torque
control with nonparametric regression models”, American Control
Conference, pp. 212-217, 2008.

[2] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo. ”Robotics.
Modelling, Planning and Control”, Advanced Textbooks in Control
and Signal Processing, Springer-Verlag, 2009.

[3] D. Nguyen-Tuong and Jan Peters. ”Model Learning for Robot Control:
A Survey”, Cognitive Processing, pp. 1-22, 2011.

[4] A. Colomé, D. Pardo, G. Alenyà and C. Torras. ”External force
estimation during compliant robot manipulation”, 2013 IEEE Int.
Conference on Robotics and Automation, pp. 3535-3540, 2013.

[5] E. Theodorou, J. Buchli and S. Schaal. “A Generalized Path Integral
Control Approach to Reinforcement Learning”, Journal of Machine
Learning Research, vol. 11, pp. 3137-3181, 2010.

[6] W.T. Townsend, J.K. Salisbury, P. Dario, G. Sandini and P. Aebischer.
“Mechanical Design for Whole-Arm Manipulation”,Robots and Bio-
logical Systems: Towards a New Bionics?”.NATO ASI Series, Springer,
Berlin Heidelberg, pp. 153-164, 1993.

[7] D. Mitrovic, S. Nagashima, S. Klanke, T. Matsubara and S. Vijayaku-
mar. ”Optimal Feedback Control for Anthropomorphic Manipulators”,
IEEE Int. Conference on Robotics and Automation, pp. 4143 - 4150,
2010.

[8] A. J. Ijspeert, J. Nakanishi and S. Schaal. “Movement Imitation
with Nonlinear Dynamical Systems in Humanoid Robots”, IEEE Int.
Conference on Robotics and Automation, pp. 1398-1403, 2002.

[9] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal.
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviours”, Neural Computation, vol. 25, no. 2, pp. 328-373,
2013.

[10] A. Colomé and C. Torras. ”Dimensionality Reduction and Motion
Coordination in Learning Trajectories with Dynamic Movement Prim-
itives”, IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
pp. 1414-1420, 2014.

[11] M. Deisenroth, G. Neumann and J. Peters. ”A Survey on Policy Search
for Robotics”, Foundations and trends in Robotics, vol. 2, no. 1-2. pp.
1-142, 2011.

[12] F. Stulp, E. Theodorou and S. Schaal. “Reinforcement Learning with
Sequences of Motion Primitives for Robust Manipulation”, IEEE
Transactions on Robotics, vol. 28, no. 6, pp. 1360-1370, 2012.

[13] F. Stulp and O. Sigaud. “Path Integral Policy Improvement with
Covariance Matrix Adaptation”, Int. Conf. on Machine Learning, pp.
281-288, 2012.

[14] C++ Library to check if a scarf is well placed on a mannequin.
Available online at https://github.com/FelipMarti .

	Introduction
	Building a friction model
	Robot Dynamics Equation
	Basic Friction model
	Advanced model for the WAM robot
	Fitting performance

	Controlling and reproducing trajectories
	DMP
	Controller
	Feed-Forward Controller

	Force Estimation

	Learning Framework
	Policy Improvement with Path Integrals

	Experimentation
	Cost function
	Desired Acceleration
	 External Force Estimation
	 Visual Feedback

	Results

	Conclusion
	References

