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Abstract

Motion paths of cable-driven hexapods must
carefully be planned to ensure that the lengths
and tensions of all cables remain within accept-
able limits, for a given wrench applied to the
platform. The cables cannot go slack –to keep
the control of the robot– nor excessively tight
–to prevent cable breakage– even in the pres-
ence of bounded perturbations of the wrench.
This paper proposes a path planning method
that accommodates such constraints simulta-
neously. Given two configurations of the robot,
the method attempts to connect them through
a path that, at any point, allows the cables
to counteract any wrench lying in a predefined
uncertainty region. The feasible C-space is
placed in correspondence with a smooth mani-
fold, which facilitates the definition of a contin-
uation strategy to search this space systemat-
ically from one configuration, until the second
configuration is found, or path non-existence
is proved at the resolution of the search. The
force Jacobian is full rank everywhere on the C-
space, which implies that the computed paths
will naturally avoid crossing the forward sin-
gularity locus of the robot. The adjustment
of tension limits, moreover, allows to maintain
a meaningful clearance relative to such locus.
The approach is applicable to compute paths
subject to geometric constraints on the plat-
form pose, or to synthesize free-flying motions
in the full six-dimensional C-space. Experi-
ments are included that illustrate the perfor-
mance of the method in a real prototype.
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1 Introduction

In recent years, cable-driven parallel robots
have been increasingly studied and applied to
more and more relevant tasks, such as manip-
ulation of heavy loads [12, 34], high-precision
positioning [31], monitoring of aquatic envi-
ronments [8, 23], automated construction of
civil structures [10], rescue systems [33], or mo-
tion simulators [44]. Among them, hexapodal
ones stand out for their simplicity and exten-
sive use, especially after the long-term effort
on the NIST Robocrane and its derived appli-
cations [1, 11, 15, 31, 32, 41]. They involve
the minimum number of cables and motors to
fully govern a load in 6D under gravity, result-
ing in simple robotic cranes for precise manip-
ulation that can even be made mobile by at-
taching vehicles to the feet (Fig. 1). These
advantages, together with the fact that they
can easily achieve larger workspaces than their
counterparts with rigid-limb legs, make cable-
driven hexapods energy-efficient and appropri-
ate to maneuver heavy loads. However, addi-
tional constraints apply: their cables can pull
but are unable to push the platform, which
obliges to keep the cable tensions positive dur-
ing normal operation.

The C-space of hexapod is limited by a num-
ber of hypersurfaces corresponding to configu-
rations where the tension of some cable is either
zero, for which the cable goes slack and control
of one degree of freedom is lost, or goes to in-
finity, which indicates that the mechanism is
in a singular configuration and the cable can
break [45]. In practice, it is important to pre-
vent both extreme situations and ensure that
the cables work within a range of admissible
tensions, for a given platform wrench subject
to bounded perturbations in all directions. Af-
ter [19] and [9], the configurations fulfilling this
condition are said to be wrench-feasible.

Several methods have been proposed for the
determination of wrench-feasible workspaces of
cable-driven parallel robots [9, 22, 37, 43, 45,
46], but the problem of planning paths between
given configurations has received little atten-
tion comparatively. Algorithms indeed exist
that try to avoid the singular configurations
where the leg forces tend to infinity, but they

are mainly tailored to parallel robots with rigid
UPS legs [3, 16, 17, 42], and their applica-
tion to cable-driven hexapods is not straight-
forward because they do not account for the
positivity constraint on the leg tensions. More-
over, these algorithms measure the clearance
of the path relative to the singularity locus
using the determinant or the condition num-
ber of the Jacobian matrix, which, as noted
in [47], lack physical significance. While some
path planning approaches apply to cable-driven
hexapods [20, 27, 29], the path they compute is
evaluated for feasibility at discrete points only,
so a method that guarantees the fulfillment of
all the constraints along the whole path is still
lacking.

The planning method presented in this pa-
per is aimed at covering such gap. It was pre-
liminarly introduced in [5] and it is now pre-
sented with thorough detail and illustrative ex-
periments. The method relies on defining a sys-
tem of equations whose solution manifold cor-
responds to the six-dimensional wrench-feasible
C-space of the hexapod, so that maneuvering
through such manifold guarantees singularity
avoidance at all times, while maintaining ca-
ble tensions and lengths within their allowable
bounds (Sections 2 and 3). This manifold, as
well as any of its subsets defined by motion
constraints arising in many applications, are
shown to be smooth everywhere, which is key
to define a continuation method able to ex-
plore the C-space systematically from one con-
figuration, until a goal configuration is found,
or path non-existence is proved at the resolu-
tion of the search (Section 4). The method has
been implemented and validated in several test
cases and with experiments in a real prototype
(Section 5), and its main strengths and points
for future attention have been identified (Sec-
tion 6). The method, in conclusion, eliminates
the need of current path synthesis approaches
based on manual guideance and offline verifica-
tion.

2 Preliminaries

A cable-driven hexapod consists of a mov-
ing platform suspended from a fixed base by
means of six cables winding around indepen-
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Figure 1: Applications of cable-driven hexapods. From left to right, and top to bottom:
Beam manipulation at the NIST Intelligent and Automated Construction Testbed, the
ATHLETE Low-gravity Testbed at the Jet Propulsion Lab, fuselage depainting at the
NIST Aircraft Maintenance Platform, and a mobile hexapod for oil-well fire fighting.

dent winches (Fig. 2). By actuating the winch
drives, the cable lengths di can be varied within
prescribed limits (di, di), with di > 0, which al-
lows a full control of the six degrees of freedom
of the platform within a given workspace.

The C-space of a cable-driven hexapod can
be implicitly defined as follows. Consider fixed
and moving reference frames F1 and F2, respec-
tively attached to the base and platform links,
centered in O and P (Fig. 2). Let p and ai

be the position vectors of P and Ai relative to
F1, and bi be the position vector of Bi relative
to F2. We can represent any platform config-
uration by the pair q = (p,R) ∈ SE(3) =

R
3 × SO(3), subject to the constraints

di = p+R bi − ai, (1)

d2i = dT

i di, (2)

di < di < di, (3)

for i = 1, . . . , 6, where R is the 3 × 3 rotation
matrix that provides the orientation of F2 rel-
ative to F1. While Eqs. (1) and (2) make the
cable lengths di explicit in terms of p and R,
the inequalities in (3) constrain such lengths to
lie in (di, di).
The R matrix in Eq. (1) is assumed to be ex-

pressed as a function of τ , a tuple of any three
angles parameterizing SO(3), such as Euler an-
gles under any convention, or tilt-and-torsion
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angles [7]. This allows for an easy formulation
of planning problems in constant-angle slices of
SE(3), which are useful in parallel kinematic
machines [7], and avoids the treatment of addi-
tional constraints needed in non-minimal repre-
sentations of the rotation group. Although we
then introduce representation singularities rel-
ative to the angles of choice [13, page 31], this
will not be problematic because the smooth-
ness properties required to solve our planning
problem will remain unaltered.

In practice, any configuration must also be
wrench-feasible, i.e., it must allow the platform
to equilibrate any resultant wrench ŵ acting on
it, subject to lie inside a prescribed, bounded
region K ⊂ R

6. The coordinates of ŵ are as-
sumed to be given in the usual screw-theoretic
form [18], and the significance of K depends
on the particular context of application. In
payload transportation, for instance, K may
be given by the gravitational wrench acting
on the platform and slight perturbations in-
troduced by inertia forces or external agents

P

O
Ai

Bi

di

Figure 2: A cable-driven hexapod consists
of a moving platform connected to a fixed
base by means of six cables. The platform
is maintained in a stable position due to
the action of gravity.

like the wind. In contact situations, K might
further depend on the contact wrench against
the environment, which is in general subject to
six-dimensional uncertainty. Specifically, the
wrench-feasibility requirement on a given q im-
plies that for each ŵ ∈ K there must be a vector
of admissible cable tensions

f = [f1, . . . , f6]
T ∈ D = (f1, f1)× . . .× (f6, f6)

satisfying

J f = ŵ,

where (fi, fi) is the range of positive tensions
that can be resisted by the ith cable, and J is
the 6 × 6 screw Jacobian of the robot. J is a
function of q and takes the form

J =

[

u1 · · · u6

a1 × u1 · · · a6 × u6

]

,

in frame F1, where ui = di/di [6].

For ease of manipulation, K will be assumed
to be a six-dimensional ellipsoid centered in ŵ0,
defined implicitly by the inequality

(ŵ − ŵ0)
TE (ŵ − ŵ0) ≤ 1,

where E is a 6× 6 positive-definite symmetric
matrix. This ellipsoid can be constructed by
propagating known bounds on other variables
related to ŵ, using the tools of an ellipsoidal
calculus for example [39]. Appendix A shows
how to obtain ŵ0 and E in typical situations,
and reveals that both ŵ0 and E are a function
of q in general.

Let us now define the C-space of the manip-
ulator, C, as the set of wrench-feasible configu-
rations q ∈ SE(3) that satisfy Eqs. (1)–(3) for
i = 1, . . . , 6. The planning problem we con-
front, thus, boils down to computing a path
joining two given configurations of C, qs and
qg; i.e., a continuous map

µ : [0, 1] −→ C

such that µ(0) = qs and µ(1) = qg. To tackle
this problem, we next define a smooth manifold
suitable to navigate C by numerical continua-
tion [26].
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vi

vi,i vi,i

f0

f0,i

fi

fj L
D

K

fi fi

ŵ0

wi

wj

Jf = ŵ

Figure 3: The mapping Jf = ŵ is used to transform the wrench ellipsoid K into the
cable tension ellipsoid F . The vector vi provides the maximum and minimum values
of fi within F .

3 The Navigation Manifold

3.1 A Characterization of C

For a given configuration q and a wrench ŵ0

applied to the platform, let f0 be the vector of
cable tensions corresponding to ŵ0 ∈ K, which
satisfies

J f0 = ŵ0. (4)

By noting that J(f − f0) = ŵ− ŵ0, it is easy
to see that the set L of cable tensions f corre-
sponding to all wrenches ŵ ∈ K is the ellipsoid
given by

(f − f0)
TB (f − f0) ≤ 1,

where B = JTE J . This ellipsoid may
be bounded in all directions or unbounded in
some, depending on whether det(J) 6= 0 or
not. However, Appendix B shows that J is
non-singular for all q ∈ C, so that L will always
be a bounded ellipsoid in our case (Fig. 3). It
is worth to see here that, since J is full rank
for all q ∈ C, the navigation of C implicitly
avoids the singular configurations of the plat-
form. Thus, the control issues related to such
configurations (due to output velocity indeter-
mination and platform shakiness [6]) will not
be encountered during the execution of the ob-
tained path.

Now, for q to be wrench-feasible, we must
have L ⊆ D, which can be checked as follows.
For each i = 1, . . . , 6, let vi ∈ R

6 be a vector

satisfying

vT

i B vi = 1, (5)

Bivi = 0, (6)

vi,i > 0, (7)

where Bi stands for the matrix B with its ith
row removed, and vi,i is the i-th component of
vi. Observe that if J is non-singular, then both
B andBi are full row rank, and there is exactly
one vector vi satisfying Eqs. (5)-(7). Using La-
grange multipliers, we can see that f0−vi and
f0 + vi identify the points of L attaining the
smallest and largest value along the ith coor-
dinate (Fig. 3). Hence, when det(J) 6= 0, L is
contained in D whenever

f0,i − vi,i > fi, (8)

f0,i + vi,i < fi, (9)

for i = 1, . . . , 6. As a result, C can be charac-
terized as the set of points q ∈ SE(3) satisfying
Eqs. (1)-(9) for some value of the variables di,
di, f0 and vi.

3.2 Conversion into Equality Form

Continuation methods are, by design, aimed at
tracing solution sets of systems of equations,
not inequalities [26]. To define a continuation-
based path planning strategy, we thus need to
convert Eqs. (3), and (7)-(9) into equality form.
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gi
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yi

si

Figure 4: (a) The graph of Eq. (10) shows
that if we explore the solution set of
Eq. (10) by continuation from some q ∈ C
corresponding to di = a, the constraints
di < di < di will always be satisfied.
(b) The graph of yisi = 1, where yi =
f0,i−vi,i−fi, shows that the same applies
to Eq. (11).

To this end, note from Fig. 4(a) that we can
replace Eq. (3) by

(di − di) · (di − di) · gi = 1, (10)

gi > 0,

where gi is a newly-defined auxiliary variable.
In apparence, we have not skipped the use of in-
equalities with this change, but from the graph
of Fig. 4(a) we see that if a configuration q

corresponds to a value di = a ∈ (di, di), then
any other configuration found from q by con-
tinuation subject to Eq. (10) will always satisfy

di < di < di. In other words, the constraint
gi > 0 can be neglected under such a continua-
tion scheme.

Similarly, Eqs. (8) and (9) can be replaced
by

(f0,i − vi,i − fi) · si = 1, (11)

(fi − f0,i − vi,i) · ti = 1, (12)

si > 0, ti > 0,

where si and ti play a role analogous to that
of gi in Eq. (10). From the graph in Fig. 4(b),
for example, it is clear that the quantity yi =
f0,i − vi,i − fi will remain positive, and hence
f0,i − vi,i > fi, when marching continuously
from a given q with yi > 0. The same ar-
gument applies to Eq. (12), so we can replace
Eqs. (8) and (9) by Eqs. (11) and (12), neglect-
ing the constraints si > 0 and ti > 0 during the
continuation scheme.

Finally, Eq. (7) can be directly neglected, be-
cause vi,i 6= 0 for all i on any vector satisfy-
ing Eqs. (5) and (6). Certainly, observe that
Bvi is all zeros except in its i-th component
due to Eq. (6). If it were vi,i = 0 for some
i, this would imply vT

i Bvi = 0, contradicting
Eq. (5). Therefore, if our continuation method
starts from a value of vi with vi,i > 0, and it
is compliant with Eqs. (5) and (6), Eq. (7) will
be naturally fulfilled.

3.3 The Manifold and its Properties

The system formed by Eqs. (1)–(2), (4)–(6),
and (10)–(12) can be compactly written as

F (x) = 0, (13)

where x refers to a tuple encompassing all of
its variables: p, τ ,di, di, gi,f0,vi, si, and ti, for
i = 1, . . . , 6. The solution set of this system,

M = {x : F (x) = 0},

will be called the navigation manifold here-
after, because it has the necessary properties
to connect qs and qg by numerical continua-
tion.

To see this point, consider the subset M+ ⊂
M formed by the points x for which gi > 0,
si > 0, ti > 0, and vi,i > 0. Clearly, C and M+
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are in correspondence. A point q belongs to
C if, and only if, it has a corresponding point
x ∈ M+. This implies that any continuous
path in C will also be represented by a con-
tinuous path in M+, and vice versa. Thus,
the original problem of computing a path of C
connecting qs and qg can be reduced to that
of computing a path in M+ connecting points
xs and xg of M+ corresponding to qs and qg.
However, since gi, si, ti, and vi,i never vanish
on M (Section 3.2), M+ and its complement
M\M+ are disconnected, and if we try to con-
nect xs to xg by continuation on M, we will
be moving through M+ actually. Therefore,
for the purpose of this paper, we will only need
M and Eq. (13) hereafter.
M is six-dimensional, but Appendix B fur-

ther proves that it is smooth everywhere, so
that every point x has a well-defined tangent
space TxM. This greatly simplifies the defi-
nition of a continuation method to connect xs

and xg, because no bifurcations, sharpnesses,
or dimension changes will be found along the
way, avoiding the need of elaborate branch-
switching procedures [25].
It is worth adding that in many applications

(such as in painting, polishing, or cleaning of
ship hulls, wings, or building façades) the plat-
form is further confined to move within a lower-
dimensional subset of C defined by geometric or
contact constraints on its pose. As exemplified
in Section 5.2, our approach can naturally cope
with such constraints, either by including them
in Eq. (13) in the parametric form

[

p

τ

]

= Ω(λ), (14)

where Ω is a smooth function of any set of pa-
rameters λ, or in the implicit form

C(p, τ ) = 0, (15)

where C(p, τ ) is smooth and with a full-rank
JacobianCp,τ . Appendix B shows that, again,
the resulting system of equations is suitable to
the following strategy.

4 A Continuation Strategy

To determine a path connecting xs and xg we
can gradually construct an atlas of the naviga-

tion manifold M. An atlas is a collection of
smooth maps, called charts, jointly mapping
a relatively large subset of M [30]. In our
case, we shall generate the charts starting from
xs, trying to map the whole connected com-
ponent that is reachable from such point, until
xg is eventually found, or path non-existence
is proved by exhaustion of the search. Since
all variables in x have bounded feasibility in-
tervals, the construction of the atlas will be re-
stricted to a finite domain defined by the Carte-
sian product of all such intervals. The atlas
will be computed using the higher-dimensional
continuation method by Henderson [24], with
the extensions proposed in [4] to heuristically
guide the search towards xg. To make the pa-
per as self-contained as possible, we next recall
the main points of the method and refer the
reader to [4, 24] for further details.

4.1 Defining a Chart

Let n be the dimension of M, and m be the
number of variables in x. For a given point xi

of M, set initially to xs, a chart Ci is a local
map ψi from a polytopic domain Pi ∈ R

n to an
open neighbourhood of M around xi, satisfy-
ing ψi(0) = xi. The domain Pi will be taken as
a subset of Txi

M, and ψi is defined using the
m×n matrix Ψi, whose columns constitute an
orthonormal basis of Txi

M. This matrix sat-

xixi
xi
j

sij

xjxj

(a) (b)Ti

M

Figure 5: The higher-dimensional continu-
ation method applied to a two-dimensional
manifold in R

3. Left: A point xj ∈ M can
be obtained by projecting a point xi

j =

xi+sij . Right: If a new chart is defined at
xj , it must be properly coordinated with
the chart at xi so that their projections
smoothly cover the manifold.
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isfies
[

Fx(xi)

ΨT

i

]

Ψi =

[

0
In×n

]

,

where Fx is the Jacobian of F . To compute
the point xj = ψi(s

i
j) ∈ M corresponding to a

vector sij ∈ Pi we first obtain the point

xi
j = xi +Ψi s

i
j , (16)

shown in Fig. 5(a), and project it down to M
by solving

F (xj) = 0

ΨT

i (xj − xi
j) = 0

}

using a standard Newton-Raphson method ini-
tialized at xi

j [38]. If the Newton method does

not converge, sij is assumed to be out of Pi.

4.2 Constructing an Atlas

Since the domain Pi of each chart Ci is lim-
ited, a full parameterization of the manifold
requires the construction of a whole atlas. To
this end, we use the fact that each point on the
manifold is the potential center of a new chart,
as shown in Fig. 5(b), and use the method
in [24] to decide where to generate new chart
centers and how to bound their associated do-
mains. In this method, Pi is initialized as an
n-dimensional hypercube enclosing a ball Bi of
radius r, both defined in Txi

M, and Pi is pro-
gressively clipped as new charts are added to
the atlas (Fig. 6). The domain of each new
chart Cj added to the atlas has to be properly
coordinated with the domains of its neighbor-
ing charts in the atlas. As shown in Fig. 6,
Cj is used to clip Pi using the intersection hy-
perplane between Bi and Bi

j , a ball of radius r

centered at the point given by sij that approxi-

mates Ci
j , the projection on Txi

M of the part
of the manifold covered by Cj . The procedure
has mechanisms to adapt the area covered by
each chart to the local curvature of the mani-
fold.
When a chart Ci has been fully surrounded

by other charts, Pi becomes a multifaceted
polytope with all its vertices lying inside Bi

and the chart is considered to be closed, mean-
ing that no further expansion needs to be at-
tempted from that chart. The process of chart

r
sij

PiPi BiBi

Bi
j

Ci
js

Figure 6: The process of chart construc-
tion. Left: The domain of chart Ci, Pi, is
initialized as a box enclosing a ball of ra-
dius r around xi, both defined in the tan-
gent space of M at xi. Right: Pi is refined
using a ball Bi

j that approximates Ci
j , the

projection to Ci of the part of the manifold
covered by the adjacent chart Cj .

expansion continues as long as there are open
(non-closed) charts in the atlas. In the end, the
connected component of M containing the ini-
tial point xs gets fully covered by the generated
charts.

As an example, Fig. 7 illustrates the progres-
sion of the algorithm on tracing a Chmutov sur-
face from a given point, where open and closed
charts are colored in red and blue, respectively.
Since this is a two-dimensional manifold, here
the balls Bi are circles, and the polytopes Pi

are polygons.

Once an atlas has been computed, a graph G
can be build whose nodes represent the chart
centers, and whose edges correspond to the
neighbouring relations between the generated
charts. If a path connecting xs and xg exists
in M, the chart covering xg must be present in
the atlas constructed from xs and, thus, a solu-
tion path can be computed by searching G with
standard graph search methods. If no chart
containing xg is found, path non-existence is
established at the considered value of r.

4.3 Biasing the Search to the Goal

When multiple planning queries need to be re-
solved, it may be interesting to precompute a
whole atlas of the connected component of M
that is reachable from a given point. How-
ever, in single-query planning it is better to use
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Figure 7: Progression of the con-
tinuation method on tracing
a Chmutov surface defined by
3 + 8(x4 + y4 + z4) = 8(x2 + y2 + z2),
using r = 0.07.

strategies that guide the expansion of the atlas
towards xg [35].

A possible approach is to use an A* search
strategy [40], which computes a minimum-cost
path from xs to xg, assuming direct movements
between adjacent chart centers. This approach
provides a fair approximation of the shortest

path on M. At each iteration, this method ex-
pands the chart Ci with the lowest estimated
cost of the whole movement from xs to xg,
while keeping a sorted priority queue of alter-
native path segments. The previous cost is the
sum of a term g(xi) that gives the lowest known
cost of moving from xs to the chart center xi,
and a term h(xi) that gives a lower bound of
the cost of moving from xi to xg. The value of
the former term is maintained during the ex-
pansion of the atlas by means of a function
c(xj ,xk) that determines the transition cost
between two chart centers.

The A* strategy performs well in lower-
dimensional C-spaces, but computation times
considerably increase when n is large, due to
the effort needed to find the optimal path. In
such cases, one can simply use a Greedy Best-
First strategy, in which the chart Ci to be ex-
panded is just the one yielding a minimum es-
timated cost in the movement from xi to xg.
In contrast with the A* strategy, the Greedy
Best-First strategy usually explores a smaller
portion of the manifold. It does not necessar-
ily generate all the neighbours of a chart under
expansion, because such generation of children
charts proceeds only until a chart with lower
cost than the parent is found, and this stronly
reduces the final number of charts produced.
However, the path obtained by the Greedy
Best-First method may be not be close to the
optimal one. In both strategies, the search is
stopped as soon as xg is connected to the rest
of the atlas, or when the full manifold has been
covered without finding xg.

Since the returned paths use direct motions
between adjacent chart centers, they may be
slightly jerky. However, they can always be
smoothed using standard path smoothing tech-
niques [2]. Note also that any cost function can
be used in principle. Depending on the partic-
ular context of application, the function may
reflect energy consumption, travelled distance,
or even a penalty due to robot collisions with
itself or with the environment. In the latter
case the function only has to assign an infinite
cost to the chart-to-chart transitions that cause
the collision [4].
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5 Performance Tests

We next illustrate the performance of the
method on two instances of an octahedral hexa-
pod, specified as Robot 1 and 2 hereafter
(Fig. 8). The robots essentially have the struc-
ture of the NIST Robocrane [1], but the plan-
ner remains applicable to general hexapods,
with cable anchor points not necessarily coin-
cident in pairs.

In Section 5.1 we apply the planner to com-
pute paths in two-dimensional slices of C ob-
tained by fixing four pose parameters. This
shows how complex the wrench-feasible C-
space can be even in simple cases, and stresses
the advantages of our approach in comparison
to previous methods based on discretization.
Then, in Section 5.2, we use the planner in a
real prototype, both to plan motions subject to
geometric constraints, and free-flying motions
in six-dimensional space.

Computation times are given in Table 1 at
the end of the section. All results have been
obtained with an implementation in C of the
method available through [14], executed on
a MacBook Pro computer equipped with a
2.66 GHz Intel Core i7 processor. Because of
its attractive properties in parallel machines,
the implementation adopts the tilt-and-torsion
parameterization of SO(3), for which R =
Rz(φ)Ry(θ)Rz(σ − φ), where φ, θ, and σ are
the azimuth, tilt, and torsion angles respec-
tively [7]. Thus, τ = {φ, θ, σ} in this section,
and the algorithms take into account that the
angular coordinates differing in multiples of 2π
refer to the same angle.

5.1 Planning in Illustrative Slices

In this example, Robot 1 is required to with-
stand a force of 1 N applied at a point
Pm with position vector pm = [30, 14,−21]T

mm in frame F2. Note that the weight of
this load corresponds to a constant wrench
ŵ0 = [0, 0, 1, 0, 0, 0]T (in SI units) if expressed
in a frame F3 defined parallel to F1 and trans-
lating with Pm. The bounded perturbations of
this wrench will be represented by the ellipsoid
K centered in ŵ0 with E = 104I6, also ex-
pressed in F3. Both ŵ0 andE can be expressed
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A3 = (233.74,−132.50, 0) B3 = (77.21, 44.57, 0)

A4 = (2.13, 268.67, 0) B4 = (77.21, 44.57, 0)

A5 = (−2.13, 268.67, 0) B5 = (−77.21, 44.57, 0)

A6 = (−233.74,−132.50, 0) B6 = (−77.21, 44.57, 0)

Figure 8: Top: Front and top views of the
octahedral architecture in a reference con-
figuration. Bottom: Coordinates of Ai

and Bi in mm, expressed in F1 = Oxyz
and F2 = Px′y′z′ respectively, for the two
robots considered.
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Figure 9: Slices of C for Robot 1 obtained by dense discretization. The images show the
zones where some force is out of range (blue), some cable length exceeds its limits (or-
ange), and configurations belonging to the wrench-feasible C-space (green). Note that
the path in the top-right picture is unfeasible, despite the wrench-feasibility conditions
are satisfied when evaluated at the shown points.

in F1 using Eqs. (20) and (21) of Appendix A.
The tensions and lengths for all cables are con-
strained to the ranges fi ∈ (0.05, 0.5) N and
di ∈ (100, 550) mm.

Fig. 9 shows several slices of the wrench feasi-
ble C-space of the robot, computed in Matlab
using dense discretization. Whereas the top
row shows slices in which P and σ are held
fixed, the bottom row shows others in which the
full orientation τ and one of the coordinates of
P are constant. The configurations correspond-
ing to C are indicated in green, while those
that cannot be reached due to cable lengths
or tensions out of range are represented by
the orange and blue areas, respectively. The
symmetries in the slices of the top row appear
because {φ, θ, σ} and {φ + π,−θ, σ} represent
the same orientation under the chosen param-

eterization. To avoid this double coverage of
SO(3), we only need to restrict the expansion
of the atlas to the range θ ∈ [0, π]. The figures
also show in red the singularity curves where
det(J(q)) = 0, computed under no constraints
on the cable tensions. It can be observed that,
as expected, C naturally avoids crossing such
curves, and that the navigation between two
configurations is not trivial, because C is in
general non-convex and may have very close
connected components. The top-right plot of
Fig. 9, in particular, exemplifies how evalu-
ating the wrench-feasibility conditions at dis-
crete points could result in erroneous paths
linking configurations of C separated by singu-
larity curves.

We apply our method to resolve a planning
query on the top-centre slice of Fig. 9, hence
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Figure 10: The three planning queries resolved in Section 5.1. The green mesh of
hexagon-like polygons corresponds to the polytopes Pi of the whole atlas obtained
from qs. Only part of such atlas is generated when trying to connect qs to qg under
the A* strategy, shown shaded in green (closed charts) and blue (open charts). The
inset at the top shows the envelope of cable tensions along this path. See the text for
details.

exploring a manifold of dimension n = 2. Since
here the platform can only rotate, we use the
functions

c(xj ,xk) = ‖log(R(τ j)
TR(τ k))‖,

and

h(xi) = c(xi,xg).

to implement the A* search strategy of the
planner. For two orientations given by R(τ j)
andR(τ k), c(xj ,xk) gives the angle of the axis-
angle representation of R(τ j)

TR(τ j), which
is a standard metric of SO(3) [28]. The
start and goal configurations qs and qg are

given by the τ values {−2.3, 1.6, 1790π} rad and
{1.7, 1.7, 1790π} rad, and by the position of P ,
which is fixed at p = [0, 0, 350]T mm.

Fig. 10 shows the path returned by the plan-
ner, in red, after smoothing it. The green mesh
corresponds to the full atlas of the connected
component of C attainable from qs, and the
shaded area indicates the part of this compo-
nent that was actually explored to obtain the
path using the A* search scheme. Green and
blue shading corresponds to closed and open
charts respectively, and it can be seen that the
algorithm takes into account the topology of
the angle variables, allowing to traverse from
φ = −π to φ = π, or vice versa.

Observe that a naive approach based on in-
terpolating the start and goal configurations
would violate some of the constraints of C, giv-
ing rise to uncontrollable motions or unafford-
able cable tensions. The computed path, in
contrast, correctly avoids these situations and
guarantees control of the platform at all points,
while keeping cable lengths and tensions within
their limits. Fig. 10, for example, shows that
the envelope of cable forces is admissible along
the movement. Furthermore, because we rely
on continuation, the synthesized path will not
misleadingly bridge two disjoint components
of C, a property that cannot be ensured by
discretization-based strategies.

The line θ = 0 of Fig. 10 is known to be
a representation singularity because all of its
points correspond to a same orientation [7]. To
illustrate that this is not a problem in practice,
we show the results of planning two movements
starting at distinct points of the θ = 0 line,
q′s and q′′s , both leading to qg. The resulting
paths, shown in blue and purple, are clearly
different, because the nature of the algorithm
does not capture the fact that there is no cost of
moving between two configurations with θ = 0.
However, M is smooth despite the singularity,
and the planner has no problem in computing
feasible movements in the two cases. An alter-
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Figure 11: Polar representation of Fig. 10.
The blue and purple paths connect the
same two poses of the platform, but are
computed using different initial values of
the angle φ.

native way to represent these results is by us-
ing the cylindrical coordinate system proposed
by [7], in which the line θ = 0 corresponds to
the center point (Fig. 11). In this projection
there is a bijection between the {φ, θ} pairs
and their corresponding orientations, and we
can see that the blue and purple paths are sim-
ilar, only differing in the vicinity of θ = 0.

5.2 Planning in a Real Prototype

In order to mimic a situation in which the plat-
form is subject to geometric constraints, we
next apply our approach to the robot of Fig. 12,
which is meant to perform insertion tasks on
the surface of a sphere. For operation purposes,
the platform is required to move tangentially to
the sphere, with zero torsion. Using the para-
metric form of Eq. (14), these conditions can
be written as follows

p = rc + rs





cosα2 cosα1

cosα2 sinα1

− sinα2





φ = α1 − π
θ = π

2 − α2

σ = 0































, (17)

where rc = [xs, ys, zs]
T and rs indicate the

sphere center and radius, and α1 and α2 are two
angular parameters. Thus, λ = {α1, α2} in this
case, and the navigation manifold is of dimen-
sion n = 2 after adding Eq. (17) to Eq. (13).
The points Ai and Bi correspond to those

of Robot 2 in Fig. 8, and the sphere is of
radius 100 mm, with its center located at
rc = [0, 0, 306]T mm in frame F1. However,
since a small distance between the platform
and the sphere needs to be kept, a value of
rs = 130 mm is used in Eq. (17). The plat-
form weight is of 0.6 kg, with its center of
mass located in P , and we use the same ma-
trix E = 104I6 as before. Cable tensions are
limited by the maximum force allowable by the
motors, with fi ∈ (0.1, 6.58) N, and the feasible
lengths are those satisfying di ∈ (200, 600) mm,
for i = 1, . . . , 3.
The resulting C-space is shown in Fig. 13

projected on the sphere, using the same draw-
ing conventions of Fig. 10. The initial config-
uration, and the configurations where the in-
sertion tasks are to be done are referred to as
q1, q2, and q3, respectively, and correspond
to the λ values {0.55, π2 }, {0.55, 0.75}, and
{2.63, 0.75}. If we ask the planner to synthe-
size movements from q1 to q2, and then to q3,
we obtain the red path in Fig. 13, which has
been computed using

c(xi,xj) = rs arctan

(

‖ni × nj‖

ni · nj

)

,

and
h(xi) = c(xi,xg), (18)

in the A* search strategy, where ni = pi − rc.
Given two points pi and pj on the sphere, these
functions provide the great-circle distance be-
tween them, so the algorithm returns motions
that minimize the distance travelled by P on
the surface of the sphere. A simple planning
approach based on interpolation in the {α1, α2}
plane would result in a rather different motion.
The transition from q1 to q2 would coincide,
but the movement from q2 to q3 would yield
the blue path of the figure, which rapidly leaves
C at the beginning.
The video in http://youtu.be/

DM9lPR0mMKY shows the results of execut-
ing both the interpolated and planned versions
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Figure 12: A cable-driven hexapod constructed at Institut de Robòtica i Informàtica
Industrial (IRI) to demonstrate the planning method proposed.

q1

q2

q3

interpolated
path

Figure 13: Results of planning a path from q1 to q2, and then to q3, in the first
experiment of Section 5.2. The part of the C-space explored to plan the transition
from q2 to q3 is shown shaded in green.
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(a)

(c) (d)
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Figure 14: Several snapshots of the video available in http://youtu.be/DM9lPR0mMKY.
(a): The robot at configuration q2. (b): Slackness of the cables and collisions appear
when trying to follow the interpolated path from q2 to q3. (c): Comparison between
normal operation (left) and tanglement of the cables in the motors (right). (d): Fol-
lowing the wrench-feasible path between q2 and q3 guarantees a smooth motion and
control of the platform at all times.

of the q1 − q2 − q3 movement. It can be
seen how, as expected, the platform moves
smoothly from q1 to q2, but some cables
become slack and control of the platform is
lost along the interpolated path from q2 to
q3. Other undesirable effects of following
this path include shakyness of the platform
under small perturbations, collisions with the
environment, and cable tanglement at the
motors. In contrast, control of the platform is
maintained when following the path q2 − q3
returned by the planner. Fig. 14 summarizes
the experiment in a few snapshots.

The method can be applied to higher-
dimensional problems as well. For example, if
the insertion operations are to be performed
with an axisymmetric tool, we can ignore the
zero-torsion constraint on the platform pose by
removing σ = 0 in Eq. (17). The result is a
three-dimensional planning problem that is ef-
ficiently solved with the method, although the

computation time is higher due to the increased
size of the search space. Six-dimensional prob-
lems can also be solved by taking only Eq. (13)
into account. Assuming that the sphere is no
longer present, for example, a free-flying mo-
tion from q2 to q3 can be planned in a matter
of seconds using the Greeedy Best-first strat-
egy.

The problem sizes and computation times
of all test cases are reported in Table 1. For
each case, the table shows the dimension of
the explored manifold (n), the number of prob-
lem variables involved (m), and the time spent
by the Greedy Best-first and A* strategies
(last two columns expressed in seconds), us-
ing the same cost functions. It becomes appar-
ent how, in terms of computation time, the use
of a Greedy Best-first strategy is advantageous
in higher-dimensional problems, while the A*
one is affordable and adviseable in lower di-
mensions, because it normally yields lower-cost
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paths. Moreover, it must be said that once
a partial atlas has been computed, all plan-
ning queries between configurations in such at-
las can be solved in a few milliseconds.

Robot Path n/m GBF A*

1

qs → qg 2/150 29 62

q
′

s → qg 2/150 6 12

q
′′

s → qg 2/150 5 9

2

q
1
→ q

2
2/155 12 2

q
2
→ q

3
2/155 30 14

q
2
→ q

3
(σ free) 3/155 56 166

q
2
→ q

3
(free-flying) 6/153 40 > 6000

Table 1: Problem sizes and computation
times (in seconds) for all test cases.

6 Conclusions

The ability to govern a load both in posi-
tion and orientation is crucial in many appli-
cations, and parallel cable-driven robots con-
stitute an advantageous, cost-effective solution.
The problem is challenging though, because ca-
ble tensions need to be positive to avoid sway-
ing and unwanted collisions of the load when
moving towards a goal. This paper has pro-
posed a path planner that ensures a safe nav-
igation in this context. The planner auto-
matically computes motion paths that, at any
point, allow to counteract a platform wrench
subject to bounded perturbations, with cable
tensions lying inside their allowable bounds.
When executing the planned paths, the load
moves smoothly and predictably towards the
desired pose, thus making the approach suit-
able in fine manipulation tasks especially. As
shown in the paper, moreover, the strategy
naturally avoids crossing the forward singular-
ity locus, and the adjustment of the tension
bounds gives a meaningful way to tune the
clearance relative to such locus. Although the
emphasis has been on modelling the length and
tension constraints of the hexapod, the algo-
rithm is flexible-enough to also accommodate
collision constraints of the robot. As shown in

Section 4, these simply translate into infinite
cost transitions in the graph of the atlas. The
method has been thoroughly tested in C-spaces
of various dimensions, and with experiments on
a real prototype. Video sequences of the latter
can be found in the multimedia material at-
tached to the paper.

A number of points are proposed for future
attention. First, in some applications it may be
necessary to also obtain platform motions with
a certain degree of position accuracy for the
moving load. Due to the generality of the nu-
merical continuation strategy, it shouldn’t be
difficult to deal with such constraints using de-
velopments analogous to those in the paper,
propagating known bounds on the position er-
ror of the actuators to an ellipsoidal bound on
the platform pose. Second, while inertia effects
can currently be modelled as bounded pertur-
bations of the wrench, this approach is bet-
ter suited to move the robot quasi-statically,
as shown in the experiments performed. Fur-
ther research needs to be done to see whether
the method can be extended to also synthesize
motion paths ensuring a full dynamic control
of the robot, or even a time-optimal trajectory.
As explained in [21], substantial workspace en-
largements might be achieved in doing so. Fi-
nally, efforts should also be made to try to gen-
eralise the method to deal with cable-driven
robots with more than six cables, which, de-
spite their more intrusive nature, are increas-
ingly proposed to exploit their redundant ac-
tuation. Here, the difficulty resides in that
the mapping of the wrench ellipsoid to the
cable-tension ellipsoid is not easily expressed
in closed form, because a same wrench can be
counteracted by infinite cable tension combi-
nations. Careful analysis of tension distribu-
tion methods might give a clue to this exten-
sion [36].

A Obtaining the

Wrench Ellipsoid

To obtain the center ŵ0 and shape matrix E

needed in Section 2, we distinguish two situ-
ations, depending on whether the suspended
load is moving in free space, or it is subject to
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a contact constraint.

In the former case (Fig. 15 (a)) the resultant
wrench ŵ is the sum of the load weight ŵw

and small perturbations introduced by inertia
forces or external agents like the wind. Both
ŵ0 and E are easier to describe in a frame F3

parallel to F1 in this case, located in the center
of mass G of the load. In this frame E is a
constant matrix, and

ŵ0 = ŵw = [0, 0,−w, 0, 0, 0]T, (19)

where w is the load weight. However, since in
Section 2 and Eq. (4) J was given in F1, both
ŵ0 and E need to be converted into such frame
for consistency. To convert ŵ0 we can use the
transformation

ŵi = eij · ŵ
j , (20)

where ŵi and ŵj indicate the coordinates of a
same wrench in frames Fi and Fj , and

eij =

[

Rij 03
XijRij Rij

]

is the change of reference matrix [18]. The
block Rij is the rotation matrix providing the
orientation of Fj relative to Fi, and

Xij =





0 −z y
z 0 −x
−y x 0



 ,

where x, y, and z are the coordinates of the
origin of Fj in frame Fi. In Fig. 15 (a), e.g.,
if g is the position vector of G in frame F2 we
have

[x, y, z]T = p+R g,

where p andR are defined as in Section 2. Sim-
ilarly, to convert E, it is easy to see that if Ei

and Ej refer to the shape matrix of an ellipsoid
in frames Fi and Fj , then

Ei = eTji ·E
j · eji, (21)

where

eji =

[

RT

ij 03
RT

ijX
T

ij RT

ij

]

.

In contact situations (Fig. 15 (b)), the re-
sultant wrench ŵ is the sum of the weight ŵw,

the contact wrench ŵc, and bounded perturba-
tions in both of such wrenches. We thus think
of ŵ as the sum of two vectors lying inside six-
dimensional ellipsoids Kw and Kc respectively,
centered in ŵw and ŵc, and with shape ma-
trices Ew and Ec. Therefore, ŵ will lie inside
the Minkowski sum of Kw and Kc, which, ac-
cording to [39], can be tightly bounded by an
ellipsoid centered in

ŵ0 = ŵw + ŵc, (22)

with shape matrix

E =
1

2
Ew(Ew +Ec)

−1Ec. (23)

Assuming that ŵw, Ew, ŵc, and Ec have all
been expressed in frame F1, these are the ex-
pressions needed for ŵ0 and E in Section 2.

B Proofs of the Properties

B.1 Non-singularity of the

Screw Jacobian

It is easy to prove that J is full rank for all
q ∈ C by contradiction. Let us assume that
there is a configuration q ∈ C for which J is
rank deficient. Then, since B would be rank
deficient as well, we have dim(kerB) ≥ 1. In
this case, there would be some i for which
kerB = kerBi, i.e. all solutions vi ofB

ivi = 0
would lie in kerB. This would imply vT

i Bvi =
0 for such i, which contradicts Eq. (5). There-
fore, J must be non-singular for all q ∈ C.

B.2 Smoothness of the

Navigation Manifold

To prove that M is a smooth manifold, it is
sufficient to show that F (x) is differentiable
and has a full rank Jacobian Fx for all x ∈ M.
Then, the smoothness of M follows from the
Implicit Function Theorem.

By construction, all functions intervening in
F (x) are clearly differentiable. After reorder-
ing the equations, Fx can be expressed in the
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ŵw

ŵw

ŵc

G

Figure 15: Obtaining the wrench ellispsoid in two common scenarios. (a) Cargo re-
trieval [1]. (b) Beam mounting using the NIST gripper shown in Fig. 1 [32].

following block-triangular form

Fx =





































Φy

∗ J

*

2vT

1B

B1

. . .

2vT

6B

B6

∗ ∗ S

∗ ∗ T





































,

where the empty blocks represent zero-matrices
and the asterisks indicate non-zero blocks. The
block Φy is of size 30× 36, and the remaining
diagonal blocks are all of size 6 × 6. To see
that Fx is full rank, we next check that all the
blocks in its diagonal are full-rank:

1. The block Φy is the Jacobian of the sub-
system Φ(y) = 0 formed by Eqs. (1), (2),
and (10), where

y = [p, τ ,d1, . . . ,d6, d1, . . . , d6, g1, . . . , g6].
(24)

This Jacobian takes the form

Φy =





∗ ∗ −I18

∗ L

∗ G



 , (25)

where the block columns correspond to
the derivatives of the variables in y in
the order of Eq. (24), and L and G are
6 × 6 diagonal matrices with −2di and
(di − di) · (di − di) in their entries, respec-
tively. Observe that Φy is full rank, be-
cause the entries in L and G do not vanish
over M, by virtue of Eq. (10) and the fact
that di > 0.

2. Appendix B.1 proves that the block J is
full rank for all q ∈ C, and the same ar-
gument shows that it must be so for all
x ∈ M.

3. The 6× 6 block matrices involving B and
Bi can only be rank deficient if vi,i = 0
but, as explained in Section 3.2, this can
never happen on M.

4. Finally, S and T are 6× 6 diagonal matri-
ces whose elements are (f0,i−vi,i−fi) and

(fi− f0,i− vi,i), respectively, which do not
vanish because of Eqs. (11) and (12).

B.3 Smoothness of

Lower-dimensional Subsets

Subsets of M defined by adding Eq. (14) or
Eq. (15) to Eq. (13) are also smooth manifolds.
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When adding Eq. (14), the Jacobian of the re-
sulting system of equations takes the form





Ωλ I6

Φ1 Φ2

∗ ∗ P



 , (26)

where Φ1 and Φ2 are the matrices formed by
the first two and last three block-columns of
Φy in Eq. (25), respectively, and P is the sub-
matrix of Fx obtained by removing its first
block-row and block-column. The Jacobian
in (26) is full rank, because the square blocks
I6, Φ2 and P are all full rank. Similarly, if we
add Eq. (15) to Eq. (13) the resulting Jacobian
is





Cp,τ
Φ1 Φ2

∗ ∗ P



 , (27)

which is clearly full rank because Cp,τ is non-
singular according to our assumptions.
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