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Dither-Less Extremum Seeking for Hydrogen
Minimization in PEM Fuel Cells
Fernando Castaños, Member IEEE and Cristian Kunusch, Member IEEE

Abstract—This work presents a nonsmooth adaptive extremum
seeker that minimizes the hydrogen consumption in a fuel cell
system. The extremum seeker operates by estimating the gradient
of the objective function but, unlike other seekers, it does not
require a dither signal to produce such estimate. The absence
of a dither signal simplifies the choice of parameter values for
the seeker and, more importantly, it allows it to converge to
the optimal value exactly, not only to a small neighborhood.
The proper functioning of the proposed scheme is proved using
nonsmooth Lyapunov analysis. The strategy is tested on the
input–output map of a real PEM fuel cell.

Index Terms—Extremum Seeking; Fuel Cells; Nonsmooth
Lyapunov Analysis.

I. INTRODUCTION

DESPITE the notorious advantages of polymer electrolyte
fuel cells (PEMFC) and the widespread availability of

hydrogen as a fuel, several technological challenges related
to the PEMFC efficiency, lifetime and economical costs are
still open as major limitations for their standard implemen-
tation in everyday solutions. This fact, together with the
recent advances in materials development and component
enhancements, make advanced control techniques appear as
the necessary complementary strategies in order to reduce
costs, improve performance and optimize efficiency, therefore
increasing the lifetime of PEMFC-based systems. Reliable
control systems may ensure system stability and performance,
as well as robustness against uncertainties and exogenous
perturbations, all properties of capital importance for PEMFC
success and future industrial development. Several research
works have addressed the oxygen stoichiometry through air
flow control, avoiding performance deterioration together with
eventual irreversible damages in the polymeric membranes due
to oxygen starvation. These works present the way to achieve
the aforementioned control objective by using different tech-
niques: Model Predictive Control (MPC) [1], Sliding-Mode
Control [2], Full-state Feedback with Integral Control [3],
Linear Parameter Varying (LPV) control [4], adaptive control
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[5], among others. Nevertheless, there still lacks rigorous
results that solve on-line reference computation for optimal
energy efficiency in variable operating conditions. Tracking a
varying maximum or minimum (extremum) of a performance
(output, cost) function is called extremum seeking control,
which has usually two layers of control. The first is an
algorithm able to control (stabilize) the system and drive the
performance output to its reference. Then, if possible, it is
necessary to seek an extremum of the performance output.

In some applications, the reference-to-output map has an
extremum (w.l.o.g. we assume that it is a minimum) and the
objective is to select the set point to keep the output at the
extremum value. The uncertainty in the reference-to-output
map makes it necessary to use some sort of adaptation to find
the set point which optimizes the output [6].

A thorough historical account of extremum seeking can be
found in [7]. The first extremum seeker is traced back to 1922.
During the 1950’s and 1960’s, extremum control is intensively
developed by the adaptive control community. From 1970 to
2000, extremum control is no longer part of the mainstream,
but continues to make steady progress. The first rigorous proof
of the local stability of an extremum seeking control scheme
appears in 2000 [6]. The classical Blackman scheme (where
a low-pass filter, a high-pass filter and a slow perturbation
signal are employed to extract information abut the gradient
of the cost function) is analyzed using averaging analysis and
singular perturbation (time-scale separation) techniques. This
result appears to have sparked a renewed interest in extremum
seeking control.

Extremum seekers usually include some form of perturba-
tion or dither signal. Current extremum seekers can thus be
classified according to the nature of such signal, which can
either be deterministic (usually periodic) or stochastic. The
excitation signal does not necessarily have to be external,
it can be a naturally occurring signal (such as noise) with
appropriate spectral content. In any case, dither signals have
been considered for a long time as essential components of
extremum seeking controllers (see [7] and references therein
for more details), while considerable efforts have been devoted
in the last decade to analyze the degrading effect that dither
signals have on the accuracy of the closed-loop system [8],
[9].

Most of the results available on extremum control consider
a plant as a static map. A few references approach problems
where the plant is a cascade of a nonlinear static map and a
linear dynamic system (the so-called Hammerstein and Wiener
models) (see Wittenmark and Urquhart, 1995 and references
therein). In this paper we approach the problem where the
nonlinearity with an extremum is the reference-to-output map
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of a general nonlinear (non-affine in the control) system. More
precisely, an equilibrium state and its corresponding output are
associated to each reference, and the equilibria are stabilizable
by a local feedback controller [6].

Applications of extremum control are among the following:
combustion processes (for IC engines, steam generating plants,
and gas furnaces), grinding processes, solar cell and radio
telescope antenna adjustment to maximize the received signal,
and blade adjustment in water turbines and wind mills to
maximize the generated power. Many more applications are
reported in [7]. The authors only found a few references about
extremum seeking control applied to fuel cell optimization in
the literature. In the work [10], promising initial results con-
sidering a second-order sliding-mode algorithm are provided
for a PEM fuel cell system simulation model. Nevertheless, no
rigorous proof of convergence is given for the seeker and the
persistence in the excitation problem is not considered. There-
fore it is still difficult to analyze the algorithm’s robustness.
In [11], an extremum seeking algorithm is proposed based
on [6]. In that reference, simulation results are provided for a
PEM fuel cell, but there are no hints about the algorithm tuning
(specially the dither signal conditions) and its robustness is not
analyzed.

II. SYSTEM DESCRIPTION

The system under study is comprised by a central PEMFC
stack and additional/auxiliary units. Fig. 1 shows the scheme
of the system and the interaction between its different sub-
systems (FC stack, reactant supply system and humidity
management unit). A brief description of some components,
variables and processes is presented as follows. In the system,
the main control input corresponds to the compressor voltage,
denoted Vcp. One important system output corresponds in turn
to the inlet oxygen mass flow in the PEMFC cathode, namely
Wcp. While the system is affected by an external measurable
disturbance Pnet, which corresponds to the system net power
delivered to the load.

The main subsystems depicted in Fig. 1 are:

• A 12 V DC air compressor with an oil-free diaphragm
vacuum pump, whose input voltage Vcp is the control
variable (as established beforehand).

• Hydrogen and oxygen membrane exchange humidifiers
and line heaters, which are used to maintain proper hu-
midity and temperature conditions inside the cell stack1.

• A ZBTr 8 fuel-cell stack with Nafion 115r membrane
electrode assemblies with 50 cm2 of active area and
150 W power.

Different sensors are incorporated into the system, such
as an air-mass flow-meter (range 0-15 slpm) at the end of
the compressor to measure its flow (Wcp), a current clamp
(range 0-3 A) and a voltage meter (range 0-15 V) to measure
the motor stator current (Icp) and voltage (Vcp), respectively.
Besides, temperature sensors are arranged in order to register

1Decentralized controllers ensure the adequate operation values for these
devices, therefore the temperature and humidity control design is out of the
scope of this paper.

the different operating conditions. In the sequel, the following
working conditions are assumed in the test bench:
• The compressor behaves as a parasitic load to the stack.
• A mass flow control device ensures a constant hydrogen

stoichiometry close to 1.5.
• An auxiliary control system efficiently regulates temper-

atures at five points of the plant: cathode and anode
humidifiers (Thum,ca and Thum,an), cathode and anode
line heaters (Tlh,ca and Tlh,an) and stack (Tst).

• The air mass flow meter has a time constant of 20 ms, so
no significant delays are involved in the control loops.

• A humidity control loop regulates the water injection of
the humidifiers (anode and cathode) up to a relative level
of 100 % at 60◦C.

• The fuel cell model is finite-dimensional, so the gases are
considered uniformly distributed in the cell.

• The electrochemical properties are evaluated at the aver-
age stack temperature (70◦C), so temperature variations
across the stack are neglected.

• The water entering the cathode and the anode are in
vapour phase.

• The effects of liquid water creation are negligible at the
gas flow model level.

The full description of this system, as well as a fully-
validated nonlinear dynamic model specially developed for
control purposes, are presented and deeply discussed in [12].

In order to maximize the efficiency of the PEMFC system,
the regulation of the oxygen mass inflow towards the stack
needs to be tackled. As a consequence of a correct regulation
of this variable, the oxygen excess ratio [13] is driven to the
optimal value and the load demand is satisfied with minimum
fuel consumption [14], [15], [16]. Additionally, oxygen star-
vation and irreversible membrane damages are averted. In this
context, the fuel cell oxygen mass flow is described as follows:

WO2,ca =
χO2Wcp

1 + ωamb
, (1)

where ωamb is the ambient air humidity ratio and χO2 is
the molar fraction of oxygen in the air (χO2

= 0.21). As
presented in the validated model [12], for set temperature and
humidity conditions, the operating conditions of the system
are determined by the compressor voltage (Vcp) and the net
power extracted from the system (Pnet).

It follows from the chemistry of the fuel cell that higher
air/oxygen flow rates translate into higher stack voltage (hence
lower load current for the same stack power). On the other
hand, higher air/oxygen flow rates imply higher compressor
electrical consumption, so a right compromise has to be found
in order to minimize this parasitic behaviour. This means
that there is a certain optimal value of Wcp that makes
the stack have the maximum voltage. If the stack is in its
maximum voltage, for constant power, the stack current is
in its minimum. Note that the minimization of the stack
current for a fixed net power is equivalent to the net power
maximization for a fixed stack current (point of maximum
efficiency).

The work of this paper is focused on the oxygen mass
flow WO2,ca reference computation under changes in the net
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Fig. 1. Schematic diagram of the PEMFC-based generation system.

power. The inner regulation loop is robustly solved using the
super twisting controller (a continuous higher-order sliding-
mode controller). See [2]. In this previous work, the extremum
seeking solution is presented as an open problem.

It should also be stressed that the anode subsystem is not
considered in the proposed control loop (as it does not affect
the inner loop dynamics of the cathode line).

It is also important to stress that, due to the fact that WO2,ca

is an internal unavailable variable of the system, it is not
practical to include it in the control algorithm. This problem
was circumvented by inferring information of WO2,ca from an
accessible variable of the system, such as the air mass flow
delivered by the compressor Wcp. See (1).

Then, the inner control objective can be expressed as
S(x) = 0, where S(x) = Wcp−Wcp,ref is the sliding variable
that must be steered to zero,

Wcp = B00 + B10

(
x2
Thum,caRa
Vhum

+ Khum

)
+

+ B20

(
x2
Thum,caRa
Vhum

+ Khum

)2

+ B01 x1+

+ B11

(
x2
Thum,caRa
Vhum

+ Khum

)
x1 + B02 x1

2

is the compressor air mass flow, x1 = ωcp the compres-
sor speed, x2 = ma,hum the humidifier mass of air and
Wcp,ref is the compressor flow reference. The compres-
sor parameters B00, B01, B10, B11, B02 and B20 can be
obtained from [17], Thum,ca is the humidifier temperature,
Vhum is the humidifier volume, Ra the air gas constant
and Khum = Psat(Thum,ca)RHhum − Psat(Tamb)RHamb

with Psat(Thum,ca) the vapour saturation pressure at Thum,ca,
RHhum the relative humidity of the gas at the humidifier
output, Psat(Tamb) the vapour saturation pressure at ambient
temperature and RHhum the relative humidity of ambient air.
The robust stabilization problem of setting S(x) = 0 was
solved through a Super-Twisting algorithm as proposed in [2].

In this context, to optimize the system hydrogen consump-
tion for different power loads (Pnet), the computation of the
optimal Wcp,ref in uncertain conditions should be carried out
by an extremum seeking algorithm.

The objective of the case study is to optimize the hydrogen
consumption of the fuel cell system in every operating con-

dition, minimizing the stack current demand under different
loads. Note that the consumed hydrogen in the reaction
(WH2,re) is directly related to the stack current (Ist),

WH2,re = GH2

nIst
2F

, (2)

where GH2
stands for the molar mass of hydrogen, n is the

total number of cells of the stack and F is Faraday’s constant.
In turn, the stack current can be determined from the power
relation Ist = Pst

Vst
, where Pst is the total power delivered

by fuel cell stack and Vst is the fuel cell stack voltage. Note
that Ist = (Pnet + IcpVcp)/Vst. On the other hand, Vst, Icp
and Vcp depend indirectly on Wcp, through the equilibrium
equations of the system internal state variables [18]. Therefore,
the optimization procedure can be stated as the problem of
minimizing the real-valued objective function

Ist = H(Wcp) , (3)

where for notational simplicity we have omitted the depen-
dence that H has on Pnet and the system parameters. Further
details of the model, assumptions and operating conditions can
be found in [12].

The steady state map of the system (the static relationship
between Wcp and Ist at different values of the net power Pnet)
is depicted in Fig. 2.

Notice that low air mass flow implies low stack voltage and,
hence, higher stack current in order to deliver the required
Pnet. At the same time, a higher air mass flow would require
a higher compressor current, which would also increase Ist.
Thus, if continuity holds, there must be a minimizing value of
air mass between the two extrema of air mass flow. Indeed, the
input-output maps depicted in Fig. 2 show that such minima
exist. What is more, the maps can be reasonably approximated
by convex functions. These results were obtained at fixed
operating conditions of inlet gases humidities, temperature and
hydrogen stoichiometry. Nevertheless, similar results showing
the existence of global minima were obtained in different
working conditions.

Note that the real nature of the relation between Wcp and Ist
is dynamical, and the true state-space is infinite-dimensional.
The approximation to a static map is valid as long as the
extremum seeker (to be defined below) is slow enough for
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Fig. 2. Steady-state response of the system under different load conditions.
Oxygen mass flow vs. stack current. The stack current is proportional to the
hydrogen consumption. Experimental data.

the fuel cell dynamics to be considered as instantaneous. This
principle has been verified experimentally in [19].

III. ADAPTIVE EXTREMUM SEEKING

In this section we construct a nonsmooth seeker for obtain-
ing the compressor mass flow (Wcp) that achieves the minimal
stack current (hence minimal hydrogen consumption) in the
presence of plant parametric uncertainty and without explicit
knowledge of the power demanded by the load. Please note
that the extremum seeking algorithm will compute Wcp,ref ,
while a faster inner control loop based on [2] robustly ensures
that Wcp = Wcp,ref . In terms of time constants of the overall
fuel cell system system, the extremum seeking algorithm
will have slower dynamics, so the separation principle can
be applied and Wcp = Wcp,ref can be considered as a
static relationship. In the following, also a convergence to
the optimal compressor mass flow is proved using an explicit
nonsmooth Lyapunov function.

A. Problem statement

Consider the process (3) and let us denote by H ′ and H ′′,
respectively, the first and second derivatives of H with respect
to Wcp. The objective is to devise an extremum seeker that
finds the optimal mass flow

W ∗cp := argmin
Wcp∈R

H(Wcp) . (4)

More precisely, we seek a dynamic system of the form

ξ̇ = g(ξ, Ist, İst) (5a)

Wcp = k(ξ, Ist, İst) (5b)

such that Wcp → W ∗cp as t → ∞. Here, ξ ∈ Rm is the
controller internal state. The derivative İst is required for
estimating H ′ and can be obtained, e.g., with the use of a
super-twisting differentiator [20].

B. Rationale

If H was perfectly known and convex, then a simple
nonsmooth steepest descent algorithm

ξ̇1 = −α1 signH ′(ξ1) (6a)
Wcp = ξ1 (6b)

with α1 > 0 would suffice to accomplish the objective. The
problem, however, is more challenging because H is highly
uncertain (recall that it depends on the fuel cell parameters and
the power load). We only impose the following assumption.

Assumption 1: The function H : R → R is twice continu-
ously differentiable and satisfies

0 < δ1 ≤ H ′′(Wcp) < δ2

for some (possibly unknown) constant δ1, for some known
constant δ2 and for all Wcp in the domain of interest.
This implies strict convexity, a common assumption in the
optimization literature. Notice from Figure 2 that this is a fairly
reasonable assumption.

To further simplify the notation, let us define w :=
H ′(Wcp). It is clear that, given the convexity of H , our prob-
lem reduces to that of finding W ∗cp such that w|Wcp=W∗

cp
= 0.

Since w is unknown, we propose to estimate it by borrowing
ideas from adaptive control.

Differentiation of (3) gives İst = wẆcp. Using İst and Ẇcp

we can construct the error ε = İst − ξ2Ẇcp, where ξ2 is an
estimate of w. The product εẆcp = (w − ξ2)Ẇ 2

cp contains
valuable information about the sign of the estimation error
w − ξ2 and suggests the estimation law

ξ̇2 = α2 sign(εẆcp) (7)

with α2 > 0.

C. The nonsmooth extremum seeker

The extremum seeker is obtained by substituting the equa-
tion εẆcp = İstẆcp − ξ2Ẇ 2

cp in (7) and replacing H ′(ξ1) by
its estimate ξ2 in (6a). This leads to the proposed nonsmooth
extremum seeker

ξ̇1 = −α1 sign ξ2 (8a)

ξ̇2 = α2 sign
(
İst(−α1 sign ξ2)− ξ2(α1 sign ξ2)2

)
(8b)

Wcp = ξ1 , (8c)

the solutions of which are taken in Filippov’s sense [21] (see
the Appendix for the definition and a short collection of results
on nonsmooth Lyapunov analysis).

The following theorem shows that Wcp converges to the
optimum value and gives explicit conditions for the controller
gains α1 and α2.

Theorem 2: Consider a process (3) satisfying Assumption 1
and set

α2 >
α1δ2
1− a

> 0 (9)

with a any constant in the open interval (0, 1). Then, (W ∗cp, 0)
is a globally asymptotically stable equilibrium of (8). More-
over,

L(ξ) = |H ′(ξ1)− ξ2|+ a|ξ2| (10)

is a Lyapunov function.
Proof: Let us begin with the coordinate transformation

ζ = ζ(ξ), where

ζ1 = H ′(ξ1)− ξ2 (11a)
ζ2 = ξ2 . (11b)
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Note that, because of the assumption on the strict convexity of
H , H ′ is a diffeomorphism and the coordinate transformation
is well defined. Let us write system (8) in the new coordinates
as ζ̇ = z(ζ). It is straightforward to verify that the system
reduces to the autonomous system

ζ̇1 = −α1H
′′(ξ1) sign ζ2 − α2 sign ζ1 (12a)

ζ̇2 = α2 sign ζ1 , (12b)

where we have left the term H ′′ as a function of ξ1 =
(H ′)−1(ζ1 + ζ2) in order to maintain the simplicity of the
equations. Still under the same coordinate transformation, the
Lyapunov function candidate (10) becomes

V (ζ) := L(ξ)|ξ=ξ(ζ) = |ζ1|+ a|ζ2| ,

with ξ(ζ) the inverse of ζ(ξ). The function is positive definite,
proper and convex (and Lipschitz continuous and regular in
consequence [22]).

To prove asymptotic stability we will show that ˙̄V , the set
derivative of V (see [23] or the Appendix), is zero when ζ = 0
and is contained in the open negative semi-axis otherwise.
Globality follows from the properness of W . We will analyze
four different cases. Let us first consider the case where ζ1 6= 0
and ζ2 6= 0. The set-valued derivative is the singleton

˙̄V (ζ) = {−α1H
′′(ξ1) sign ζ2 · sign ζ1 − α2

+ aα2 sign ζ1 · sign ζ2} .

It follows from Assumption 1 and (9) that

max ˙̄V (ζ) ≤ −α2(1− a) + α1δ2 < 0 .

Now, when ζ1 = 0 and ζ2 6= 0, the set-valued vector field
and the generalized gradient are

K[z](ζ) =

(
−α1H

′′(ξ1) sign ζ2
0

)
+ co

{(
−α2

α2

)
,

(
α2

−α2

)}
and

∂V (ζ) = co

{(
−1

a sign ζ2

)
,

(
1

a sign ζ2

)}
.

The only vector η ∈ K[z](ζ) such that v>η remains constant
for all v ∈ ∂V (ζ) (cf. (14)) is η> =

(
0 −α1H

′′(ξ1) sign ζ2
)
,

so V̇ (ζ)
a.e.
= v>η = −a · α1H

′′(ξ1) < 0.
Let ζ1 6= 0 and ζ2 = 0. We have

K[z](ζ) =

(
−α2 sign ζ1
α2 sign ζ1

)
+ co

{(
−α1H

′′(ξ1)
0

)
,

(
α1H

′′(ξ1)
0

)}
and

∂V (ζ) = co

{(
sign ζ1
−a

)
,

(
sign ζ1
a

)}
.

For v>η to be constant with respect to all v ∈ ∂V (ζ), η has
to be of the form η> =

(
η1 0

)
, but such η does not belong

to K[z](ζ). We conclude that ˙̄W = ∅. In other words, the
derivative of V does not exist in the case ζ1 6= 0 and ζ2 = 0.
It follows from Lemma 7 that the trajectories necessarily cross
the switching line ζ2 = 0 (no sliding modes occur in this case).

Fig. 3. Phase plane of (12) for a quadratic function H . Level curves of W (ζ)
are shown in gray. Notice that the system exhibits a stable sliding mode on
the switching line ζ1 = 0 but trajectories cross the switching line ζ2 = 0.
All trajectories converge to the origin.

Finally, let us consider the case ζ = 0. The generalized
gradient is

∂V (ζ) = co

{(
−1
−a

)
,

(
1
−a

)
,

(
−1
a

)
,

(
1
a

)}
,

from which is clear that η = 0. Since 0 ∈ K[z](ζ), we have
˙̄V (ζ) = {0}.

Summarizing: max ˙̄V (ζ) ≤ 0, which proves the stability
of ζ = 0 (Theorem 8). Asymptotic stability follows from the
fact that {0} =

{
ζ ∈ Rm | 0 ∈ ˙̄V (ζ)

}
(Theorem 3 in [22]).

To illustrate the asymptotic behavior of ζ, we have included
in Figure 3 the phase plane of (12) for a quadratic function
H along with a few level curves of V (ζ).

Finally, it follows from (11) that the globally asymptotically
stable equilibrium ζ = 0 corresponds, in the original coordi-
nates, to ξ2 = 0 and H ′(ξ1) = 0. In view of the convexity of
H , we have that H ′(ξ1) = 0 implies that ξ1 = W ∗cp.

IV. RESULTS

In the following, the effectiveness of the proposed novel
nonsmooth adaptive sliding-mode extremum seeking algo-
rithm presented in section III is illustrated by setting up
a realistic scenario for a PEM fuel cell stack, where the
seeker plays a decisive role in the optimization of the system
efficiency.

A. Experimental Scenario

In order to evaluate the performance of the proposed ex-
tremum seeking scheme, realistic scenarios were considered
for covering the entire system operating range, taking into
account standard working conditions specified by the fuel
cell stack manufacturer. In this context, the following general
operation mode was imposed to determine the system input–
output map:
• A mass flow control device ensures a constant hydrogen

stoichiometry supply.
• An auxiliary control system efficiently regulates gas

temperatures at five points of the plant: cathode and
anode humidifiers (70◦C), cathode and anode line heaters
(75◦C) and stack (80◦C).

• A humidity control loop regulates the water injection of
the humidifiers to a relative level close to 100 %.
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• The water entering the cathode and anode is only in the
vapor phase.

The next step was to impose different load conditions to the
system and then vary the stack net power (Pnet) accordingly.
The resulting stack current (Ist) was then recorded for a wide
range of compressor flows (Wcp). The raw static data from
the test is depicted in Fig. 2. The objective was to build a
representative input–output model from the system, based on
the real static map of the fuel cell test bench. This represents
a fundamental step to intensively test the seeker algorithm,
because not all the working conditions (specially extreme) are
allowed in practice. It is important to highlight that in a fuel
cell test bench there are strict security layers that do not enable
the system to work in extreme operating conditions, like close
to oxygen starvation.

B. Extremum Seeking Results

The first test was conducted considering nominal ideal
conditions on the plant. A stack net power of 40 W was
imposed and the seeker was tuned following (9). Fig. 4 shows
a trajectory of the closed-loop system (seeker plus fuel cell
system), projected onto the Wcp − Ist plane. A time series
of Ist is also presented. The figure confirms that, given an
arbitrary initial condition to the fuel cell input (Wcp), the
extremum seeking algorithm follows the expected behaviour
of asymptotically minimizing the output Ist. Note that Fig. 4
presents an extreme test, because the initial condition on Wcp

is far from the expected final value. As it will become clear
in the following, the figure provides an illustrative image
of the system behaviour in general, in the sense that the
seeker always keeps the same robust behaviour in all working
conditions.
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Then, a more general set of tests was performed. In this
case, the stack net power was varied from 40 W to 120 W ,
the entire operation range allowed by the stack manufacturer.
Fig. 5 shows the data obtained from the tests. The input–output
map is presented in colored lines and the trajectories driven
by the seeker are over-imposed in black.

Fig. 6 presents a more illustrative picture of the system
behaviour when steered by the seeker. In this case, the
static Wcp − Ist map, when determined for different power
loads, is represented through a two-dimensional surface in the
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Fig. 5. Closed-loop system trajectories, projected onto the Wcp − Ist plane.
The input–output map is presented in colored lines and the trajectories driven
by the seeker are over-imposed in black. Simulation over experimental data.

Pnet −Wcp − Ist space. Some trajectories are also shown in
black. The projections of the trajectories onto the Wcp − Ist
plane are included for better illustration purposes. Note that,
although different initial conditions and working scenarios, the
extremum seeking control always steers Ist to its minimum.

Fig. 6. The static Wcp− Ist map, when measured for different power loads,
is represented a two-dimensional surface in the Pnet − Wcp − Ist space.
The map was constructed by interpolating experimental data. Simulation of
closed-loop trajectories are shown for several values of Pnet. Their projection
onto the Wcp − Ist plane shows that they converge to the optimal values.

The method was compared against the sliding-mode algo-
rithm with dither [18] and the classical Blackman scheme
analyzed in [6]. Three performance indicators are identified
in [9]: Domain of convergence (the set of initial conditions
for which the closed-loop system converges to the optimal
value), rate of convergence and accuracy (quantified by the
radius of the ball centered at the optimal value and to which
the system trajectories converge). Fig. 7 shows that, in average,
all algorithms converge to the optimal value, but the new
algorithm converges considerably faster. Moreover, it follows
from the Lyapunov analysis that convergence is in finite-
time (continuous algorithms such as Blackman’s can only
ensure asymptotic convergence). As expected from its dither-
less nature, the new algorithm exhibits no ripple (the accuracy
is perfect).

All the algorithms were tuned by hand, searching for a good
compromise between speed of convergence and ripple ampli-
tude. Blackman’s algorithm and the sliding-mode algorithm
with dither can be made to converge faster, but at the expense
of higher ripple (the intricate trade-off between convergence,
domain of attraction and accuracy is thoroughly explained
in [9]). For further comparison against Blackman’s scheme,
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Fig. 7. Comparison between Blackman’s algorithm [6], a dither-based sliding-
mode algorithm [18] and the proposed dither-less extremum seeker. Time vs.
Stack current. The performance of the algorithms is shown for different power
loads: 40, 60 and 80 W (from top to bottom). Simulation over experimental
data.

the reader is referred to [11].
To conclude the set of tests, a more comprehensive and

realistic test was performed. In this case, output noise and
actuator dynamics were included. The measurement noise
reflects the experimental data presented in Fig. 2, while the
added dynamics are linear and of the first order, recalling the
Hammerstein and Wiener modeling procedure. This dynamics
time constant was set to τ = 0.2 s, which corresponds to
the worst case scenario for the compressor behaviour [12].
The gains were chosen small enough so that overshoots do
not drive the system outside its safe operating range. The
time-responses might seem slow compared with the fuel-
cell time-constant. This is due to the time-scale separation
principle under which extremum-seekers operate (that is, the
time constant for the extremum seeker has to be orders of
magnitude away from that of the plant). This is the principle
which allows the system to function properly under extreme
uncertainty conditions. It can be verified that the seeker still
drives the fuel cell to its optimal operating condition.
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Fig. 8. Closed-loop system trajectories, projected onto the Wcp − Ist plane.
The input–output map is presented in colored lines and the trajectories driven
by the seeker are over-imposed in black. The plant model is composed of a
static map (built from experimental data) cascaded with a first-order linear
system having a time constant of 2 s. Additive noise is included to emulate
the real curves depicted in Fig. 2.

V. CONCLUSIONS

A novel nonsmooth adaptive sliding-mode extremum algo-
rithm has been proposed to minimize the hydrogen consump-
tion in PEM fuel cell based systems. The nonsmooth nature of
the algorithm avoids the use of dither signals. This allows for
convergence to, theoretically, the optimal value. This stands
in sharp contrast with extremum seekers for which the dither
signal impedes the output of interest to reach the optimal value
exactly, and for which in consequence only convergence to a
neighborhood can be expected.

Under reasonable convexity assumptions, a nonsmooth Lya-
punov function has been used to prove the proper functioning
of the extremum seeker. Lyapunov analysis on this function
also gives conditions for appropriately tuning the seeker gains.
Moreover, the Lyapunov function can in principle be used to
study the behavior of the fuel cell when interconnected with
other subsystems.

The proposed algorithm was tested using an input–output
map (i.e., compressor mass flow vs. stack current) obtained
from real experimental data. It can be concluded that, even in
the presence of noise and of high uncertainty on the system
parameters and power demand (note that Pload is determined
a posteriori), the algorithm manages to steer the system to
its optimal operating condition. For the lowest power load
(40 W) the current can be reduced from 9 A to 7.5 A,
which amounts to a reduction of more than 15 % (cf. Fig. 8).
According to (2), this saving corresponds to a hydrogen flow
reduction of 125µg/s. The algorithm was compared against
another sliding-mode algorithm which uses dither signals and
against the classical algorithm attributed to Blackman. Its
dither-less nature makes the algorithm easier to tune (there
are less parameters). It converges faster than the other two
and, more importantly, without fast oscillations.

APPENDIX A
NONSMOOTH LYAPUNOV ANALYSIS

Definition 3 ([23]): A vector function ζ(·) is called a
solution of ζ̇ = z(ζ) on I = [t0, t1] in the sense of Filippov,
if ζ(·) is absolutely continuous and for almost all t ∈ I

ζ̇ ∈ K[z](ζ) , (13)

where K[z](ζ) :=
⋂
δ>0

⋂
µ(N)=0 co {z(B(ζ, δ)−N)},

B(ζ, δ) is the ball of center ζ and radius δ, co denotes convex
closure and µ the usual Lesbegue measure in Rm.

Definition 4 ([24]): A function f : Rm → Rn is said to
be regular at ζ ∈ Rm if for all v ∈ Rm, the usual one-
sided directional derivative limt→0+ (f(ζ + tv)− f(ζ)) /t ex-
ists and is equal to the generalized directional derivative
limy→ζ supt→0+ (f(y + tv)− f(y)) /t.

Definition 5 ([23]): For a function V : Rm → R that
is locally Lipschitz, the generalized gradient of V at ζ is
∂V (ζ) = co {lim∇V (ζi) | ζi → ζ , ζi 6∈ ΩV }, where ΩV is
the set of measure zero where the gradient of V is not defined.

Definition 6 ([22]): A Lyapunov function for (13) is a
positive definite, continuous function V : Rm → R such that,
for each solution ζ(·) of (13) on I and all t1, t2 ∈ I , t1 ≤ t2
implies that V (ζ(t2)) ≤ V (ζ(t1)).



8

Lemma 7 ([22]): Let ζ(·) be a solution of the differential
inclusion (13) and let V : Rm → R be a locally Lipschitz
continuous regular function. Then, (d/dt)V (ζ(t)) exists al-
most everywhere (a.e.) and (d/dt)V (ζ(t))

a.e.
∈ ˙̄V (ζ), where

˙̄V (ζ) := {d ∈ R | ∃ η ∈ K[z](ζ) such that

v>η = d for all v ∈ ∂V (ζ)} . (14)

is the set-valued derivative of V (ζ).
Theorem 8 ([22]): If V : Rm → R is a positive definite,

locally Lipschitz continuous and regular function such that,
for all ζ ∈ Rm, max ˙̄V (ζ) ≤ 0, then (13) is stable at ζ = 0.

To simplify the exposition, it has been agreed in the pre-
ceding theorem that max ˙̄V (ζ) = −∞ whenever ˙̄V (ζ) = ∅.

APPENDIX B
NOMENCLATURE

Electrical variables Temperatures
Vcp Compressor voltage Thum,ca Cathode humidifier
Icp Compressor current Thum,an Anode humidifier
Vst Stack voltage Tlh,an Anode line heater
Ist Stack current (output) Tlh,ca Cathode line heater
Pnet Load power (disturb.) Tst Stack
Pst Stack power

Mass flows Miscellaneous
Wcp Air (input) Psat Vap. sat.
WO2,ca Oxygen RHhum RH at hum. output
WH2

Hydrogen ωamb Ambient air
WH2,re Consumed hydrogen humidity ratio

Internal states
x1, x2 Compressor ξ1, ξ2 Extremum seeker
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2501 – 2506.

[20] A. Levant, “Robust exact differenciation via slding mode technique,”
Automatica, vol. 34, pp. 379–384, Mar. 1998.

[21] A. F. Filippov, Differential Equations with Discontinuous Righthand
Sides. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1988.

[22] A. Bacciotti and F. Ceragioli, “Stability and stabilization of discontinu-
ous systems and nonsmooth lyapunov functions,” ESAIM: COCV, vol. 4,
pp. 361 – 376, 1999.

[23] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth
systems,” IEEE Trans. Autom. Control, vol. 39, pp. 1910 – 1914, 1994.

[24] F. H. Clarke, Optimization and Nonsmooth Analisis. New York: Society
for Industrial and Applied Mathematics, 1990.

Fernando Castaños was born in Mexico City in
1976. He received the B.Eng. in Electric and Elec-
tronic Engineering from Universidad Nacional Aut-
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