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Abstract. In this paper, we present an object recognition approach
that in addition allows to discover intra-class modalities exhibiting high-
correlated visual information. Unlike to more conventional approaches
based on computing multiple specialized classi�ers, the proposed ap-
proach combines a single classi�er, Boosted Random Ferns (BRFs), with
probabilistic Latent Semantic Analysis (pLSA) in order to recognize an
object class and to �nd automatically the most prominent intra-class
appearance modalities (clusters) through tree-structured visual words.
The proposed approach has been validated in synthetic and real experi-
ments where we show that the method is able to recognize objects with
multiple appearances.
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1 Introduction

Computer vision is nowadays a very active research �eld where it has made
great strides in recent years, especially in the recognition of objects in images
and videos. Currently, there exist methods that can detect and identify objects
with outstanding results despite the large di�culties present in this problem such
as intra-class variations, 3D rotations, scaling, illumination changes [2,4,8,14].

However, most of these methods are based on complex algorithms that de-
pend of a rigorous training and large object databases. Usually, these methods
compute object detectors using a supervised and o�ine learning where time
constraints and computational cost are not a big issue.

In order to compute e�cient and robust object detectors, approaches based
on randomized trees have been proposed in the past with outstanding results,
especially in terms of e�ciency and reliability [9,7]. Particularly, these methods
have been focused mainly on the fast matching of binary descriptors. Subse-
quently, a robust and e�cient classi�er for the detection of object classes was
proposed in [16]. This method, called Boosted Random Ferns (BRFs), combines
multiple extremely randomized trees (e.g Random Ferns [9]) using AdaBoost so
as to select automatically the most relevant trees in one single classi�er.

Although this classi�er has shown remarkable results to detect objects with
multiple intra-class modalities (e.g multiple object's views), this method is un-
able to distinguish these modes automatically. For this purpose, methods based
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Fig. 1. Overall scheme of the proposed approach to compute object classi�ers using
weakly supervised learning. In this approach only the �rst frame is annotated manually.
For clarity, this �gure does not include background (negative) samples.

on the computation of multiple specialized classi�ers have been proposed, where
each one is devoted to a particular appearance cluster [6,13]. However, these
methods increase the complexity and computational cost of the detector since
various classi�ers are considered during run time. Additionally, computing these
classi�ers in a supervised learning require annotating all training samples with
their corresponding appearance cluster. This task is cumbersome and tedious
since it is usually carried out manually.

In this work, we present a more straightforward approach to recognize object
appearance clusters (i.e, intra-class modalities) using weakly human supervision
during the training phase. More precisely, the proposed method consists of three
main stages, observe Fig. 1. In the initial stage (object tracking), an online clas-
si�er is computed in order to detect and track the object through a sequence of
images (Fig. 1-a,b). This process is automatic and requires only the assignment
of the object in the �rst frame using a bounding box (yellow box). The result
of this step is a set of training samples (images) of the object with di�erent
appearance (Fig. 1-c). In the second stage (classi�er), a more robust classi�er
(BRFs) is computed using the training samples (Fig. 1-d). Finally, in the third
step (clustering), the training samples are clustered using probabilistic Latent
Semantic Analysis (pLSA) [1,5,11] and the responses of the BRFs classi�er on the
samples (Fig. 1-e). Fig. 1-f shows as example three clusters of training samples
grouped according their visual similarity.

The method we present is a further step of the approach proposed in [3,12]
for learning and detecting objects using human-robot interactions. Actually, this
method corresponds to the tracking stage in Fig. 1. In this work, we combine this
method with BRFs and pLSA in order to detect and distinguish multiple object
appearances. This is particular useful for robotics applications where knowing a
speci�c object view allows to take actions. For example, for human-robot inter-
action is important to determine whether people look at the robot (see Fig. 1).
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Fig. 2. Online classi�er used to detect and track the object trough an image sequence.

2 Proposed Approach

2.1 Object Tracking

The �rst stage of the proposed method corresponds to perform object detection
and tracking over an input image sequence, observe Fig. 1. The goal of this
stage is to extract automatically a set of training samples which are used later
to compute the object classi�er.

To track the object in every frame, we compute an online classi�er based
on extremely randomized trees [9,12]. This classi�er is initialized using an ob-
ject annotation provided by the user in the �rst frame (Fig. 1-a). Subsequently,
the classi�er is computed and updated incrementally using their own detection
hypotheses on new input images. This self-learning approach allows computing
and adapting an object detector while discovers object instances in images.

More formally, the classi�er is comprised of a series of N random ferns where
each fern Fk computes a set of M signed comparisons between pairs of intensity
pixel values {fk,m}Mm=1, known commonly as binary features. Fig. 2-left shows
for example the output of two fern instances over an input sample xi. We observe
that the fern output Fk(xi) depends of the responses of the binary features. The
co-occurrence of these features determines the tree leaf where the sample falls.

Once the response of each fern k is computed Fk(xi), the classi�er updates
its class-conditional probabilities in each tree, p(Fk(xi)|C) and p(Fk(xi)|B), ac-
cording whether the sample xi belongs to either the object C or background
B class. This is illustrated in Fig. 2-middle, where the input sample is used to
update the fern distributions. For further information about this online classi�er
and its computation see [12,15].

2.2 The Object Classi�er

The object classi�er is computed using Boosted Random Ferns (BRFs) since
they have demonstrated to be an e�cient and robust classi�er for object recog-
nition [16]. Further in detail, the object classi�er H(x) is built using a boosting
combination of weak classi�ers ht where each is a random fern Ft computed to
particular object location (ut, vt). The classi�er is computed in order to �nd the
ferns and locations that most discriminate the object (positive) class from the
background (negative) one. The computation of the classi�er is done using real
AdaBoost, that iteratively assembles weak classi�ers and adapts their weighting
values to focus all its e�ort on the misclassi�ed samples from previous weak
classi�ers [10].
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Fig. 3. Computation of object class clusters using pLSA. Left: table including the co-
occurrence between training samples and visual words. Middle: two-class classi�cation
problem in 2D feature space. The positive class (crosses) has �ve intra-class modalities.
Right: output of the clustering stage to �nd latent topics (sample clusters).

The object classi�er with T weak classi�ers is then de�ned as:

H(x) =

T∑
t=1

ht(x) > β , (1)

where x is a test sample, β is the classi�er threshold and ht is a weak classi�er
computed by

ht(x) =
1

2
log

p(Ft(x) = r|C) + ε

p(Ft(x) = r|B) + ε
, (2)

where r is the output of the fern Ft on the sample x, ε is a smoothing parameter,
and B and C are the background and object class labels, respectively. In order to
extract the most discriminative weak classi�er at each iteration, the AdaBoost al-
gorithm seeks for the fern that minimizes the distance between class-conditional
probabilities, p(Ft(x)|C) and p(Ft(x)|B). For more information refer to [16].

2.3 Clustering

With the aim of �nding important internal structures of the object class without
human supervision, we propose to use pLSA to discretize the overall appearance
of the object in multiple clusters of samples with a strong feature similarity.
More speci�cally, pLSA is a generative model from the statistical text literature
that allows discovering latent variables (topics) from a corpus containing co-
occurrences between documents and words [1,5,11].

In this work, we use image samples and tree-structured visual words instead
of text documents and words in order to �nd the most relevant clusters of the
object appearance (topics). The pLSA algorithm is suitable for this problem
because it provides a statistical model that allows represent an object sample xi

as a mixture of K topics,

p(wj |xi) =

K∑
k=1

p(zk|xi)p(wj |zk), (3)

where p(zk|xi) is the probability of topic zk occurring in the sample xi whereas
p(wj |zk) is the probability of the visual word wj occurring in the topic zk [11].
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Fig. 4. Left: 2D classi�cation results provided by the BRFs classi�er. Crosses are posi-
tive samples while circles indicate negative ones. Black samples correspond to misclas-
si�ed samples. Middle: classi�cation plots using recall-precision curves and equal error
rate (EER). Right: class score distributions for the positive and negative classes.

The pLSA computation is done using the EM algorithm and an input table
containing the co-occurrence of training samples and the bag of visual words.
Fig. 3-left shows this table where the object samples have been ordered by cluster
in order to distinguish visually the strong patterns in the corpus. For our case,
we use the object samples extracted by the online classi�er, and de�ne that each
fern leaf j corresponds to a particular visual word wj since it represents a speci�c
con�guration of binary features. This is shown in Fig. 2-right. For this simple
example, the activated visual words (i.e, ones) co-occur with the input sample xi

since this sample falls in the corresponding fern leaves.
Finally, in Fig. 3-right we show the output of the clustering stage over a set

of training samples using a 2D feature space with complex and multimodal class
distributions (see Fig. 3-middle). In this �gure, crosses are object or positive
samples whereas circles make reference to background or negative samples. As a
result, we can see that the positive samples are clustered in K=5 di�erent clus-
ters, indicated through di�erent colors, and that each one keeps strong feature
correlation in the 2D space.

3 Experiments

3.1 Synthetic Experiments - 2D Classi�cation Problem

The proposed approach has been evaluated in synthetic experiments in order to
observe more clearly the performance of the method. Fig. 4 shows, for exam-
ple, the output of the proposed method on a scenario generated at random in
which two class distributions (positive and negative) with high complexity are
considered. For this experiment, the method was computed usingK = 5 clusters.

We see in Fig. 4-left that the proposed approach achieves correctly classify
most samples while discovers multiple intra-class modalities (indicated through
clusters with di�erent colors). The method only produces a small number of mis-
classi�ed samples (black ones). This result is also shown in the precision-recall
curve (Fig. 4-middle) where the method obtains a high equal error rate (EER).
Moreover, the approach also increases the separability between classes and re-
duces the risk of misclassi�cation.This is observed in Fig. 4-right where the class
score distributions are shown.

The table 1 shows the average classi�cation results of the BRFs classi�er over
10 runs in order to consider the randomness of the classi�er and the 2D scenario.



VI

Classi�cation Performance

RFs BRFs

# Clusters (K) # Clusters (K) # Ferns (R) # Features (S)
3 5 10 3 5 10 5 10 20 50 1 3 5 7

EER(%) 90.6 92.4 84.4 96.9 97.4 96.0 95.4 96.6 96.9 97.2 83.1 96.1 96.9 97.2

Distance(%) 59.0 68.8 46.5 83.1 90.6 73.2 77.2 80.4 83.1 88.8 41.2 73.0 83.1 88.4

Table 1. 2D classi�cation results of the BRFs and RFs classi�ers.
Training Samples Proposed Approach K-means (Euclidean)
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Fig. 5. 2D clustering results.

Each scenario is generated at random with multiple sample clusters (K). We see
that BRFs obtain high classi�cation rates (EER) and large distances between
classes when the amount of features (F ) and ferns (R) gets larger. Here, we use
the Hellinger distance to measure the separability between Gaussian distribu-
tions. The default parameters for this experiment are K = 5, R = 20 and S = 5.
The table also shows a comparison, in terms of the number of clusters, of BRFs
against its counterpart without using boosting (RFs). Observe that the BRFs
classi�er attains the best performance rates.

Fig. 5 shows the clustering results of the presented approach in comparison
with the K-means algorithm. The left �gure corresponds to the positive train-
ing samples belonging to 20-dimensional feature space. In this �gure, we only
plot the �rst two feature dimensions (x1,x2). Fig. 5-middle plots the clustering
output of the proposed approach (BRFs+pLSA), whereas the right �gure shows
the results of K-means using Euclidean distance in the sample feature space.
We can see that our approach yields good clustering results, in contrast to the
K-means algorithm which produces some incorrect clustering labels (observed
through the confusion of colors in clusters). Finally, table 2 shows the average
confusion values in the clustering labels for varying numbers of clusters and fea-
ture space dimensions (D). Here, we use as measure of confusion the entropy
function over the confusion matrix (using ground truth labels). The table also
includes a BRFs+K-means approach using the Hamming distance. As a result,
we observe that the proposed approach (BRFs+pLSA) produces low confusion
values, especially for large feature spaces.

3.2 Real Experiments - Multi-view Face and Object Detection

The proposed approach has also been tested to detect faces under multiple views,
see Fig. 7. This corresponds to a classi�cation problem involving multiple intra-
classes where each one is associated to a particular view. For this experiment,
we have used two face sequences of the dataset proposed in [12], where each
sequence contains more than 200 images. For training, we have used the �rst
sequence, whereas the second one is used for validation.
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Clustering Results

BRFs+pLSA K-means (Euclidean) BRFs+K-means

D 2 5 10 20 2 5 10 20 2 5 10 20

K=3 0.097 0.001 0.033 0.000 0.147 0.100 0.133 0.067 0.177 0.036 0.086 0.113

K=5 0.240 0.022 0.019 0.020 0.180 0.139 0.163 0.201 0.304 0.127 0.114 0.173

K=10 0.514 0.144 0.092 0.096 0.367 0.143 0.159 0.116 0.548 0.251 0.207 0.102

Table 2. Clustering results.

Cluster 1 Cluster 2 Cluster 3

Fig. 6. Sample images showing three di�erent face appearance clusters. Observe that
samples belonging to the same cluster share visual similarities.

Fig. 6 shows some samples images corresponding to K = 3 di�erent intra-
class appearances modalities found by the proposed method during the training
phase. We see that these samples share similar visual features and that the
proposed method is able to cluster these samples using the output of a tree-
structured classi�er. In Fig. 7 are shown some detection results on the test
images. Note that the method is capable of detecting most faces at the same
time that it can estimate the face pose. This is indicated in the images through
colored boxes. This experiment reveals that the proposed method using a single
classi�er can be used for pose estimation using the co-occurrence of visual words.

Similar to the previous experiment, our method has been tested for object
recognition. In this case, for detecting a toy car from multiple viewpoints us-
ing K = 5 appearance clusters. Fig. 8 shows some example images where the
response of the classi�er is indicated by the bounding boxes and the color rep-
resents the object cluster. We can see that the proposed method is able to dis-
cretize automatically the overall object appearance in diverse modalities, each
one corresponding to a particular object view.

4 Conclusions

In this paper, a weakly supervised learning approach has been proposed in or-
der to compute an object classi�er that is able to identify multiple intra-class
modalities. The proposed approach combines a tree-structured classi�er with a
text document analysis algorithm so as to cluster the output of the classi�er.
The approach has been validated in synthetic and real experiments.
Acknowledgments Work partially supported by the Spanish Ministry of Sci-
ence and Innovation under project DPI2013-42458-P, ERA-Net Chistera project
ViSen PCIN-2013-047, and by the EU project ARCAS FP7-ICT-2011-28761.
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