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Abstract Model predictive control (MPC) is one of the most used optimization-
based control strategies for large-scale systems, since this strategy allows to consider
a large number of states and multi-objective cost functions in a straightforward way.
One of the main issues in the design of multi-objective MPC controllers, which is
the tuning of the weights associated to each objective in the cost function, is treated
in this work. All the possible combinations of weights within the cost function af-
fect the optimal result in a given Pareto front. Furthermore, when the system has
time-varying parameters, e.g., periodic disturbances, the appropriate weight tuning
might also vary over time. Moreover, taking into account the computational bur-
den and the selected sampling time in the MPC controller design, the computation
time to find a suitable tuning is limited. In this regard, the development of strate-
gies to perform a dynamical tuning in function of the system conditions potentially
improves the closed-loop performance. In order to adapt in a dynamical way the
weights in the MPC multi-objective cost function, an evolutionary-game approach
is proposed. This approach allows to vary the prioritization weights in the proper
direction taking as a reference a desired region within the Pareto front. The proper
direction for the prioritization is computed by only using the current system values,
i.e., the current optimal control action and the measurement of the current states,
which establish the system cost function over a certain point in the Pareto front.
Finally, some simulations of a multi-objective MPC for a real multi-variable case
study show a comparison between the system performance obtained with static and
dynamical tuning.
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1 Introduction

Model Predictive Control (MPC) is an optimization-based control strategy widely
used in the solution of the control of large-scale systems since it can manage a
large number of variables in an straightforward manner, it may consider several
objectives, and it can consider a variety of physical and operational constraints.
The versatility of the MPC controller is reflected on the amount of elements that
can be adjusted, e.g., control-oriented model of the system, horizon for the states
prediction, control horizon, or weights in the multi-objective cost function. In this
regard, one of the main issues of the multi-objective MPC design is the selection of
all these parameters. This work focuses particularly on the tuning issue given by the
selection of the weights in the cost function. These weights assign a prioritization
to each objective affecting the solution of the optimization problem that is solved at
each iteration by the controller. Consequently, tuning these weights might improve
considerably the control performance.

The design problem of tuning has been already treated by many researchers using
different strategies. Most of the existing strategies to tune an MPC controller utilize
an off-line approach, and sometimes it is a trial and error procedure. In [5], a review
of some tuning strategies has been made, and some approaches such as off-line and
on-line strategies have been classified. Since the conditions over the system might
vary over time, it has become a relevant issue the development of strategies that al-
low to tune MPC controllers permanently in a dynamical manner. Moreover, it must
be taken into account that an on-line tuning strategy necessarily implies an extra
computational burden. For instance in [1], a tuning strategy is presented based on a
linear approximation between the closed-loop predicted output, and the parameters
that may be tuned in the MPC controller. Also, it has been highlighted its simplicity
as an advantage for implementation. More approaches to solve this problem have
been proposed after the review presented in [5]. In [4], a tuning methodology based
on a matching to a desired reference controller has been proposed. This method
allows to select the MPC weight matrices, making the MPC perform as a desired
linear controller. Afterwards, this methodology has been generalized in [23]. The
use of a linear controller as a reference has also been studied for multiple-input-
multiple-output systems in [21]. Other alternatives to perform the tuning of an MPC
controller has been explored. For instance, a self-tuning terminal cost approach is
applied in [13] for an economic MPC controller. In [22], a normalization procedure
and a computation of the minimum distance from the Pareto front to a manage-
ment point have been proposed as a tuning strategy. Other approaches use learning
systems. For example, a learning approach based on artificial neural networks and
fuzzy logic has been studied for performing the tuning of a predictive controller
in [6]. Then, it is concluded that other learning techniques might be implemented in
order to solve the problem of dynamical tuning for predictive controllers.

On the other hand, game theory has been used as a learning approach for a large
variety of control systems. In [12], the use of game theory applied to distributed con-
trol design is discussed. The game theoretical approach has been used for the design
of multi-agent systems, and to solve optimization problems [10, 11, 25]. Other per-
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spective is the evolutionary game approach [20,24]. For instance in [2,3,14,17–19],
a population dynamics approach has been presented for control and/or optimization
purposes. Motivated by all the applications of this game-theoretical approach in con-
trol systems, this work uses the evolutionary game theory as a learning approach to
propose a dynamical tuning strategy for multi-objective MPC controllers.

The contribution of this chapter is a novel dynamical tuning strategy based on
evolutionary game theory. This approach varies the prioritization weights trying
to maintain the values of the objective functions within a pre-established manage-
ment region over the Pareto front. The management region is selected according to
a desired performance of the system, and determines the proper direction for the
evolution of the prioritization weights when disturbances in the system make ob-
jective functions take undesired values over the Pareto front. Furthermore, the pop-
ulation dynamics approach only requires information about the current condition
of the system, which determine a current value in the Pareto front. In this regard,
this methodology demands less computational burden with respect to other tuning
strategies that need to compute more than one value over the Pareto front. The pro-
posed evolutionary-game-based dynamical tuning is tested for an MPC controller
with a drinking water network (DWN) as a case study.

This chapter is organized as follows. Section 2 introduces a brief background
of MPC and population dynamics. Section 3 presents the proposed evolutionary-
game-based dynamical tuning for a multi-objective MPC. Section 4 describes the
real case study that has been used to test the proposed dynamical tuning approach.
In this section, the results are shown and the proposed tuning strategy performance
is compared with the performance of an MPC tuned with the static strategy. Finally,
some concluding remarks are made and further work is pointed out in Section 5.

Notation

All column vectors are denoted by bold style, e.g., x. Matrices are denoted by bold
upper case, e.g., A. In contrast, scalars are denoted by non-bold style, e.g., N . The
sets are denoted by calligraphic upper case, e.g., S. The norm ||x|| of the vector
x ∈ Rnx is defined as ||x|| =

√
x>x. Finally, real numbers are denoted by R, all the

non-negative numbers are denoted by R+, and all the non-zero positive real numbers
are denoted by R++. Similarly, the integer numbers, and non-negative integer num-
bers are denoted by Z, and Z+, respectively. Throughout this document, discrete-
time and continuous-time systems are treated. Therefore, the sub-index k ∈ Z+

denotes that the system is described in discrete time, whereas the use of time t in
the continuous-time expressions is mostly omitted in order to simplify the notation.
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2 Background

This section introduces some preliminaries such as the problem statement regarding
multi-objective MPC, and the basic concepts within the framework of population
dynamics, particularly regarding the Smith dynamics. These preliminaries are used
later on in the statement of the proposed novel dynamical tuning.

2.1 Model predictive control

Consider a system represented by the following discrete-time state-space model:

x(k + 1) = Ax(k) +Bu(k) +Bld(k), (1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the vector of manipulated variables,
d ∈ Rnd denotes the vector of disturbances affecting the system, k ∈ Z+ denotes
the discrete time, and A, B and, Bl are the state-space system matrices with suit-
able dimensions. The states and control actions are subject to bounds and physical
constraints, which define feasible sets given by

X , {x ∈ Rnx : Gx ≤ g} , (2a)

U , {u ∈ Rnu : Hu ≤ h} , (2b)

where G,H,g, and h are matrices of suitable dimensions. Let û be the control
action sequence for a fixed-time prediction horizon Hp, let x̂ be the state sequence
resulting from applying the control action sequence over the system (1) from the
initial state x(0|k) , x(k), and let d̂ be the disturbances sequence along Hp, i.e.,

û , {u(0|k),u(1|k), ...,u(Hp − 1|k)}, (3a)

x̂ , {x(0|k),x(1|k), ...,x(Hp|k)}, (3b)

d̂ , {d(0|k),d(1|k), ...,d(Hp − 1|k)}. (3c)

The system (1) is controlled by a multi-objective MPC controller whose optimiza-
tion problem is composed by a cost function with N objectives, each one with an
associated weight γi, i = 1, ..., N that assigns a prioritization, i.e.,

min
û
J(x(0),u) =

N∑
j=1

γjJj(x(0),u), (4a)

subject to:
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x(i+ 1|k) = Ax(i|k) +Bu(i|k) +Bld(i|k), i ∈ [0, Hp − 1] ⊂ Z+, (4b)
u(i|k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+, (4c)
x(i|k) ∈ X , i ∈ [0, Hp] ⊂ Z+. (4d)

The issue treated in this work has to do with the proper tuning for the optimiza-
tion problem (4), i.e., how to find the proper values for the weight factors γ1, ..., γN .

Assuming that the optimization problem (4) is feasible, there is an optimal input
sequence given by

û∗ , {u∗(0|k),u∗(1|k), ...,u∗(Hp − 1|k)} ∈ U ,

and due to the fact that only one control action of the sequence is applied to the
system, then the final optimal control action is given by

u∗(k) , u∗(0|k).

Once the optimal control action u∗(k) is applied to the system, a new optimiza-
tion problem of the form in (4) is solved to compute the next optimal control action.
Then, a new optimal sequence is computed for the iteration k + 1 repeating the
mentioned procedure and using a new measurement of the system states as an initial
condition in the prediction model.

2.2 Population dynamics

Consider a population composed by a large and finite number of rational agents
involved in a strategic game. During the interaction, each agent chooses a strategy
from the set of the N available strategies in the population, which is denoted by
S = {1, ..., N}. Each objective in the cost function of the MPC is associated
to a strategy in the population game. The fact that agents are rational implies that
they make decisions in order to improve their benefits known as payoffs, which
are determined by a fitness function. Let pi ∈ R+ be the portion of agents in the
population choosing the strategy i ∈ S . Thus, the vector p = [p1 · · · pN ]>

corresponds to a strategic distribution of agents among all the strategies. The set of
possible strategic distributions within the population is given by a simplex denoted
by

∆ =

{
p ∈ RN

+ :

N∑
i=1

pi = 1

}
, (5)

where the unit in the sum of proportions is associated to the total amount of agents
in the population, and the interior of the simplex is defined as

int∆ =

{
p ∈ RN

++ :

N∑
i=1

pi = 1

}
. (6)
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Each fitness function is a mapping fi : ∆ 7→ R that takes a strategic distribution in
the population and returns a real value corresponding to the payoff that the portion
of agents pi receives for selecting the strategy i ∈ S. Similarly, the fitness function
defined by the mapping F : ∆ 7→ RN is the vector of all fitness functions, i.e.,
F(p) = [f1(p) f2(p) · · · fN (p)]

>.
The vector of fitness F determines the evolution of the game. For instance, the

framework of the proposed dynamical tuning methodology is given by stable games.
This condition establishes conditions over the fitness functions. The formal defini-
tion of stable games is stated next [8].

Definition 1. The population game F : ∆ 7→ RN is a stable game if

(p− q)
>
(F(p)− F(q)) ≤ 0, for all p,q ∈ ∆, (7)

and this condition is equivalent to the condition thatDF(p) is negative semidefinite,
where [DF(p)]ij =

∂fi(p)
∂pj

. ♦
The process of selecting an agent and making decisions to change strategies in or-
der to improve the payoffs is mathematically described by the population dynamics,
e.g., replicator dynamics, projection dynamics, or Smith dynamics. In this chapter,
the Smith dynamics have been selected and their features, as the previously men-
tioned property, are presented and explained below.

Smith dynamics

The Smith dynamics are one of the six fundamental population dynamics [20]. Any
of these six fundamental population dynamics can be used for the proposed tuning
strategy. However, in this chapter, the Smith dynamics have been chosen for the
following reasons: i) they satisfy non-negativeness of proportion of agents, and ii)
proportions do not extinct under the Smith dynamics (i.e., if a pi(t1) = 0 for any
t1 ≥ 0 and p∗ ∈ int∆, then there exists a t2 > t1 such that pi(t2) > 0, and a t3 > t2
such that p(t3) = p∗). The Smith dynamics are given by the following equation:

ṗi =
N∑
j=1

pj [fi(p)− fj(p)]+ − pi
N∑
j=1

[fj(p)− fi(p)]+, for all i ∈ S, (8)

where [·]+ = max(0, ·). Notice that the Smith dynamics can be re-written as

ṗi =
1

2

N∑
j=1

((1− φij)pi + (1 + φij)pj) [fi(p)− fj(p)], for all i ∈ S, (9)

where φij = sgn (fi(p)− fj(p)). If the equilibrium point of the Smith dynamics is
p∗ ∈ int∆, then p∗i , p

∗
j > 0, for all i, j ∈ S, and the equilibrium point in (9) implies

that fi(p∗) = fj(p
∗), for all i, j ∈ S.
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Proposition 1. The simplex ∆ is an invariant set under the Smith dynamics (8), i.e.,
if the initial condition of the population state p(0) ∈ ∆, then p(t) ∈ ∆, for all
t ≥ 0.

Proof. The simplex is determined by the set of proportions such that
∑N

i=1 pi = 1,
and pi ≥ 0, for all i ∈ S. First, the proof consists of showing that

∑N
i=1 ṗi = 0, i.e.,

N∑
i=1

ṗi =

N∑
i=1


N∑
j=1

pj [fi(p)− fj(p)]+ −
N∑
j=1

pi [fj(p)− fi(p)]+

 ,

=

N∑
i=1

N∑
j=1

pj [fi(p)− fj(p)]+ −
N∑
j=1

N∑
i=1

pj [fi(p)− fj(p)]+,

= 0.

This shows the invariance of the set given by condition
∑N

i=1 pi = 1. Now suppose
that the population states are in the limit of the simplex ∆, i.e., a proportion of
agents pi = 0, then the Smith equation associated to i ∈ S is given by

ṗi =

N∑
j=1

pj [fi(p)− fj(p)]+,

and consequently, ṗi ≥ 0, then the positiveness of proportion of agents is satisfied.
This completes the proof. ut

Once it has been shown that the simplex is an invariant set under the Smith dy-
namics, it is necessary to show the convergence to the equilibrium point p∗ ∈ ∆ as
it is stated in the following theorem.

Theorem 1. Let F be a continuously differentiable stable game, then the equilib-
rium point p∗ ∈ ∆ is asymptotically stable under the Smith dynamics (8).

Proof. The proof of this theorem is reported in [20]. However, a sketch of the proof
is presented. Consider the Lyapunov candidate V (p) given by

V (p) =
1

2

N∑
i=1

N∑
j=1

pi [fj(p)− fi(p)]2+,

where V (p∗) = 0, and V (p) > 0, for all p 6= p∗. Its derivative is

V̇ (p) = ṗ>DF(p)ṗ+

1

2

N∑
i=1

N∑
j=1

xj [fi(p)− fj(p)]+

(
N∑

k=1

[fk(p)− fi(p)]2+ − [fk(p)− fj(p)]2+

)
.

Notice that the first element ṗ>DF(p)ṗ ≤ 0 since F is a stable game. In order to
analyze the second term, suppose that fi(p) > fj(p), then [fi(p)− fj(p)]+ > 0.
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Now fk(p)−fi(p) < fk(p)−fj(p), and due to the fact that [·]+ is non-decreasing,
then

∑N
k=1 [fk(p)− fi(p)]

2
+ − [fk(p)− fj(p)]2+ ≤ 0. Finally, if fi(p) < fj(p),

then [fi(p)− fj(p)]+ = 0 making zero the second term. As conclusion, V̇ (p) ≤ 0.
Moreover using the La Salle’s invariance principle, the equality V̇ (p) = 0 holds for
fi(p

∗) = fj(p
∗) for all i, j = 1, . . . , N completing the proof. ut

Due to the fact that the MPC controller works in discrete time, and the population
dynamics evolve in continuous time, a way to sample the population dynamics is
presented, i.e., a sampled Smith dynamics are established by using the continuous
evolution of proportions as introduced next. Consider a sampling time denoted by τ
to sample the evolution of the population states p(t) under the Smith dynamics (8),
i.e., every time τ , the population states p(τ) evolve as a discrete evolution denoted
by p̃(k) (Sampled Smith Dynamics). Notice that the population dynamics sampling
time must be shorter than the MPC controller sampling time since the evolution
of the population dynamics determine the prioritization weights for next iteration
in the MPC controller, i.e., τ < ∆t. Suppose that the initial condition is given
by p̃(0) = p(0), then the evolution of the discrete population states is given by
p̃(k + 1) = p(τ), p̃(k + 2) = p(2τ), and so on, i.e.,

p̃i(k + b) = pi(bτ), where b ∈ Z, and for all i ∈ S.

Suppose an arbitrary evolution of the proportion of agents playing strategy i ∈ S
in continuous time pi(t) as it is shown in Figure 1. Then, it is obtained the evolution
of the same proportion of agents by saving its values every time τ . Figure 1 also
shows the discrete evolution of the proportion of agents p̃i(k) under the sampled
Smith dynamics for different values of τ , i.e., τ = 6 s, τ = 8 s, and τ = 10 s. Fur-
thermore, the dynamical prioritization weights are given by the discrete proportion
of agents p̃(k).

Pr
op

or
tio

n
of

ag
en

ts
p
i

time [s]

Fig. 1 Example of proportion of agents for different values τ .
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3 Proposed dynamical tuning strategy

This section introduces the proposed evolutionary-game-based dynamical tuning for
multi-objective MPC. The dynamical tuning strategy is divided in two parts. First,
it is necessary to make a normalization procedure, and then a strategy to assign
weights dynamically. Both stages are presented next.

3.1 Normalization

The cost function in (4a) involves multiple control objectives, making necessary to
establish appropriate weights for each one. In general, each objective has a different
nature and, as consequence of this, it is not a trivial issue to find the proper set of
weights to obtain the desired control performance. In order to establish a proper
distribution of weights in the objective functions, it is necessary first to normalize
the cost function [9].

Let x∗i ,u
∗
i be the optimal solution for the single objective optimization of the ith

objective function Ji. The solution x∗i ,u
∗
i is obtained by solving the optimization

problem of the MPC controller (4) with γi = 1 and γj = 0 for all j 6= i. Then, the
utopia point, denoted by Jutopia, is found as follows:

Jutopia = [J1(x
∗
1,u
∗
1) J2(x

∗
2,u
∗
2) · · · JN (x∗N ,u

∗
N )] . (10)

The ith nadir value is denoted by

Jnadir
i = max (Ji(x

∗
1,u
∗
1) Ji(x

∗
2,u
∗
2) · · · Ji(x

∗
N ,u

∗
N )) , (11)

and the nadir point Jnadir is given by

Jnadir =
[
Jnadir
1 Jnadir

2 · · · Jnadir
N

]
. (12)

Finally, the normalized multi-objective cost function has the form

J̃(x,u) =

N∑
i=1

J̃i(x,u),

where each normalized objective is

J̃i(x,u) =
Ji(x,u)− Jutopia

i

Jnadir
i − Jutopia

i

.

After the normalization, weights in the cost function determine a prioritization
without being affected by the order of magnitude of each objective.
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3.2 Dynamical weighting procedure

Once the objective function has been normalized, it is adequate to establish weights
p̃(k) to each one of the objectives at each discrete-time instant, i.e., the weight for
the ith objective at k ∈ Z+ is given by p̃i(k). Then, the optimization problem for
the normalized MPC controller is stated as follows:

min
û

N∑
j=1

p̃j(k)J̃j(x(0),u), (13a)

subject to:

x(i+ 1|k) = Ax(i|k) +Bu(i|k) +Bld(i|k), i ∈ [0, Hp − 1] ⊂ Z+, (13b)
u(i|k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+, (13c)
x(i|k) ∈ X , i ∈ [0, Hp] ⊂ Z+, (13d)

where p̃(k) = [p̃1(k) p̃2(k) · · · p̃N (k)]
>, and

∑N
i=1 p̃i(k) = 1. The unitary

value in the equality constraint represents the total mass population according to
(5). The proper prioritization of these objectives might vary over time as exogenous
disturbances affecting the system also vary. In order to overcome this issue, it is
proposed a dynamical tuning by using a population dynamics approach. Then, the
fitness functions fi(pi) , fi(p̃i(k)) are selected to be function of each objective
evaluated at the current optimal control action, i.e., J̃i(x̂∗(k), û∗(k)). Note that this
selection of fitness is appropriate since more priority tends to be assigned to those
objectives with greater values.

Furthermore, it is desired to assign a prioritization over a region in the Pareto
front known as management region (MR). The importance assigned over the MR is
determined by a weight wi in the ith fitness function of the Smith dynamics, i.e.,

fi(p̃i(k)) = wiJ̃i(x̂
∗(k), û∗(k)). (14)

A region is selected over the Pareto front instead of a point as reported in [22].
The selection of a management point as in [22] implies to have to compute several
different prioritization weights at each iteration in order to find the proper combi-
nation of weights. This procedure must be made every iteration since conditions in
the system vary over time as disturbances in the system also vary. Moreover, the
disturbances behave in a stochastic manner, for which it is not possible to deter-
mine a strategy that uses a limited number of close values to the last one over the
Pareto front. The selection of an MR helps to determine the proper direction for
each weight only disposing of a single value over the Pareto front at each iteration.
Notice that this proper direction can be computed despite the stochastic behavior of
disturbances in the system since only the current condition is required. Furthermore,
this relaxation of the point for a region allows to reduce the computational burden.
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Remark 1. Note that the prioritization in (14) assigns an importance to a region in
the Pareto front (i.e., at MR) for the population dynamics evolution, and the terms
wi, for i = 1, ..., N , do not appear in the optimization problem of the MPC, and
should not be confused with the weights of the cost function in the MPC controller.
. ♦

The differences between the MR and the static weights in the multi-objective
optimization problem are discussed. To do so, consider a simple and general opti-
mization problem given by

min
z
J(z) = p1J1(z) + p2J2(z), (15a)

subject to:

Vz ≤ v + c, (15b)

where z ∈ Rm is the decision variable, and V ∈ Rl×m is a constant matrix with
suitable dimension. The values p1, p2 ∈ R establish a static prioritization for the
objectives J1(z) and J2(z), respectively. The vector v ∈ Rl is a constant compo-
nent in the constraint, whereas the vector c ∈ Rl is a time-varying component. For
instance, the time-variant value of the vector c ∈ Rl may be associated to a dis-
turbance d ∈ Rl involved in a constraint in the optimization problem of an MPC
controller.

First, suppose that c = c1 in (15b), being c1 ∈ Rl a vector of arbitrary entries.
For this case, suppose that the obtained Pareto front is the one presented in Figure
2a), and its normalized Pareto front is the one presented in Figure 2b). This figure
shows an example in which the management region is given by w1 = w2 = 0.5,
and shows the solution for the optimization problem when static weights in the
multi-objective functions are assigned as p1 = p2 = 0.5 to objectives J1(z), and
J2(z), respectively. Notice the difference between the selection of the MR and the
assignment of the weights in the cost function.

Now, suppose that c in (15b) varies, e.g., c = c2, where the entries of c1, and c2
are near values, i.e., c1 − c2 ≈ 0. In this case, the Pareto front varies. Suppose that
the new Pareto front is the one obtained in Figure 2c), with its corresponding nor-
malized front presented in Figure 2d). When making this modification over c, the
solution of the optimization problem for the weights p1 = p2 = 0.5 changes dra-
matically over the Pareto front (this fact illustrates the effect when the disturbances,
denoted by d, vary in the optimization problem (13)). However, notice that the MR
is still defined as a region where the objective functions have a equitable value for
the particular case w1 = w2 = 0.5.

When the MR is defined, the dynamical tuning strategy is in charge of finding the
proper weights p̃1, and p̃2 in the normalized cost function, such that the solution lies
inside the MR. This philosophy is different from the static tuning strategy where the
weights are determined previously. The process to assign dynamically the tuning
weights is performed by using the population dynamics, and then in order to guar-
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Fig. 2 Comparison between the MR and the optimization prioritizing weights.

antee that the Smith dynamics have a stable behavior, it is necessary the following
assumption according to the definition of a stable game.

Assumption 1 The fitness function fi(pi) is a decreasing function with respect to
pi. Then the game F is a stable game, and stability of the population game is ensured
according to Theorem 1. Note that it is expected that the value of the objective
J̃i(x̂

∗(k), û∗(k)) decreases as bigger weight p̃i(k) is assigned to it when solving
the corresponding optimization problem. ♦

A detailed procedure to implement the evolutionary-game-based dynamical tun-
ing for multi-objective model predictive control is presented in Algorithm 1.

4 Case study

The Barcelona Drinking Water Network (DWN) is a large-scale system composed
by tanks, valves, pumps, drinking water sources, and water demands as reported
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Algorithm 1 Evolutionary-game-based dynamical tuning for multi-objective MPC.
1: procedure INITIALIZATION
2: Hs ← simulation length
3: Hp ← prediction horizon
4: N ← number of objectives
5: x(k)← x(0) ∈ Rnx states initial condition
6: p(0)← p ∈ RN

+ proportion initial condition for continuous Smith dynamics
7: p̃(k)← p(0) ∈ RN

+ discrete proportion initial condition
8: τ ← time for population dynamics
9: end procedure

10: while k ≤ Hs do
11: procedure NORMALIZATION
12: i← 1 initialization index for local objectives
13: while i ≤ N do
14: u∗i ← argmin

û
Ji(x,u) with constraints

15: J
utopia
i ← Ji(x

∗
i ,u
∗
i )

16: i← i+ 1

17: end while
18: j ← 1 initialization index for nadir points
19: while j ≤ N do
20: Jnadir

j ← max
(
Jj(x

∗
1,u
∗
1) Jj(x

∗
2,u
∗
2) · · · Jj(x

∗
N ,u

∗
N )
)

21: j ← j + 1
22: end while
23: end procedure
24: procedure NORMALIZED MPC

25: x̂∗(k), û∗(k)← argmin
N∑
i=1

p̃i(k)J̃i(x,u) with constraints

26: u∗(k)← u∗(0|k) ∈ Rnu optimal control action
27: end procedure
28: procedure COMPUTATION OF FITNESS FUNCTIONS
29: i← 1 initialization index for local objectives
30: while i ≤ N do
31: fi(pi) , fi(p̃i(k))← J̃i(x̂

∗(k), û∗(k))
32: i← i+ 1
33: end while
34: end procedure
35: procedure CONTINUOUS-TIME SMITH DYNAMICS ∀ i ∈ S

36: ṗi =
N∑

j=1

pj [fi(pi)− fj(pj)]+ − pi
N∑

j=1

[fj(pj)− fi(pi)]+, for 0 ≤ t ≤ τ

37: p̃(k)← p(τ) update of discrete agent proportions
38: p(0)← p̃(k) new initial condition for Smith dynamics
39: end procedure
40: procedure OPTIMAL CONTROL ACTION APPLIED TO THE SYSTEM
41: x(k)←Ax(k) +Bû∗(k) +Bld(k)
42: k← k + 1
43: end procedure
44: end while
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in [16]. The volumes in tanks compose the state vector x ∈ Rnx , the flows through
the valves and pumps compose the vector of manipulated control actions u ∈ Rnu ,
and the water-demanded flows are collected in vector d ∈ Rnd . The corresponding
discrete-time model is given by

x(k + 1) = Ax(k) +Bu(k) +Bld(k), (16a)
0 = Euu(k) +Edd(k), (16b)

where the difference equation in (16a) describes the dynamics of the storage tanks
in the system, and the equation (16b) describes the static relations given by the
mass balance at junction nodes within the network. Moreover, 0 is a column vector
whose entries are null, and A, B, Bl, Eu, and Ed are constant matrices with suitable
dimensions determined by the DWN topology [7].

4.1 System management criteria

The cost function for the MPC controller is determined by operational objectives,
which are established by the company in charge of the DWN. These objectives
are usually determined by the following three aspects: i) economic operation, ii)
smoothness operation, and iii) safety operation. For the economical aspect, there
are two costs associated to the DWN operation. The first cost is related to water de-
pending on the selected source to get water during the day, it is given by α1 ∈ Rnu

and whose units are economic units per flow unit ([e.u.] / [m3/s]). The second cost
is time variant during the day, associated to the energy required to operate the ac-
tive elements in the DWN (i.e., valves and pumps), and it is given by α2 ∈ Rnu in
economic units per flow unit ([e.u.] / [m3/s]). In general, the economic operation
objective consists in minimizing the water production and transport costs given in
economic units (e.u.), i.e.,

J1(u(k)) ,
∣∣∣(α1 + α2(k))

>
u(k)

∣∣∣ . (17)

Regarding the smoothness operation, it is related to the variations of the control
actions along the time, i.e., ∆u(k) = u(k) − u(k − 1). This objective consists in
minimizing

J2(u(k)) , ‖∆u(k)‖2 . (18)

Finally, the safety operation consists in guaranteeing that there is enough stored
water to satisfy the demands during certain period of time. Due to the fact that
demand is supposed to be obtained from a forecasting procedure, this operation
objective is managed by the following soft constraint:

x(k) ≥ xs(k)− ξ(k), for all k, (19)
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where xs ∈ Rnx is the vector of safety volumes for all the tanks. The variable
ξ ∈ Rnx does not have a direct relationship with any element of the system, and it
is introduced as a decision variable in the optimization problem to manage the safety
volumes. Furthermore, it is desired that ξ tends to zero in order to avoid violations
of the constraint (which implies the depletion of such safety volumes). Then, the
third objective related to the system states is given by the minimization of

J3(ξ(k)) , ‖ξ(k)‖2 . (20)

It is worth to highlight that it is already known the importance in the prioritization
of objectives, which is determined by the company in charge of the management of
the network. This known importance among the objective functions is commonly
used to determine a static tuning for the system. The most important objective is the
economical aspect, and the second is to guarantee the safety volumes. This fact is
going to be used below with the case study to determine different and possible cases
to test the performance of the MPC controllers.

4.2 Optimization problem of the predictive controller

Once the system management criteria have been established with the objectives J1,
J2 and J3, it can be set the normalized optimization problem behind the MPC con-
troller design, i.e.,

min
û,ξ̂

J(u, ξ) =

Hp−1∑
j=0

p̃1(k)J̃1(u(k + j)) +

Hp−1∑
j=0

p̃2(k)J̃2(u(k + j))+

Hp−1∑
j=0

p̃3(k)J̃3(ξ(k + j)),

subject to:

x(i+ 1|k) = Ax(i|k) +Bu(i|k) +Bld(i|k), i ∈ [0, Hp − 1] ⊂ Z+,

0 = Euu(i|k) +Edd(i|k), i ∈ [0, Hp − 1] ⊂ Z+,

u(i|k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+,

x(i|k) ∈ X , i ∈ [0, Hp] ⊂ Z+,

x(i|k) ≥ xs(k)− ξ(i|k), i ∈ [0, Hp] ⊂ Z+,

where the feasible sets for the control actions and the system states are given by U =
{u ∈ Rnu |umin ≤ u ≤ umax}, and X = {x ∈ Rnx |xmin ≤ x ≤ xmax}, where
umin, and umax are the minimum and maximum limits for the control actions,
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respectively. Similarly, xmin, and xmax are the minimum and maximum limits for
the system states. Finally, similarly as in (3), ξ̂ is a sequence during the horizon Hp.

a)

b)

Fig. 3 Case study. a) Topology of the three-tanks DWN. b) Topology of the 17 tanks DWN.

Figure 3 shows two different significative portions of the Barcelona DWN. Fig-
ure 3a) is a portion of the DWN involving three tanks (states), three valves and
three pumps (control actions), two drinking water sources, and four water demands
(disturbances). Then, the matrices and limits for its discrete model are given by

A =

1 0 0
0 1 0
0 0 1

 , B =

0 0 0 1 1 0
0 0 0 0 0 1
0 0 1 0 0 0

 ∆t, Bl =

−1 0 0 0
0 0 −1 0
0 0 0 −1

 ∆t,
Eu =

[
1 −1 −1 0 0 −1
0 1 0 0 −1 0

]
, Ed =

[
0 0 0 0
0 −1 0 0

]
, xmin = [0 0 0]>,

xmax = [470 960 3100]>, umin = [0 0 0 0 0 0]>,

umax = [1.2970 0.05 0.12 0.0150 0.0317 0.0220]>,

where the sampling time ∆t = 3600 s. On the other hand, Figure 3b) shows a
portion with 17 tanks (states), 61 manipulated flows (control actions), nine water
sources, and 25 water demands (disturbances). Matrices and limits for this discrete
model are not presented because of lack of space.
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4.3 Scenarios

Two different scenarios are presented in order to analyze the performance of the pro-
posed dynamical tuning strategy. In general, demand has a periodic behavior (sea-
sonality), maintaining the same mean value and with a regular amplitude in time.
However, it is considered the case in which the periodic demand varies unexpect-
edly during time, i.e., the case in which the demand profile varies its mean value
and its regular amplitude. The purpose of these abrupt changes is to analyze how
the prioritization weights are adapted when the system conditions suffer variations.
Moreover, these scenarios can certainly occur because of unexpected situations such
as public events, damages in the network as leaks, move of population, growth of
the system, etc.

Consequently, it is possible to analyze both the performance when the demand
decreases, and when demand increases unexpectedly as shown in Figure 4, i.e.,

• Scenario 1: decreasing in the demand profiles (see Figure 4a)).
• Scenario 2: increasing in the demand profiles (see Figure 4b)).

Both scenarios are analyzed to illustrate that the dynamical tuning strategy may
adapt a proper combination of weights in the cost function of the optimization prob-
lem behind the MPC controller, for any change in the nominal system behavior.

flo
w

[m
3
/
ho

ur
]

time [hours] time [hours]
a) b)

Fig. 4 Demand profile for: a) Scenario 1 with a decrease in the demands, and b) Scenario 2 with
an increment in the demands.

In the proposed dynamical tuning methodology, the first step is to normalize
the cost function by computing the nadir and the utopia points. After making this
procedure, then the following step is to assign a prioritization to the MR where it is
desired that different objectives evolve around. For this case study, the prioritization
is given by w1 for economic objective, w2 for smoothness objective, and w3 for the
safety objective, where

∑N
i=1 wi = 1.
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In order to make a fair comparison between the performance of a multi-objective
MPC with conventional static tuning and the performance of an multi-objective
MPC with the proposed dynamical tuning strategy, there must be established a re-
lationship between the weights for objective functions. The weights γ1, ..., γN for
the cost function in Problem (4), and the weights for the MR w1, ..., wN in (14), are
selected to be the same as wi = γi, for all i ∈ S. This criterion establishes a fair
comparison for a prioritization over the cost function without any tuning strategy,
and a prioritization by using a dynamical tuning strategy.

4.4 Results and discussion

The performance of the controllers is determined by the economical costs C given
in economic units (e.u.) during the total number of simulation days (in this case 11
days), i.e.,

C =

264∑
k=0

(α1 + α2(k))
>u(k), (22)

where the costs are denoted by CD for the dynamical tuning case, and by CS for
the static tuning case. For each scenario, four different cases corresponding to four
MRs are tested:

• Tuning case 1: [γ1 γ2 γ3]
> = [0.7 0.1 0.2]>,

• Tuning case 2: [γ1 γ2 γ3]
> = [0.6 0.15 0.25]>,

• Tuning case 3: [γ1 γ2 γ3]
> = [0.5 0.2 0.3]>,

• Tuning case 4: [γ1 γ2 γ3]
> = [0.4 0.25 0.35]>.

Notice that these different cases for tuning satisfy the prioritization explained in
Sub-section 4.1, i.e., w1 > w3 > w2.

Table 1 Economic results for Scenario 1 and Scenario 2 in the case study of three states in Figure
3a). Notice that for the comparison of data the management region corresponds to the prioritization
of the MPC controller with static tuning, i.e., [w1 w2 w3]> = [γ1 γ2 γ3]>.

Tuning Dynamical tuning costs CD Static tuning costs CS Reduction of costs
case 11 days (e.u.) 11 days (e.u.) CS − CD (e.u.)

Sc
en

ar
io

1 1 5649.45 5660.61 11.16
2 5656.89 5666.13 9.24
3 5657.53 5677.65 20.12
4 5657.01 5738.12 81.11

Sc
en

ar
io

2 1 8983.86 8984.57 0.71
2 8986.35 8993.64 7.29
3 8985.69 9011.49 25.80
4 8986.33 9075.49 89.16
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Table 1 shows the comparison between the costs of the MPC with the proposed
dynamical tuning and with a static prioritization for the four cases, and for Scenarios
1 and 2, for the case study of three states presented in Figure 3a). Table 1 also shows
the difference of costs, i.e., a reduction of costs when changing the static tuning for
the dynamical tuning strategy given by CS − CD. More specifically, results for
Scenario 1 show a reduction of costs with the dynamical tuning for all the tested
cases. During the 11 days, reduction of costs between 9.24 e.u. and 81.11 e.u. can
be obtained.

For Scenario 2, it can be seen that for all the cases a reduction of costs is obtained
if the dynamical tuning strategy is adopted. These reductions during 11 days oscil-
late between 0.70 e.u. and 89.16 e.u. depending on the management region case.

Regarding the dynamical behavior of the proposed strategy, and the evolution of
weights, Figure 5 shows the performance of the MPC controller with the dynam-
ical tuning strategy for a management point given by w = [0.6 0.15 0.25]>,
and for the Scenario 1. Similarly, Figure 6 shows the performance of the MPC
controller with the dynamical tuning strategy for a management point given by
w = [0.7 0.1 0.2]>, and for the Scenario 2. In the performance of the dynamical
weights, it can be seen that they oscillate with the same period as the disturbances
in the system. Moreover, it can be seen that the mean value of each weight varies
when the behavior of the demands changes at the the seventh day.

The previously presented results are a proof of concept to see how tuning is
adapted dynamically as conditions over the system vary. The case study shown in
Figure 3a) does not contain redundant paths to satisfy water demand, and involves
a reduced number of states and control actions. Consequently, there is less freedom
in order to adjust the proper prioritization values to potentially improve the perfor-
mance.

Then, the dynamical tuning strategy is implemented in a bigger case study shown
in Figure 3b) for Scenario 1, and the tuning case 2. This implementation is made in
order to check the improvement of the performance for a larger-scale system with
the proposed tuning approach.

Table 2 Economic results for Scenario 1 in the case study of three states in Figure
3b). Notice that for the comparison of data the management region corresponds to the
prioritization of the MPC controller with static tuning, and for the tuning case 2, i.e.,
[w1 w2 w3]> = [γ1 γ2 γ3]> = [0.6 0.15 0.25]>.

Dynamical tuning costs CD Static tuning costs CS Reduction of costs
11 days (e.u.) 11 days (e.u.) CS − CD (e.u.)

398645.19 420894.99 22249.80

Table 2 shows the results for the case study shown in Figure 3b). It can be seen
a higher reduction of costs when adopting the dynamical tuning strategy in a larger
case study. The considerable reduction is obtained since the case study in Figure 3b)
has redundant paths to satisfy the water demand.
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Fig. 5 MPC controller with evolutionary game-based dynamical tuning for the Scenario 1 with a
decrease in the demands and a management region given by w = [0.6 0.15 0.25]>. Sub-figures
corresponds to: a) system states x, b) control actions u, and c) dynamical tuning p̃(k).
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Fig. 6 MPC controller with evolutionary game-based dynamical tuning for the Scenario 2 with an
increment in the demands and a management region given by w = [0.7 0.1 0.2]>. Sub-figures
corresponds to: a) system states x, b) control actions u, and c) dynamical tuning p̃(k).
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5 Conclusions and further work

A novel dynamical tuning strategy based on evolutionary game theory has been pro-
posed. Similarly as other tuning strategies suggest, in the proposed tuning strategy
it is necessary to normalize the cost function. In this regard, the proposed strategy
does not imply to have higher computation burden with respect to other on-line tun-
ing strategies. Once the problem is normalized, it is not required to generate several
points in the Pareto front. This is an advantage of the proposed strategy in com-
parison to other tuning strategies that require the computation of several points in
the Pareto front to establish a proper tuning. However, it should be satisfied that the
Pareto front satisfy an assumption clearly defined in this work.

The results obtained in this chapter reflect an improvement in the reduction of
economical costs. Moreover, a higher reduction of costs is obtained with the 17
variable states network, than with the smaller system of three variable states. For
future work, it is necessary to test the dynamical tuning in a larger system, whose
topology includes redundancy paths, and more actuators and constraints (e.g., the
whole Barcelona network that is composed by 63 states that can be found in [26]).
Then, a more considerable improvement between the performance of an MPC with
static tuning and the performance of an MPC with the proposed dynamical tuning
might be obtained. Finally, the prediction horizon is considered within the MPC
parameters that compose the issue of tuning, and it can be included in the dynamical
tuning strategy.
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