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Abstract Recent advances in 3D shape analysis and
recognition have shown that heat diffusion theory can
be effectively used to describe local features of deform-
ing and scaling surfaces. In this paper, we show how
this description can be used to characterize 2D image
patches, and introduce DaLl, a novel feature point de-
scriptor with high resilience to non-rigid image trans-
formations and illumination changes. In order to build
the descriptor, 2D image patches are initially treated
as 3D surfaces. Patches are then described in terms of
a heat kernel signature, which captures both local and
global information, and shows a high degree of invari-
ance to non-linear image warps. In addition, by further
applying a logarithmic sampling and a Fourier trans-
form, invariance to photometric changes is achieved.
Finally, the descriptor is compacted by mapping it onto
a low dimensional subspace computed using Principal
Component Analysis, allowing for an efficient matching.
A thorough experimental validation demonstrates that
Dall is significantly more discriminative and robust to
illuminations changes and image transformations than
state of the art descriptors, even those specifically de-
signed to describe non-rigid deformations.
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1 Introduction

Building invariant feature point descriptors is a central
topic in computer vision with a wide range of appli-
cations such as object recognition, image retrieval and
3D reconstruction. Over the last decade, great success
has been achieved in designing descriptors invariant to
certain types of geometric and photometric transforma-
tions. For instance, the SIFT descriptor [30] and many
of its variants [3,21,31,32,46] have been proven to be
robust to affine deformations of both spatial and in-
tensity domains. In addition, affine deformations can
effectively approximate, at least on a local scale, other
image transformations including perspective and view-
point changes. However, as shown in Fig. 1, this ap-
proximation is no longer valid for arbitrary deforma-
tions occurring when viewing an object that deforms
non-rigidly.

In order to match points of interest under non-rigid
image transformations, recent approaches propose opti-
mizing complex objective functions that enforce global
consistency in the spatial layout of all matches [12,13,
24,40,41,47]. Yet, none of these approaches explicitly
builds a descriptor that goes beyond invariance to affine
transformations. An interesting exception is [26], that
proposes embedding the image in a 3D surface and us-
ing a Geodesic Intensity Histogram (GIH) as a feature
point descriptor. However, while this approach is robust
to non-rigid deformations, its performance drops under
light changes. This is because a GIH considers deforma-
tions as one-to-one image mappings where image pixels
only change their position but not the magnitude of
their intensities.

To overcome the inherent limitation of using geodesic
distances, we propose a novel descriptor based on the
Heat Kernel Signature (HKS) recently introduced for
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Fig. 1 Comparing DaLl against SIFT [30], DAISY [46], LIOP [53] and GIH [26]. Input images correspond to different appearances
of the object shown in the reference images, under the effect of non-rigid deformations and severe changes of illumination. Colored
circles indicate the match has been correctly found among the first n top candidates, where n < 10 is parameterized by the legend on
the right. A feature is considered as mismatched when n > 10 and we indicate this with a cross. Note that the DaLl descriptor yields

a significantly larger number of correct matches.

non-rigid 3D shape recognition [16,39,44], and which

besides invariance to deformation, has been demonstrated

to be robust to global isotropic [7] and even affine scal-
ings [37]. In general, the HKS is particularly interest-
ing in our context of images embedded on 3D surfaces,
because illumination changes produce variations on the
intensity dimension that can be seen as local anisotropic
scalings, for which [7] still shows a good resilience.

Our main contribution is thus using the tools of
diffusion geometry to build a descriptor for 2D image
patches that is invariant to non-rigid deformations and
photometric changes. To construct our descriptor we
consider an image patch P surrounding a point of inter-
est, as a surface in the (z,y, 8I(x)) space, where (z,y)
are the spatial coordinates, I(x) is the intensity value
at (z,y), and § is a parameter which is set to a large
value to favor anisotropic diffusion and retain the gra-
dient magnitude information. Drawing inspiration from
the HKS [16,44], we then describe each patch in terms
of the heat it dissipates onto its neighborhood over
time. To increase robustness against 2D and intensity
noise, we use multiple such descriptors in the neighbor-
hood of a point, and weigh them by a Gaussian kernel.
As shown in Fig. 1, the resulting descriptor (which we
call DaLl, for Deformation and Light Invariant) outper-
forms state-of-the-art descriptors in matching points of
interest between images that have undergone non-rigid
deformations and photometric changes.

A preliminary version of this paper was already pub-
lished in [33]. In the current work, we propose alterna-
tives to both alleviate the high cost of the heat kernel
computation and to reduce the dimensionality of the
descriptor. More specifically, while in [33] the 3D em-
bedding was performed considering a mesh with a uni-
form distribution of vertices in the (z,y) domain, here
we investigate topologies with varying vertex densities.

This allows reducing the effective size of the underlying
mesh, and hence to speed up the DaLl computation
time by a factor of over 4. In addition, we have also
compacted the size of the final descriptor by a factor
of 50x using a Principal Component Analysis (PCA)
for dimensionality reduction. As a result, the descriptor
we propose here can be computed and matched much
faster when compared to [33], while preserving the dis-
criminative power. For evaluation, we acquired a chal-
lenging dataset that contains 192 pairs of real images,
manually annotated, of diverse materials under differ-
ent degrees of deformation and being illuminated by
very different illumination conditions. Fig. 1-left shows
two samples of our dataset. We believe this is the first
deformation and illumination dataset for evaluating im-
age descriptors using real-world objects, and have made
the dataset along with the code of the DaLl descriptor
publicly available!.

2 Related Work

The SIFT descriptor [30] has become the main reference
among feature point descriptors, showing great success
in capturing local affine deformations including scaling,
rotation, viewpoint change and certain lighting changes.
Since it is relatively slow to compute, most of the subse-
quent works have focused on developing faster descrip-
tors [3,10,21,31,46]. Scale and rotation invariance has
also been demonstrated in [22] using a combination of
logarithmic sampling and multi-scale signal processing,
although that requires large image patches which make
the resulting descriptor more sensitive to other defor-
mations. Indeed, as discussed in [52], little effort has
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Fig. 2 Flowchart of the algorithm used to calculate the Dal.Ll and DaLLI-PCA descriptors. The percentages below each of the steps
indicate the total amount of the contribution of that step to the computation time. Observe that 99% of the computation time
corresponds to the Heat Kernel Signature calculation and specifically almost entirely to the eigendecomposition of the Laplace-Beltrami

operator.

been devoted to building descriptors robust to more
general deformations.

The limitations of the affine-invariant descriptors
when solving correspondences between images of ob-
jects that have undergone non-rigid deformations are
compensated by enforcing global consistency, both spa-
tial and photometric, among all features [4,5,12,13,
24,40,41,47], or introducing segmentation information
within the descriptor itself [48,49]. In any event, none
of these methods specifically handles the non-rigid na-
ture of the problem, and they rely on solving complex
optimization functions for establishing matches.

An alternative approach is to directly build a defor-
mation invariant descriptor. With that purpose, recent
approaches in two-dimensional shape analysis have pro-
posed using different types of intrinsic geometry. For ex-
ample, [6,27] define metrics based on the inner-distance,
and [28] proposes using geodesic distances. However,
all these methods require the shapes to be segmented
out from the background and represented by binary
images, which is difficult to do in practice. In [26], it
was shown that geodesic distances, in combination with
an appropriate 3D embedding of the image, were ad-
equate to achieve deformation invariance in intensity
images. Nonetheless, this method assumes that pixels
only change their image locations and not their inten-
sities and, as shown in Fig. 1, is prone to failure under
illumination changes.

There have also been efforts to build illumination in-
variant descriptors. Such works consider strategies based
on intensity ordering and spatial sub-division [15,17,19,
18,20,45,53]. While these approaches are invariant to
monotonically increasing intensity changes, their suc-
cess rapidly falls when dealing with photometric arti-
facts produced by complex surface reflectances or strong
shadows.

The DalLl descriptor we propose can simultaneously
handle such relatively complex photometric and spa-
tial warps. Following [26], we represent the images as
2D surfaces embedded in the 3D space. This is in fact

a common practice, although it has been mostly em-
ployed for low level vision tasks such as image denois-
ing [43,56] or segmentation [55]. The fundamental dif-
ference between our approach and [26] is that we then
describe each feature point on the embedded surface
considering the heat diffusion over time [16,25,44] in-
stead of using a Geodesic Intensity Histogram. As we
will show in the results section this yields substantially
improved robustness, especially to illumination changes.
Heat diffusion theory has been used by several approa-
ches for the analysis of 3D textured [23] and non-textured
shapes [14,25,38,39], but to the best of our knowledge,
it has not been used before to describe patches in in-
tensity images.

One of the main limitations of the methods based
on the heat diffusion theory is the high complexity cost
they require. The bottleneck of their computation lies
on an eigendecomposition of a n, x n, Laplacian ma-
trix (see Fig. 3), where n, is the number of vertices
of the underlying mesh. This has been addressed by
propagating the eigenvectors across different mesh res-
olutions [42,54] or using matrix exponential approxi-
mations [50]. In this paper, an annular multiresolution
grid will be used to improve the efficiency of the DaL.l
computation. Additionally, PCA will be used to reduce
the dimensionality of the original DaLlI descriptor [33],
hence speeding up the matching process as well.

3 Deformation and Light Invariant Descriptor

Our approach is inspired by current methods [16,44]
that suggest using diffusion geometry for 3D shape recog-
nition. In this section we show how this theory can be
adapted to describe 2D local patches of images that un-
dergo non-rigid deformations and photometric changes.
A general overview of the different steps needed to com-
pute the DaLl and DaLI-PCA descriptors can be seen
in Fig. 2 and are explained more in detail below.
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Fig. 3 DaLl descriptor. Our central idea is to embed image
patches in 3D surfaces and describe them based on heat diffusion
processes. We represent the heat diffusion as a stack of images
in the frequency domain. The top images show various slices of
our descriptor for two different patches. The bottom-right graph
depicts the value of the descriptor for the pixels marked by color
circles in the upper images. Note that corresponding pixels have
very similar signatures. However, the signature may significantly
change from one pixel to its immediate neighbor. For instance, z2
is at one pixel distance from x2, but their signatures are rather
different. As a consequence, using the signature of a single point
as a descriptor is very sensitive to 2D noise in the feature de-
tection process. We address this by simultaneously considering
the signature of all the pixels within the patch, weighted by a
Gaussian function of the distance to the center of the patch.

3.1 Invariance to Non-Rigid Deformations

Let us assume we want to describe a 2D image patch P,
of size Sp x Sp and centered on a point of interest p.
In order to apply the diffusion geometry theory to in-
tensity patches we regard them as 2D surfaces embed-
ded in 3D space (Fig. 3 bottom-left). More formally,
let f: P — M be the mapping of the patch P to a
3D Riemannian manifold M. We explicitly define this
mapping by:

fix—= (2,9, pI(x)) VxeP, (1)

where I(x) is the pixel intensity at x = (x,%) ', and 8
is a parameter that, as we will discuss later, controls
the amount of gradient magnitude preserved in the de-
scriptor.

Several recent methods [16,25,38,39,44| have used
the heat diffusion geometry for capturing the local prop-
erties of 3D surfaces and performing shape recognition.
Similarly, we describe each patch P based on the heat

diffusion equation over the manifold M:

0
(AIVI + at) U(X,t) =0 5

where Ay is the Laplace-Beltrami operator, a general-
ization of the Laplacian to non-Euclidean spaces, and
u(x,t) is the amount of heat on the surface point x at
time t.

The solution k(x,y,t) of the heat equation with an
initial heat distribution u,(x,t) = 6(x —y) is called the
heat kernel, and represents the amount of heat that is
diffused between points x and y at time ¢, considering a
unit heat source at x at time ¢ = 0. For a compact man-
ifold M, the heat kernel can be expressed by following
spectral expansion [11,38]:

o0

k(x,y, 1) =Y e M (x)i(y) s (2)

=0

where {\;} and {¢,} are the eigenvalues and eigenfunc-
tions of Apy, and ¢,(x) is the value of the eigenfunction
¢, at the point x. Based on this expansion, [44] pro-
poses describing a point p on M using the Heat Kernel
Signature

oo

HKS(p, t) = k(p,p,t) = Y e ¢} (p) (3)

=0

which is shown to be isometrically-invariant, and ad-
equate for capturing both the local properties of the
shape around p (when ¢t — 0) and the global structure
of M (when t — 00).

However, while on smooth surfaces the HKS of neigh-
boring points are expected to be very similar, when
dealing with the wrinkled shapes that may result from
embedding image patches, the heat kernel turns to be
highly unstable along the spatial domain (Fig. 3 bottom-
right). This makes the HKS particularly sensitive to
noise in the 2D location of the keypoints. To handle
this situation, we build the descriptor of a point p by
concatenating the HKS of all points x within the patch
P, properly weighted by a Gaussian function of the dis-
tance to the center of the patch. We therefore define the
following Deformation Invariant (DI) descriptor:

DI(pv t) = [HKS(Xa t) : G(X7 p, 0)]VxEP 9 (4)

where G(x;p, o) is a 2D Gaussian function centered on
p having a standard deviation o, evaluated at x. Note
that for a specific time instance ¢, DI(p,t) is a Sp x Sp
array.

The price we pay for achieving robustness to 2D
noise is an increase of the descriptor size. That is, if
HKS(p, t) is a function defined on the temporal domain
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Fig. 4 Invariance of the DalLl and DI descriptors to non-rigid
deformations and illumination changes. Top row and left col-
umn images: Different degrees of deformation and light changes
applied on the top left reference patch Py. Deformations are ap-
plied according to a function Def(-) € {Def0, ..., Defll}, where
Defll corresponds to the maximal deformation. Light changes
are produced by scaling the intensity of Py by a gain g € [0, 1].
Bottom Graph: Given a deformation Def(-) and a gain factor
g, we compute the percentage of change of the DI descriptor by
IDI(Po) — DI(Def(gPo))|l/IIDI(Po)|l. The percentage of change
for DaLLl is computed in a similar way. Observe that DaLlI is much
less sensitive than DI, particularly to illumination changes.

R* discretized into n; equidistant intervals, the com-
plete DI descriptor DI(p) = [DI(p,?1),...,DI(p,ty,)]
will be defined on Sp x Sp X ny, the product of the spa-
tial and temporal domains. However, note that for our
purposes this is still feasible, because we do not need
to compute a descriptor for every pixel of the image,
but just for a few hundreds of points of interest. Fur-
thermore, as we will next discuss, the descriptor may be
highly compacted if we represent it in frequency domain
instead of time domain and even further compacted by
using dimensionality reduction techniques such as Prin-
cipal Component Analysis (PCA).

3.2 Invariance to Illumination Changes

An inherent limitation of the descriptor introduced in
Eq. (4) is that it is not illumination invariant. This is
because light changes scale the manifold M along the
intensity axis, and the HKS is sensitive to scaling. It can
be shown that an isotropic scaling of the manifold M
by a factor «, scales the eigenvectors and eigenvalues of
Eq. (2) by factors 1/« and 1/a?, respectively [38]. The
HKS of a point ap € aM can then be written as

X 12 1 t
HKS(ap,t):Ze ”2t¢’T(2P) = JHKS(P» @) )
=0

which is an amplitude and time scaled version of the
original HKS.

Nonetheless, under isotropic scalings, several alter-
natives have been proposed to remove the dependence
of the HKS on the scale parameter «. For instance, [3§]
suggests normalizing the eigenvalues in Eq. (2). In this
paper we followed [7], that applies three consecutive
transformations on the HKS. First, the time-dimension
is logarithmically sampled, which turns the time scaling
into a time-shift, that is, the right-hand side of Eq. (5)
begets a~?HKS(p, —2log a + log t). Second, the ampli-
tude scaling factor is removed by taking logarithm and
derivative w.r.t. logt. The Heat Kernel then becomes
%gt log HKS(p, —2log o + log t). The time-shift term
—2log « is finally removed using the magnitude of the
Fourier transform, which yields SI-HKS(p, w), a scale
invariant version of the original HKS in the frequency
domain. In addition, since most of the signal informa-
tion is concentrated in the low-frequency components,
the size of the descriptor can be highly reduced com-
pared to that of HKS(p,¢) by eliminating the high-
frequency components past a certain frequency thresh-
old wyaz-

As we will show in the results section, another ad-
vantage of the SI-HKS signature is that although it
is specifically designed to remove the dependence of
the HKS on isotropic scalings, it is quite resilient to
anisotropic transformations, such as those produced by
photometric changes that only affect the intensity di-
mension of the manifold M. Thus, we will use this sig-
nature to define our Deformation and Light Invariant
(DaLlI) descriptor:

DaLI(p,w) = [SI-HKS(x,w) - G(X; P, 0)|yxep -

Again, the full DalI(p) descriptor is defined as a con-
catenation of w4, slices in the frequency domain, each
of size Sp x Sp.

Fig. 3-top shows several Dall slices at different fre-
quencies for a patch and a deformed version of it. As
said above, observe that most of the signal is concen-
trated in the low frequency components. In Fig. 4 we
compare the sensitivity of the DI and DaLl descrip-
tors to deformation and light changes, simulated here
by a uniform scaling of the intensity channel. Note that
Dall, in contrast to DI, remains almost invariant to
light changes, and it also shows a better performance
under deformations. In the results section, we will show
that this invariance is also accompanied by a high dis-
criminability, yielding significantly better results in key-
point matching than existing approaches.

In order to get deeper insight about the properties of
the DaLI descriptor, we have further evaluated the HKS
and SI-HKS descriptor variants on a synthetic experi-
ment, in which we have rendered various sequences of
images of a textured 3D wave-like mesh under different
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Fig. 5 Evaluation of the descriptor robustness on synthetic sequences. In the top-left we show two sample images (the reference image
and one specific frame) from all four different scenarios we consider. In the top-right we show an 3D view of the rendering process,
with the light position placed near the mesh and producing patterns of different brightness on top of the surface. The bottom row

depicts the descriptor distance between every input frame and the reference image for different descriptor variants.

degrees of deformation and varying illumination condi-
tions. The surface’s reflectance is assumed to be Lam-
bertian and the light source is moved near the surface,
producing lighting patterns that combine both shading
and the effects of the inverse-square falloff law.

We have analyzed four particular situations: Def. +IIl.,

varying both deformation and the light source position;
Def., varying deformation and keeping the light source
at infinity; [ll. (Def.), starting with a largely deformed
state which is kept constant along the sequence and
varying the light source position; and Ill. (No Def.),
varying the light source position while keeping the sur-
face flat. The mesh deformation in the first two se-
quences, corresponds to a sinusoidal warp, in which the
amplitude of the deformation increases with the frame
number. The varying lighting conditions in all exper-
iments except the second, are produced by smoothly
moving the light source on a hemisphere very close to
the surface. Two frames from each of these sequences
are shown in the top-left of Fig. 5.

For the evaluation, we computed the L2-norm dis-
tance between pairs of descriptors at the center of the
first and n-th frames of the sequence. The results are
depicted in Fig. 5-bottom. When computing the dis-
tances, we consider two situations: normalizing the in-

tensity of the input images so that the pixels follow a
distribution A(0,1), and directly using the input image
intensities. The most interesting outcome of this exper-
iment is to observe how the non-normalized SI-HKS de-
scriptor has comparable distances for all the scenarios.
On the other hand, the normalized versions (SI-HKS
and HKS) seem to distinguish largely whether there is
or there is not deformation. It is also worth noting that
this normalization creates some instability at the ear-
lier frames while the non-normalized SI-HKS descriptor
starts at nearly O error and increases smoothly for all
scenarios. Note also the low performance of the non-
normalized HKS descriptor under illumination changes
as seen by the exponential curves for the illumination
scenarios Ill. (Def) and Ill. (No Def), and the large
fluctuations for both the deformation Def and the illu-
mination changing scenario Def. + Il . This indicates
the importance of the logarithmic sampling and Fourier
transform process we apply to make HKS illumination
invariant.

3.3 Handling In-Plane Rotation

Although DalLl tolerates certain amounts of in-plane
rotation, it is not designed for this purpose. This is be-



DaLl: Deformation and Light Invariant Descriptor 7

Representation of an Image Patch Different Mesh Triangulations

]

2900 /Ig\ll;) N ] P Vlr_. o

| ) eSS ] A 0 ¢ 000 00
e % 8 0 o o %9 o ¢ o 50 0 0 00
SeSIN S eSS S Y M"...I

) S UL AL AL 7

[ EE S “}(»)(111\?»\)00-00 (88 S L=
DSOS OO L BROZOSIANANS

(2) (b) (©)

Fig. 6 Left: Patch representation. (a) Image patch. (b) Representation of the patch as a triangular mesh. For clarity of pre-
sentation we only depict the (z,y) dimension of the mesh. Note that besides the vertices placed on the center of the pixels (filled
circles) we have introduced additional intra-pixel vertices (empty circles), that provide finer heat diffusion results and higher tolerance
to in-plane rotations. (c¢) Definition of the angles used to compute the discrete Laplace-Beltrami operator. Right: Several mesh
triangulations. Upper half of three different triangulations of a 11 x 11 image patch. The shading on the left half of the mesh
indicates the density of the meshing. Dark red shading indicates high density and lighter red shading corresponds to low density. (d)
Dense Square Mesh, with the same topology as in (b). By using circular meshes (e, f), we reduce the number of vertices and thus, the
computation time of the heat kernel. In the case of the annular mesh (f), a further reduction of the number of nodes is achieved by
having a variable resolution of the mesh that is more dense at the center. The edges of the annular mesh preserve symmetry around

(d) Dense Square (e) Dense Circular (f) Annular

the central point in order to favor uniform heat diffusion.

cause with the aim of increasing robustness to 2D noise,
we built the descriptor using all the pixels within the
patch, and their spatial relations have been retained.
Thus, if the patch is rotated, the descriptor will also be
rotated.

In order to handle this situation, during the match-
ing process we will consider several rotated copies of the
descriptors. Therefore, given DaLl(p;) and DaLI(p2)
we will compare them based on the following metric

d(p1,p2) = argemin IIRg, (Dall(p1)) — DaLl(p2)]|

where || - || denotes the Ly norm and Ry, (DaLI(p)) ro-
tates DaLI(p) by an angle 6;. This parameter is chosen
among a discrete set of values 6.

This rotation handling will not be necessary when
using Principal Component Analysis to compress the
descriptor size as we describe in Section 5.2.

3.4 Implementation Details

We next describe a number of important details to be
considered for the implementation of the DaLlI descrip-
tor.

8.4.1 Geometry of the embedding

For the numerical computation of the heat diffusion,
it is necessary to discretize the surface. We therefore
represent the manifold M on which the image patch is
embedded using a triangulated mesh. Fig. 6(b) shows
the underlying structured 8-neighbour representation
we use. Although it requires introducing additional vir-
tual vertices between the pixels, its symmetry with re-
spect to the x and y directions provides robustness to

Table 1 DaLI computation time and mesh complexity for differ-
ent triangulations of a circular patch with outer radius S = 20,
and inner radius So = 10 (for the Annular mesh).

Mesh Type | # Pixels | # Vertices | # Faces | Time
() (ng) (s)

Dense Square 1681 3281 6400 1.988

Dense Circular 1345 2653 5144 1.509

Annular 1345 1661 3204 0.460

small amounts of rotation, and more uniform diffusions
than other configurations.

As seen in Fig. 2, nearly all the computation time
of the DaLlI descriptor is spent calculating the Laplace-
Beltrami eigenfunctions of the triangulated mesh. In
the following subsection we will show that this com-
putation turns to have a cubic cost on the number of
vertices of the mesh, hence, important speed gains can
be achieved by lowering this number. For this purpose
we further considered a circular mesh (Fig. 6(e)), and
a mesh with a variable density, like the one depicted in
Fig. 6(f), where a lower resolution annulus is used for
the pixels further away from the center.

By using an annular mesh with an inner radius S, =
S/2, where S is the size of the outer radius, we were able
to speed up the computation of the DaLl descriptor by
a factor of four compared to the Dense Squared config-
uration (see Table 1). Most importantly, this increase
in speed did not result in poorer recognition rates.

Another important variable of our design is the mag-
nitude of the parameter 8 in Eq. (1), that controls the
importance of the intensity coordinate with respect to
the (x,y) coordinates. In particular, as shown in Fig. 7,
large values of § allow our descriptor to preserve edge
information. This is a remarkable feature of the DalLl
descriptor, because besides being deformation and il-
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Fig. 7 Preserving edge information. Larger values of the
parameter 8 in Eq. (1) allow the descriptor to retain edge in-
formation. Each row depicts the DaLl descriptor at frequencies
w = {0,2,4,6,8} for a different value of 8 computed on the
car image from Fig. 3. Observe that for low values of 3 there is
blurring on the higher frequencies of the descriptor.

lumination invariant, edge information is useful to dis-
criminate among different patches.

8.4.2 Discretization of the Laplace-Beltrami operator

In order to approximate the Laplace-Beltrami eigen-
functions on the triangular mesh we use the cotangent
scheme described in [36]. We next detail the main steps.

Let {p1,...,Pn,} be the vertices of a triangular
mesh, associated to an image patch embedded on a 3D
manifold. We approximate the discrete Laplacian by
a n, X n, matrix L = A7'M where A is a diagonal
matrix in which A is proportional to the area of all
triangles sharing the vertex p;. M is a n, X n, sparse
matrix computed by:

Zk mik lf 7= j
M;; = ¢ —my; if p; and p; are adjacent
0 otherwise

where m;; = cot ’yjj—!—cot 7i5- and ’yj; and v, are the two
opposite angles depicted in Fig. 6(c), and the subscript
‘k’ refers to all neighboring vertices of p;.

The eigenvectors and eigenvalues of the discrete La-
place-Beltrami operator can then be computed from the
solution of the generalized eigenproblem M@ = AAP,
where A is a diagonal matrix with the eigenvalues {\;}
and the columns of @ correspond to the eigenvectors
{#:} in Eq. (2).

Note that the computational cost of the eigende-
composition is cubic in the size of M, i.e., O(n3). As
discussed in the previous subsection, we mitigate this
cost by choosing mesh topologies where the number
of vertices is reduced. In addition, since the eigenvec-
tors ¢, with smallest eigenvalues have the most impor-
tance when calculating the HKS from Eq. (3), we can

Table 2 DaLl Parameters

Symbol | Parameter Description. (Default Value)
S Outer radius of the annulus. (20)
So Inner radius of the annulus. (10)
B8 Magnitude of the embedding. (500)
o Standard deviation of Gaussian weighting. (g)
) # of eigenvectors of the Laplace-Beltrami opera-
tor. (100)
nt # of intervals in the temporal domain. (100)
Wmaz # of frequency components used. (10)
0; Rotation angles for descriptor comparison.
({-5,0,45})
Ny # of mesh vertices.(1661)
nyg # of triangular faces in the mesh. (3204)
Npea # of PCA components for the DaLI-PCA. (256)

approximate the actual value by only using a subset
formed by the n) eigenvectors with smallest eigenval-
ues. Both these strategies allow the HKS calculation to
be tractable in terms of memory and computation time.
Finally, Table 2 summarizes all the parameters that
control the shape and size of the Dal.l descriptor. The
way we set their default values, shown between the
parentheses, will be discussed in Section 5.1.

4 Deformation and Varying Illumination
Dataset

In order to properly evaluate the deformation and il-
lumination invariant properties of the Dall descriptor
and compare it against other state-of-the-art descrip-
tors, we have collected and manually annotated a new
dataset of deformable objects under varying illumina-
tion conditions. The dataset consists of twelve objects of
different materials with four deformation levels and four
illumination conditions each, for a total of 192 unique
images. All images have a resolution of 640 x 480 pixels
and are grayscale.

The types of objects in the dataset are 4 shirts, 4
newspapers, 2 bags, 1 pillowcase and 1 backpack. They
were chosen in order to evaluate all methods against
as many different types of deformation as possible. The
objects can be seen in the top of Fig. 8.

4.1 Deformation and Illumination Conditions

The pipeline to acquire the images of each object con-
sisted of, while keeping the deformation constant, chang-
ing the illumination before proceeding to the next de-
formation level. All images were taken in laboratory
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Reference Images
Shirt #1 Shirt #2 Shirt #3 Shirt #4

Deformation Level

Manual Annotation

Deform. Level #0 Deform. Level #1 Deform. Level #2 Deform. Level #3 of Correspondences

Q
Light
Sources

Camera

Illumination Changes
Ill. Conditions #0 Ill. Conditions #1 Ill. Conditions #2 Ill. Conditions #3
o <)

Fig. 8 Deformable and Varying Illumination dataset. Top: Reference images of the twelve objects in the dataset. Each object
has four deformation levels and four illumination levels yielding a total of 16 unique images per object. Middle-left: Sample series
of images with increasing deformation levels, and constant illumination. Bottom-left: Sample images of the different illumination
conditions taken for a deformation level of each object. The illumination conditions #0, #1, #2 and #3 correspond to no illumination,
global illumination, global+local illumination, and local illumination, respectively. Middle-right and bottom-right: Examples of
feature points matched across image pairs. The first column corresponds to the reference image for the object. These feature points
are detected using Differences of Gaussians (DoG) and are matched by manual annotation. Each feature point consists of image

coordinates, scale coordinates and orientation.
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Rotated Scaled

Original Patch

Cropped

Fig. 9 Top: Outline of the process used to obtain patches for
evaluating image descriptors. For each feature point, we initially
extract a square patch centered on the feature, and whose size is
proportional to the scale factor of the interest point. The patch
is then rotated according to the orientation of the feature point,
and finally scaled to a constant size and cropped to be in a cir-
cular shape. Bottom: Sample patches from the dataset, already
rotated and scaled to a constant size in order to make them ro-
tation and scale invariant.

conditions in order to fully control the settings for a
suitable evaluation.

The reference image was acquired from an initial
configuration where the object was straightened out as
much as possible. While deformations are fairly subjec-
tive, as they were done incrementally over the previous
deformation level, they are representative of increasing
levels of deformation. Different deformation levels of an
object with the same illumination conditions are shown
in the middle-left of Fig. 8.

The illumination changes were produced by using
two high power focus lamps. The first one was placed
vertically over the object, at a sufficient distance to
guarantee a uniform global illumination of the object’s
surface. The second lamp was placed at a small eleva-
tion angle and close to the object, in order to produce
harsh shadows and local illumination artifacts. By al-
ternating the states of these lamps, four different il-
lumination levels are achieved: no illumination, global
illumination, global with local illumination, and local
illumination. The different illumination conditions for
constant deformation levels can be seen in the bottom-
left of Fig. 8. Note that even with moderate deforma-
tions, the presence of the local illumination causes se-
vere appearance changes.

4.2 Manual Annotations

To build the ground truth annotations, we initially de-
tected interest points in all images using a multi-scale
Difference of Gaussians filter [30]. This yielded approxi-
mately between 500—600 feature points per image, each
consisting of a 2D image coordinate and its associated
scale.

These feature points were then manually matched
for each deformation level against the undeformed ref-
erence image, resulting in three pairs of matched fea-
ture points. All matches were done with top-light illu-
mination conditions (Ill. Conditions #1, Fig. 8) to fa-
cilitate the annotation task and maximize the number
of repeated features between each pair of images. The
matching process yielded between 100 and 200 point
correspondences for each pair of reference and deformed
images. The same feature points are used for all il-
lumination conditions for each deformation level. The
middle-right images of Fig. 8 show a few samples of our
annotation. Note that the matched points are generally
not near the borders of the image to avoid having to
clip when extracting image patches.

As we will discuss in the experimental section, in
this paper we seek to compare the robustness of the
DaLl and other descriptors to only deformation and
light changes. Yet, although the objects in the dataset
are not globally rotated, the deformations do produce
local rotations. In order to compensate for this we use
the SIFT descriptor as done in [31] to compute the ori-
entation of each feature point, and align all correspond-
ing features. When a feature point has more than one
dominant orientation, we consider each of them to aug-
ment the set of correspondences.

4.3 Evaluation Criteria

In order to perform fair comparisons, we have devel-
oped a framework to evaluate local image descriptors
on even grounds. This is done by converting each fea-
ture point into a small image patch which is then used
to compute descriptors. This allows the evaluation of
the exact same set of patches for different descriptors.

For each feature point we initially extract a square
patch around it, with a size proportional to the feature
point’s scale. In the Experimental Section 5.3 we discuss
the value of the proportionality constant we use. The
patch is then rotated by the feature point’s orientation
using bilinear interpolation, and scaled to a constant
size, which we have set to 41 x 41 pixels as done in [31].
Finally, the patch is cropped to a circular shape. This
results in a scale and rotation invariant circular image
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Fig. 10 DaLl performance for different values of the parameters So, 8, 0 and wmaez. We compute and average the matching rate
for the Shirt #1 and the Newspaper #1 objects in the dataset using S, € {0,5,10,15,20} pixels, 8 € {125,250, 500, 1000, 2000},
o€ {g, S,2S} and wimaz € {5,10,15,20} for three scenarios: both deformation and illumination changes, only deformation changes,
and only illumination changes. The graphs depict the results of this 4D parameter exploration, where the color of each square represents
the percentage of correctly matched points for a specific combination of the parameters. In order to visualize the differences, we scale
the values separately for each scenario. The best parameters for each scenario are marked in red and can be seen to vary greatly
amongst themselves. We use a compromise, and for all the experiments in this section we set these parameters (highlighted in green)

to 8 =500, So = 10, 0 = £ and wmaz = 10.

patch with a diameter of 41 pixels. The steps for ex-
tracting the patches are outlined in the top of Fig. 9,
and the bottom of the figure shows a few examples of
patches from the dataset.

Given these “normalized patches” we then assess the

performance of the descriptors as follows. For each pair
of reference/deformed images, we extract the descrip-
tors of all feature points in both images. We then com-
pute the Lo distance between all descriptors from the
reference and the deformed image. This gives a dis-
tance matrix, which is rectangular instead of square
due to the creation of additional feature points when
there are multiple dominant orientations. Patches that
have different orientations but share the same location
are treated as a unique patch. As evaluation metric we
use a descriptor-independent detection rate, which is
defined for the n top matches as:
Detection Rate(n) = M)TNCW) ) (6)
where N,(n) is the number of feature points from the
reference image that have the correct match among the
top n candidates in the deformed image, and NV is the
total number of feature points in the reference image.

For the experimental results we will discuss in the
following section, we consider three different evaluation
scenarios: deformation and illumination, only deforma-
tion, and only illumination. In the first case we com-
pare all combinations of deformation and illumination
with respect to the reference image which has no ad-
ditional illumination (ill. conditions #0) and no defor-
mation (deform. level #0). This represents a total of 15
comparisons for each object. In the second case we con-
sider only varying levels of deformation for each illumi-
nation condition, which yields 12 different comparisons
per object (three comparisons per illumination level).

When only considering illumination, each deformation
level is compared to all illumination conditions. Again,
this gives rise to 12 comparisons per object (three com-
parisons per deformation level).

5 Experimental Results

We next present the experimental results, in which we
discuss the following main issues: an optimization of
the descriptor parameters, a PCA-based strategy for
compressing the descriptor representation, and the ac-
tual comparison of DaLl against other state-of-the-art
descriptors, for matching points of interest in the pro-
posed dataset. Finally, we analyze specific aspects such
as the performance of all descriptors in terms of their
size, the benefits of normalizing the intensity of input
images, and a real application in which the descriptors
are compared when matching points of interest in real
sequences of a deforming cloth and a bending paper.

5.1 Choosing Descriptor’s Parameters

We next study the influence and set the values of the
DaLl parameters of Table 2. As the size Sp of the patch
is fixed, causing the descriptor radius S to be also fixed,
we will look at finding the appropriate value of other
parameters, namely the magnitude 3 of the embedding,
the degree o of smoothing within the patch, the inner
radius of the annulus S, and the dimensionality w,q,
of the descriptor in the frequency domain. In order to
find their optimal values, we used two objects in the
dataset (Shirt #1 and Newspaper #1), and computed
matching rates of their feature points for a wide range
of values for each of these parameters.
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Fig. 11 The first 7 frequencies of the first 20 components of the PCA basis computed from images of two objects from the dataset
(Shirt #1 and Newspaper #1). Each vector is normalized for visualization purposes. Positive values are displayed in green while
negative values are displayed in blue. Most of the components do not contain much information at frequencies w > 6 and thus they

are not displayed, although they are considered in the DaLI-PCA descriptor.

It is worth to point out that the number of eigen-
vectors n) of the Laplace-Beltrami operator was set to
100 in all cases. Note that this value represents a very
small portion of all potential eigenvectors, in the order
of two thousands (equal to the number of vertices n,,).
Using a lesser number of them would eventually deteri-
orate the results, while not providing a significant gain
in efficiency, and using more of them, almost did not
improve the performance. Similarly, the number n; of
intervals in which the temporal domain is split is set
to 100. Again, this parameter had almost no influence,
neither in the performance of the descriptor nor in its
computation time.

Fig. 10 depicts the results of the parameter sweeping
experiment. We display the rates for three scenarios:
when considering both deformation and illumination
changes, only deformation changes, and only illumina-
tion changes. The most influential parameters are the
weighting factor o and to a lesser extent the magnitude
of the embedding S. We see that for a wide range of
parameters, the results obtained are very similar when
considering both illumination and deformation, how-
ever, there is a balance to be struck between both defor-
mation and illumination invariance. By increasing de-
formation invariance, illumination invariance is reduced
and vice-versa. Finally we use a compromise, and the
parameters we choose for all the rest of experiments are
B =500, S, = 10, 0 = £ and wy,q; = 10, besides the
ny = 100 and n; = 100 we mentioned earlier.

5.2 Compression with PCA

The DaLlI descriptor has the downside of having a very
high dimensionality, as its size is proportional to the
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Fig. 12 Top: DaLI-PCA performance for different compression
levels. Note that the overall mean precision does not vary much
for npca > 256 components. Bottom: Comparison of an original
DalLl descriptor with its compressed DaLI-PCA version obtained
using 256 PCA components. For visualization purposes the values
are normalized and the difference shown in the third row is scaled
by 5x.

product of the number of vertices n, used to represent
the patch and the number of frequency components
Wmaz- FOr instance, using patches with a diameter of
41 pixels and considering the first 10 frequency slices,
results in a 13450-dimensional descriptor (1345 pixels
by 10 frequency slices), requiring thus large amounts of
memory and yielding slow comparisons. However, since
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Fig. 13 Mean detection rates obtained by scaling regions of in-
terest with different factors. While a 3x scale factor does lower
the overall performance, the difference between a 5x, 7x or 9x
scale factor is minimum for descriptors other than weighted pixel
differences (Pix. Diff.) or normalized cross covariance (NCC),
which do improve as interest regions increase in size. The results
of the graph correspond to the average of the mean detection
rates with Deformation-+Illumination changes, Illumination-only
changes and Deformation-only changes.

the descriptor is largely redundant, it can be compacted
using dimensionality reduction techniques such as [8,9,
35].

In this paper, as a simple proof of concept, we have
used Principal Component Analysis for performing such
compression. The PCA covariance matrix is estimated
on 10436 DaLl descriptors extracted from images of the
Shirt #1 and Newspaper #1. The npcq <K Ny - Wnax
largest eigenvectors are then used for compressing an
incoming full-size DaLI descriptor. The resulting com-
pacted descriptor, which we call DaLI-PCA, can be ef-
ficiently compared with other descriptors using the Eu-
clidean distance. Fig. 11 shows the first 7 frequencies of
the first 20 vectors of the PCA-basis. It is interesting
to note that most of the information can be seen to be
in the lower frequencies. This can be considered an ex-
perimental justification for the frequency cut off applied
with the w4, parameter, which we have previously set
to 10.

In order to choose the appropriate dimension 7,¢q4
of the PCA-basis, we have used our dataset to evaluate
the matching rate of DaLI-PCA descriptors for differ-
ent compression levels. The results are summarized in
Fig. 12-top, and show that using fewer dimensions fa-
vors deformation invariance (actually, PCA can be un-
derstood as a smoothing that undoes some of the harm
of deformations) while using more dimensions favors
illumination invariance. The response to joint deforma-
tion and illumination changes does not improve after
using between 200 — 300 components, and this has been
the criterion we used to set n,., = 256 for the rest of

the experiments in this section. In Fig. 12-bottom we
compare the frequency slices for an arbitrary DaLl de-
scriptor and its approximation with 256 PCA-modes.
Observe that the differences are almost negligible.

5.3 Comparison with Other Approaches

We compare the performance of our descriptors (both
Dall and DaLI-PCA) to that of SIFT [30], DAISY
[46], LIOP [53], GIH [26], Normalized Cross Correlation
(NCC) and Gaussian-weighted Pixel Difference. SIFT
and DAISY are both descriptors based on Differences of
Gaussians (DoG) and spatial binning which have been
shown to be robust to affine deformations and to certain
amount of illumination changes. LIOP is a recently pro-
posed descriptor based on intensity ordering making it
fully invariant to monotonic illumination changes. GIH
is a descriptor specifically designed to handle non-rigid
image deformations, but as pointed out previously, it
assumes these deformations are the result of changing
the position of the pixels within the image and not
their intensity. NCC is a standard region-based met-
ric known to possess illumination-invariant properties.
Finally, we compare against a Gaussian-weighted pixel
difference using the same convolution scheme as used
for the DaLI descriptor. Standard parameters suggested
in the original papers are used for all descriptors ex-
cept for the LIOP descriptor in which using a larger
number of neighboring sample points (8 instead of 4
neighbors) results in a higher performance at the cost
of a larger descriptor (241920 instead of 144 dimen-
sions). The LIOP and SIFT implementations are pro-
vided by VLfeat [51]. We use the authors’ implementa-
tion of DAISY and GIH.

The evaluation is done on the dataset presented in
Section 4. All the descriptors are therefore tested on
exactly the same image patches in order to exclusively
judge the capacity of local feature representation. Yet,
as mentioned in Sec. 4.3, the dataset still requires set-
ting the scale factor to use for the points of interest.
This value corresponds to the relative size of each image
patch with respect to the scale value obtained from the
DoG feature point detector. For this purpose, we eval-
uated the response of all descriptors for scale factors of
3%, bx, 7x and 9x. The results are shown in Fig. 13.
Although the SIFT implementation uses a default value
of 3x, we have observed that the performance of all
descriptors improves by increasing the patch size. Note
that this does not result in a higher computational cost,
as the final size of the patch is normalized to a circu-
lar shape with a diameter of 41 pixels. The maximum
global response for all descriptors is achieved when us-
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Fig. 14 Detection rate when simultaneously varying deformation level and illumination conditions. Each graph represents the average
of the mean detection rate between the reference image (ill. conditions #0 and deform. level #0) and all images in the dataset under

specific light and deformation conditions.

ing a 7x scale factor, which is the value we use for all
the experiments reported below.

The results for concurrent deformation and illumi-
nation are summarized in Fig. 14. DaLl consistently
outperforms all other descriptors, although the more
favorable results are obtained under large illumination

changes. The performance of DAISY is very similar to
that of DaLl when images are not affected by illumi-
nation artifacts. In this situation, the detection rates
of DAISY are approximately between 2 — 5% below
to those obtained by DalLl. However, when illumina-
tion artifacts become more severe, the performance of
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Fig. 15 Top: Results when varying only the deformation while keeping the illumination conditions constant. It can be seen that
both DaLl and DAISY largely outperform the rest of descriptors. Bottom: Results of varying only the illumination conditions while
keeping the deformation level constant. Note that only DaLl remains robust to illumination changes. The performance of DAISY falls

roughly a 20% compared to Dall.

DAISY rapidly drops, yielding detection rates which are
more than 20% below DaLl. SIFT, LIOP, and Pixel Dif-
ference yield similar results, with SIFT being better at
weak illumination changes and LIOP better at handling
strong illumination changes. Yet, these three methods
are one step behind DalLl and DAISY. NCC generally
performs worse except in situations with large illumi-
nation changes, where it even outperforms DAISY. On
the other hand, GIH performs quite poorly even when
no light changes are considered. This reveals another
limitation of this approach, in that it assumes the ef-
fect of deformations is to locally change the position
of image pixels, while in real deformations some of the
pixels may disappear due to occlusions. Although our
approach does not explicitly address occlusions, we can
partially handle them by weighing the contribution of
the pixels within each patch, by a function decreasing
with the distance to the center. Thus, most of the in-
formation of our descriptor is concentrated in a small
region surrounding the point of interest, hence making
it less sensitive to occlusions. The results also show that

the compressed DaLLI-PCA follows a similar pattern as
DaLl, and specially outperforms DAISY under severe
illumination conditions.

In Fig. 15 we give stronger support to our argu-
ments by independently evaluating deformations and
illumination changes. These graphs confirm that un-
der deformation-only changes, DaL.l outperforms DaLI-
PCA and DAISY by a small margin of roughly 3%.
Next, SIFT, LIOP, and Pixel Difference yield similar re-
sults, roughly 20% below DaLlI in absolute terms. GIH
and NCC yield also similar results, although their per-
formance is generally very poor. When only illumina-
tion changes are considered, both DalLl and DaLLI-PCA
significantly outperform other descriptors, by a mar-
gin larger than 20% when dealing with complex illu-
mination artifacts. The only notable difference in this
scenario is that the NCC descriptor outperforms SIFT
and Pixel Difference. As GIH is not invariant to illumi-
nation changes, it obtains poor results. Similarly, since
LIOP is designed to be invariant to monotonic lighting
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Fig. 16 Sample results from the dataset. As in Fig. 1, the color of the circles indicates the position n of the correct match among the
top candidates. If n > 10 we consider the point as unmatched and mark it with a cross.

Table 3 Evaluation results on the dataset for all descriptors. Re-
sults are obtained by averaging the first match percentage values
over all images being tested under all different conditions.

Descriptor | Deformation | Illumination Efufzfirr?::iizer
DaLI-PCA 67.425 85.122 68.368
DaLI 70.577 89.895 72.912
DAISY 67.373 75.402 66.197
SIFT 55.822 60.760 53.431
LIOP 58.763 60.014 52.176
Pixel Diff. 54.714 65.610 54.382
NCC 38.643 62.042 41.998
GIH 37.459 28.556 31.230

changes, it does not perform that well in real images
that undergo complex illumination artifacts.

In summary, the experiments have shown that Dal.l
globally obtains the best performance. Its best relative
response when compared with other descriptors is ob-
tained when the deformations are mild and the light
changes drastic. Some sample results on particular im-
ages taken from the dataset can be seen in Fig. 16. Ad-
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Fig. 17 Some of the true positive, false positive, false negative
and true negative image patch pairs obtained using the DalLl
descriptor on the dataset. Note that most of the false negatives
are due to large orientation changes across feature points.

ditionally, numeric results for the best candidate (n = 1
in Eq. 6) under different conditions for all descriptors
are shown in Table 3.

Finally, examples of particular patch matches are
depicted in Fig. 17. The true positives pairs can be seen
to be matched despite large changes. On the other hand,
the false negatives seem largely generated by differences
in orientations of the feature points: they correspond to
the same patch, only rotated. The false positives share
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Fig. 18 Mean detection accuracy on two real world videos from [34]. In the top row we show three example frames from each video.
In the bottom row we plot the accuracy for each frame for three descriptors: Dal.l, DAISY and SIFT. Additionally the mean for each

descriptor is displayed as a dashed line.

Table 4 Comparison of performance and descriptor size.

Descriptor | Size | Deform. | Ilum. | Deformation
Ilumination

DaLI-PCA 128 67.45 82.34 67.71
SIFT | 128 55.82 60.76 53.43
LIOP | 144 54.01 44.89 44.45
DAISY | 200 67.37 75.40 66.20
GIH 176 37.46 28.56 31.23
DaLI-PCA | 256 67.43 85.12 68.37

some similarity, although they are mainly from heavily
deformed images.

5.4 Descriptor Size Performance

Since larger descriptors may a priori have an unfair ad-
vantage, we next provide results of an additional exper-
iment in which we compare descriptors having similar
sizes. The LIOP we calculate in this case uses 4 neigh-
bours instead of the 8 neighbours we considered before,
which results in a smaller size, although also in a lower
performance. GIH is originally 176-dimensional, thus
the results are the same as in Table 3. NCC and Pixel
Diff, are not considered for this experiment as their size
is 41 x 41 = 1681.

Results are shown in Table 4. We can see that the
128-dimensional DalLI-PCA outperforms all other de-
scriptors except the 256-dimensional DaLLI-PCA. It is
worth noting the large performance gain obtained over
the standard SIFT descriptor.

5.5 Benefits of Intensity Normalization

We next extend the analysis we introduced in Sect. 3.2
in which we evaluated SI-HKS and HKS with and with-
out pre-normalizing the intensity of input images. We
will also consider SIFT and DAISY, which have been
the most competitive descriptors in previous experi-
ments. Since SIFT/DAISY implementations require the
pixels to be in a [0,1] range, we have normalized each
image patch so that the pixels follow the distribution
N(0.5,(2-1.956)~1). This makes it so that on average
95% of the pixels will fall in [0, 1]. Pixels outside of this
range are set to either 0 or 1.

We compare the DaLl descriptor (both its SI-HKS
and HKS variants), DAISY and SIFT, with and without
normalization. Results are shown in Table 5. We can see
that for DAISY and SIFT, since they perform a final
normalization stage, the results do not have any signifi-
cant change. In the case of the DaLI descriptor, though,
we see that there is a rather significant performance in-
crease when using the SI-HKS variant over the HKS
one, even with patch normalization. This demonstrates
again that the role of the Fourier Transforms applied in
HKS to make it illumination invariant go far beyond a
simple normalization. In addition, SI-HKS compresses
the descriptor in the frequency domain and is one order
of magnitude smaller than the HKS variant.

5.6 Evaluation on Real World Sequences

This section describes additional experiments on two
real world sequences of deforming objects, taken from [34].
One consists of a T-Shirt being waved in front of a
camera (Deforming Cloth) and the other consists of a
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Table 5 Effect of normalizing image patches for various descriptors.

Descriptor | Normalization? | Deformation | Illumination | Deformation-+Illumination
DaLI (SI-HKS) No 70.58 89.90 72.91
DalLl (SI-HKS) Yes 70.38 88.60 72.28
DaLl (HKS) No 66.27 84.21 67.83
DaLl (HKS) Yes 67.20 84.62 69.42
DAISY No 67.37 75.40 66.20
DAISY Yes 67.08 75.59 66.27
SIFT No 55.82 60.76 53.43
SIFT Yes 55.05 61.83 53.21

piece of paper being bended in front of a camera (Paper
Bending). We use points of interest computed with the
Differences of Gaussians detector (DoG) and follow the
same patch extraction approach as in the rest of the
paper. The points of interest are calculated for the first
frame in each sequence and then propagated using the
provided 3D ground truth to the other frames. We use
the same descriptor parameters as in the rest of the ex-
periments, and seek to independently match the points
of interest in the first frame to those of all the other
frames.

As we can observe in Fig. 18, DaLl outperforms
both DAISY and SIFT? . We obtain a 5.5% improve-
ment over DAISY on the Deforming Cloth sequence and
a 4.1% improvement on the Paper Bending sequence.
Note that these sequences do not have as complicated il-
lumination artifacts as our dataset, an unfavorable situ-
ation for our descriptor. Yet, DaLl still consistently out-
performs other approaches along the whole sequence.

6 Discussion and Conclusions

Heat diffusion theory has been recently shown effec-
tive for 3D shape recognition tasks. In this paper, we
have proposed using these tools to build DaLl, a fea-
ture point descriptor for 2D image patches, that is very
robust to both non-rigid deformations and illumination
changes. The advantages of our method with respect to
the state-of-the-art have been demonstrated by exten-
sively testing them on a new deformation and varying
illumination evaluation dataset®.

We have also shown that simple dimensionality re-
duction techniques such as PCA can be effectively used
to reduce dimensionality while maintaining similar per-
formance. This seems to give the intuition that further
improvements can be obtained by using more advanced
and powerful techniques such as LDAHash [8]. Work

2 Again, we only compare against DAISY and SIFT, as these
are the descriptors which have been more competitive in the ex-
periments with the full dataset.

3 http://www.iri.upc.edu/people/esimo/research/dali/

has also been done in optimizing the calculation speed
by means of more complex meshing to reduce the cost
of computing the eigenvectors of the Laplace-Beltrami
operator.

As part of future work we will investigate recent and
promising alternatives to the Heat Kernel Signatures
(HKS), such as the Wave Kernel Signature (WKS) [2],
and strategies to directly learn spectral descriptors in a
supervised manner [1,29]. Using labeled training data
would likely further increase the performance of our
descriptor.

Additionally we will intend to make DaLl invariant
to scale and rotations without the need to explore a
wide range of discrete values. We will investigate two
alternatives for this purpose: 1) incorporating prior in-
formation of the orientation and scale within each fre-
quency slice, as it is done for the SIFT descriptor; 2)
using a logarithmic sampling and Fourier Transform
Modulus (FTM) as in [22].

Finally, we also plan to look into the function to
weight the pixels within each patch. We are currently
using a Gaussian distribution centered on the patch.
However, there have been recent alternatives that com-
pute similar functions based on segmentation informa-
tion, which have shown to significantly improve the per-
formance of standard descriptors [48,49].
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