
July, 2015

IRI-TR-15-07

Autonomous navigation framework
for a car-like robot

Sergi Hernandez Juan
Fernando Herrero Cotarelo

Abstract
This technical report describes the work done to develop a new navigation scheme for an au-
tonomous car-like robot available at the Mobile Robotics Laboratory at IRI. To plan the general
path the robot should follow (i.e. the global planner), a search based planner algorithm, with
motion primitives which take into account the kinematic constraints of the robot, is used. To
actually execute the path and avoid dynamic obstacles (i.e the local planner) a modification of
the DWA algorithm is used, which takes into account the kinematic constraints of the ackermann
configuration to generate and evaluate possible trajectories for the robot.
The whole navigation scheme has been integrated into the ROS middleware navigation framework
and tested on the real robot and also in a simulator.

Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Científicas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)
http://www.iri.upc.edu

Corresponding author:

Sergi Hernandez
tel: +34 93 401 0857

shernand@iri.upc.edu
http://www.iri.upc.edu/staff/shernand

Copyright IRI, 2015

Section 1 Introduction 1

1 Introduction

The Mobile Robotics Laboratory at IRI has the car-like robot shown in Fig. 1. This robot was
developed by Robotnik and even though it had no autonomous navigation capability, it could be
remotely operated using an external control pad.

Figure 1: Picture of the real ackermann based robot available at the Mobile Robotics Laboratory
at IRI.

The main features of the robot are shown in Table 1.
The ROS middleware used at IRI has a navigation framework with standard local and global

planners, that works quite well for holonomic and quasi-holonomic robots (i.e. robots that can
turn in place), but it does not take into account any kind of constraints necessary for other kinds
of robot architectures, like the ackermann (or car-like) configurations. The kinematic constraints
associated with an ackermann configuration are introduced in section 2.

For the global planner, a search base planner algorithm from SBPL (see [3]) has been used
with primitives carefully generated to take into account the maximum turn radius of the robot.
This algorithm has also already been integrated to the ROS framework, which reduced the
required work. Section 3 briefly describes this algorithm and give detailed information on the
generation of the motion primitives.

No local planner for ackermann architectures was found that could be adapted to our needs,
so it was decided to modify the DWA (Dynamic Window Approach) algorithm already used by
ROS to take into account the ackermann constraints. All the necessary changes to take into
account the non-holonomic constraints are presented in section 4.

Finally, section 5 summarizes the integration of the modified global and local planners into

2 Ackermann navigation

Table 1: Main features of the car-like robot at IRI.

Feature Value
Weight 400 kg

Dimensions 2.5x1.2x1.9m

Max. speed 30 km/h

Max. steer angle 0.45 rad

Max. slope 30 %

Wheel base 1.65m

Track 1.2m

Wheel diameter 0.4329m

the ROS framework, and section 6 shows some of the results and possible future upgrades.

2 Ackermann kinematics

The motion of an ackermann based robot, like a car, can be described on first approximation by
the translational speed and the steering angle, and also by the steering speed. Both translational
and steering accelerations are only considered when generating trajectory estimations to take
into account that the velocities and angles can not change instantaneously.

Figure 2: Sketch of an ackermann based robot with all its main parameters.

Fig. 2 shows a sketch of an ackermann architecture. The important parameters of this kind
of configurations are:

• wheel base (l): is the distance between the front and rear axles of the robot.

• track (w): is the distance between the left and right wheels. In this document, it is assumed
that this distance is the same for the front and rear axles.

• wheel diameter (d):

• center of mass (C): position of the center of mass of the robot, which is considered the
point of rotation of the robot.

Section 3 Global planner: search based planner 3

The inner and outer front wheels have different steering angles to avoid slipping (δi and δo
respectively), and the resulting steering angle for the whole robot (taken at the center of mass)
can be computed as:

cot(δ) =
cot(δo) + cot(δi)

2
. (1)

Also, the rear wheels have different angular speeds when the robot is turning (ωi for the
inner wheel and ωo for the outer one), and the equivalent translational speed for the whole robot
(taken at the center of mass) can be computed as:

vt = dπ
wo + wi

2
. (2)

In general, a single actuator is used for each of the traction and steering functions, and
therefore the difference in the steering angle between the front wheels, and also the difference in
angular speed for the rear wheels, is handled mechanically by the steering mechanism and the
differential respectively. This is the case with the robot shown in Fig. 1.

The position of an object in a two dimensional space is completely defined by the position
of its center of mass (x, y) and its orientation θ, and a trajectory in a two dimensional space is
given by a temporal sequence of these variables. Therefore, in order to estimate the trajectory
the robot will follow given the translational speed and the steering angle, first it is necessary to
compute the turn radius of the center of mass:

R =
√
a2 + fracl2tan2(δ). (3)

The distance traveled by a vehicle in a given amount of time ∆t for a given translational speed
vt can be computed as the circular arc. However, the angle of the circular sector is unknown a
priori, so the distance is approximated by:

L = vt∆ t. (4)

The error of this approximation increases with the speed of the robot and the interval of time
considered. However, for small periods and relatively low speeds, as is the case with the robot
shown in Fig. 1, this error can be ignored.

Then, the change in the robot’s orientation and its relative displacement at the i-th iteration,
and also its absolute pose, can be computed as:

∆ θi = Li/Ri, θi =
∑
i

∆ θi (5)

∆ xi = Licos(δi), xi =
∑
i

∆ xi (6)

∆ yi = Lisin(δi), yi =
∑
i

∆ yi. (7)

With the parameters presented in Table 1, the minimum turn radius for the robot shown in
Fig. 1 is Rmin = 3.5m.

3 Global planner: search based planner

To generate a feasible path to go from the current position to a desired goal the kinematic
constraints of the robot have to be taken into account. Most current global planners use discrete
representations of the robot state which reduces the computational complexity at the expense of
reducing completeness. However, this discrete representations make it difficult to comply with
the maneuverability limitations of most robots.

4 Ackermann navigation

The state of the robot is encoded by its position (x,y) and its heading (θ) to ensure the
generated trajectory is smooth (without sudden changes in the robot’s heading). However, the
velocity and acceleration of these parameters are not considered.

Some algorithms have been developed to overcome this problem. In particular, a search
based algorithm, using a state lattice ([3]), is used for the global planning of the car-like robot
presented in section 1. In this case, the non-holonomic planning query is formulated as search
in a graph called state lattice.

The nodes of the state lattice are a discretized set of all reachable configurations of the robot
(both in position and heading) and its edges are feasible motions that connect two possible
configurations. In this case not all adjacent nodes (configurations) will be connected, only the
nodes whose position and heading coincide with the initial and final positions and headings of a
kinematicaly complying trajectory will be connected.

By regularly sampling the state space it is possible to use a reduced set of position invariant
feasible trajectories (called motion primitives) that can be used for any node in the state lattice.
This set of motion primitives is called the control set. This fact allows us to build the trajectories
between adjacent nodes off-line and get the graph connectivity.

Then, for each planning query, a partial graph is built on-line to try to find a path connecting
the current and goal configurations. When the solution path in the graph is found, the actual
trajectory is built by appending the feasible motions associated to each of the edges of the path.

The number of primitives used for the control set directly affects the computational complex-
ity of the graph search algorithm, so there exist a trade-off between keeping the computational
complexity low while exploiting the maneuverability of the robot as much as possible. Each
motion primitive is assigned a cost that will be taken into account when searching for the best
path.

3.1 Generation of the motion primitives

To generate the motion primitives, first the state space must be discretized, both in position and
heading. By doing so, the desired goal state may not be reachable, but in this case the closest
state will be selected. All the turn motion primitives will change the heading state of the robot
only in one discretized step, while the change in the position states is not limited.

Each motion primitive is build from three separate segments as shown in fig. 3a. One straight
segment with variable length l1, an arc segment with a variable radius R and a second straight
segment also with variable length l2. Fig. 3b shows the possible final states of the robot for a
given turn radius and final heading, with l1 = 0 and l2 =∞.

Eqs. 8 and 9 state how the robot initial and final states (xi,yi,θi and xf ,yf ,θf respectively)
are related to the trajectory parameters (l1, l2 and R):

xf = xi + l1cos(θi) +R(sin(θf)− sin(θi)) + l2cos(θf), (8)
yf = yi + l1sin(θi)−R(cos(θf)− cos(θi)) + l2sin(θf). (9)

Since the motion primitives are position invariant, from now on we will take xi = 0 and
yi = 0. Depending on whether the turn is to the left or the right and whether the motion is
forward or backward, the allowed ranges of values for the trajectory parameters (l1, l2 and R)
change.

Therefore, if the final position of the robot is to the left of the original position (left turn),
the turn radius R in Eqs. 8 and 9 will be positive, and vice versa:

Rmin ≤ R ≤ ∞, when left turn
−∞ ≤ R ≤ −Rmin, when right turn

Section 3 Global planner: search based planner 5

(a) Trajectory template used to gener-
ate the motion primitives, build from two
straight segments (l1 and l2) connected by
a circular segment (R).

(b) Possible final states of the robot (grayed) for
a given values of initial (θi) and final heading
(θf) with l1 = 0 and l2 =∞.

Figure 3

where Rmin is the minimum allowed turn radius, which must be always greater or equal than
the minimum mechanical achievable turn radius.

Similarly, if the final position is behind the original one (backward motion), the lengths of
the straight segments (l1 and l2) in Eqs. 8 and 9 will be negative, and vice versa:

0 ≤ l1, l2 ≤ ∞, when forward motion
−∞ ≤ l1, l2 ≤ 0, when backward motion

The lower bound on the length of the straight segments for a forward motion (upper bound
for a backward motion) must be always taken into account to ensure smooth paths, but there
is no constraint on the other bound. By limiting the maximum (minimum) segment length, the
solution space shown in Fig. 3b is reduced.

So, the problem of generating the motion primitives can be stated as finding feasible sets of
l1, l2 and R for each of the desired final states of the robot, which in turn can be stated as a
linear programming problem with equality and inequality constraints. The cost function used for
the optimization process tries to minimize (maximize) only the length of both straight segments,
the radius is not taken into account.

A set of MATLAB scripts, listed in Appendix A, are provided to automatically generate the
motion primitives, plot them on screen to check them out and also save them into a text file
with the appropriate format to be used in the sbpl_lattice_planner ROS node, presented later
in section 5. The main function call to generate the primitives is:

p=generate_primitives(resolution,num_angles,points,costs,Rmin);

The input arguments to this function are:

• resolution (m): is the minimum distance between to adjacent states both in x and y in the
state lattice. The default value is 0.2m.

6 Ackermann navigation

• num_angles (integer): is the number of discrete heading states of the state lattice. The
default value is 16 which corresponds to a minimum heading increment of 0.3927 rad. It
appears that the sbpl_lattice_planner ROS node only supports this value.

• points (vector): a vector with all the desired final configurations (x,y and θ) with an initial
heading. The format of each element of this vector must be:

points(i,:) = [desired_final_x(m) desired_final_y(m) desired_final_θ(rad)];

Each final configuration is internally discretized using the resolution and num_angles pa-
rameters to map it to the state lattice.

All configurations in this vector are rotated to each of the possible headings of the state
lattice (determined by the num_angles parameter) in order to generate all the motion
primitives. There is no constraint in the number of elements in this vector, but keep in
mind that the total number of primitives that will be generated is proportional to the size
of this vector and the number of discrete heading states.

• costs (vector): a vector with the cost associated to each one of the final configurations in
points. The size of this vector must be equal to the number of final configurations provided
in points, and all values must be positive integers.

• Rmin (m): is the minimum desired turn radius in meters. This value is internally used by
the optimization process to find feasible trajectory parameters to reach each of the final
configurations.

The generate_primitives MATLAB script returns a structure with all the generated prim-
itives and also additional information necessary to generate the output file to be used in the
sbpl_lattice_planner ROS node. The format of this structure is:

• resolution (m): is the minimum distance between to adjacent states both in x and y in the
state lattice. Its value coincides with the one provided as an input argument.

• num_angles (integer): is the number of discrete heading states of the state lattice. Its
value coincides with the one provided as an input argument.

• num_prim (integer): is the number of primitives for each possible heading in the state
space. Its value coincide with the size of the points input vector.

• num_samples (integer): is the number of points for each trajectory segment. This value is
set to 32 by default, and can only be changed modifying the scripts.

• trajectories (structure): a structure with the particular information for each of the mo-
tion primitives that have been generated. The size of this structure is num_prim by
num_angles, and may contain empty elements in case that one or more of the desired final
configurations are not reachable. In this case an error is reported on screen, but the process
continues with the next one.

The parameters of this structure are:

– start_angle (integer): is the index of the discretized initial heading. Its value is an
integer between 0 and num_angles− 1.

– id (integer): is an identifier of the primitive. Its value is an integer between 0 and
num_prim− 1.

Section 4 Local planner: modified DWA 7

– endpose (vector): is the final configuration of the robot in the discretized state lattice,
that is in units of the spatial and angular resolutions.

– points (vector): a vector of size num_samples with all the robots states to reach
the final configuration from the initial one. The values in this vector are meters and
radians, and are the ones used to generate the final path the robot should follow.

– cost (integer): the cost associated with the motion primitive. This value is the one
provided in the costs input vector.

This structure can be used in combination with the save_primitives MATLAB script to
generate the text file with all the necessary information for the sbpl_lattice_planner ROS node.
The filename provided to this function will be used as it is, and will overwrite any existing file
with the same name in the execution folder.

3.2 Trajectory splitting

The global path returned by the global planner may contain sudden changes in the heading of
the robot, which correspond to maneuvers introduced by the kinematic constraints of the robot.
Fig. 4 show a few examples of such maneuvers.

(a) Example of a trajectory to turn 90 de-
grees almost in place.

(b) Example of a trajectory to change the
heading more than the maximum turn an-
gle of the robot would allow.

Figure 4: Example of some trajectories with maneuvers that must be executed in order to reach
the desired goal position

This maneuvers are critical to reaching the goal, so they must be executed. Standard local
planners will try to reach the farthest point within their planning window, which may skip some
of these maneuvers. To avoid that, the trajectory is split in segments between maneuver points,
so that the robot is forced to execute each of the maneuvers.

To detect this maneuver points, the slope of the trajectory is computed at each point, and
when a change of more than π

2 is detected, the trajectory is split. Therefore, the original path
generated by the global planner presented in section 3 is divided in several smaller segments
between maneuver points, and are those segments (as partial goals) that are sent to the local
planner.

4 Local planner: modified DWA

The path returned by the global planner has been generated only taking into account a static
version of the environment (walls, trees, trash cans, etc.), but the robot, in general, will have to
navigate in a dynamic environment with people and other obstacle moving around. The task of

8 Ackermann navigation

the local planner is to avoid collisions with all this dynamic obstacles while trying to follow as
much as possible the path lay out by the global planner.

One of the most commonly used local planner is the Dynamic Window Approach (DWA) [1].
This algorithm takes into account the dynamic limitations of the robot, in terms of velocities
and accelerations, to compute the next control command for a given time interval. Only those
commands that will be achievable in the desired time interval and that will allow the robot to
stop safely will be considered.

From all the remaining feasible commands, the one maximizing an objective function is
chosen. This objective function includes a measure of the progress towards the goal, the distance
to the obstacles and the forward velocity among other parameters.

The search for feasible commands is carried out in the state space, which is determined by the
motion control variables of the robot (translational and rotational speeds in general). However,
the control variables for an ackermann based robot are the translational speed and the steering
angle, and therefore, the original algorithm has to be modified in order to adapt it to the desired
robot architecture.

In the next few sections, the changes and additions to the original Dynamic Window Approach
algorithm are introduced. Section 4.1 describes how to find the window of feasible motion
commands in state space, and section 4.2 describes how to generate a set of trajectories within
this window. Finally, section 4.2.1 introduces a new cost function which is specially useful for
the ackermann configuration.

4.1 Window generation

The first step is to find out which are the maximum translational velocity and steering angle
(i.e. the dynamic window) that can be achievable in the given time interval, taking into account
that the final translational and steering velocities must be 0. After finding the boundaries of the
dynamic window, a finite number of samples will be taken in each of the two dimensions of the
window in order to generate all the trajectory candidates (see section 4.2).

Given that the number of samples is finite, and in general small in order to reduce the overall
computational complexity of the algorithm, it makes no sense to use a fixed time interval to
compute the dynamic window because, when the robot is close to a goal, only a small subset of
all the computed trajectories will be feasible to reach the goal (those with small translational
speeds).

Therefore, a variable time interval is used in terms of the distance to the goal d and the
current translational speed vt of the robot, as shown in Eq. 10. Maximum and minimum values
for this time interval can also be configured depending on the application.

Tsim =
d

vt
(10)

To compute the boundaries of the dynamic window, the current state of the robot, in terms
of current translational velocity and current steering angle and velocity, is needed. Also the
dynamic parameters of the robot are needed, that is the maximum translational acceleration
and deceleration and the maximum steering velocity, acceleration and deceleration.

Fig. 5 shows some examples of possible velocity profiles for the translational velocity, where
the maximum and minimum velocities are set to vmax = 10m/s and vmin = −10m/s respectively,
and the acceleration and deceleration are both set to accmax = 5m/s2. The blue and red traces
are computed for a time interval of Tsim = 10 s, and the yellow and purple ones are computed
for a time interval of Tsim = 4 s. The initial speed in both cases is set to vi = −5m/s.

If the time required to accelerate to the maximum (minimum) velocity Tacc and to decelerate
to a complete stop Tdec are smaller than the desired time internal, the boundaries of the dynamic

Section 4 Local planner: modified DWA 9

Figure 5: Example of some velocity profiles used to find the boundaries of the dynamic window
for the translational velocity.

window are the maximum and minimum velocity (red, blue and purple traces on Fig. 5). How-
ever, if the given time interval is not enough to accelerate to the maximum (minimum) velocity,
one or both of the boundaries of the dynamic window must be reduced (yellow trace in Fig. 5).

Eqs. 11 and 12 can be used to compute the maximum and minimum velocities respectively.

vdwamax =

{
Tsimaccmax

2 + vi
2 if Tacc + Tdec ≥ Tsim

vmax if Tacc + Tdec < Tsim
, (11)

vdwamin =

{
−Tsimaccmax

2 + vi
2 if Tacc + Tdec ≥ Tsim

vmin if Tacc + Tdec < Tsim
. (12)

For the steering angle window boundaries, a similar procedure is followed. In this case, it is
somewhat more complex to compute the boundaries because we have to deal with both angles
and velocities. Figs. 6a and 6b show both the velocity profiles and steered angles for two different
time intervals (Tsim = 10s and Tsim = 4s respectively) for identical initial conditions, δi = 0.2rad
and δ̇i = 0.1 rad/s. In these examples, the maximum steering speed is δ̇max = 0.5 rad/s (which
is never reached), and the maximum steering angle is δmax = 0.45 rad.

First, the boundaries for the steering speed are computed using the same procedure used for
the translational speed (Eqs. 11 and 12), and a preliminary velocity profile is generated. If the
final steered angles with these preliminary velocity profiles are within the physical limitations
of the robots, these angles are used as boundaries of the dynamic window (See the red velocity
profile of Fig. 6b and its corresponding steering angle in purple).

In the case that the steered angles go beyond the physical limitations, the steering speed is
further reduced and the physical limits of the robot are taken as the boundaries of the dynamic
window (See the red and blue velocity profiles in Fig. 6a and their corresponding steering angles
in purple and yellow respectively). Note that the velocity profiles in figs 6a and 6b are only used

10 Ackermann navigation

(a) Example of a dynamic window equivalent
to the maximum steering range of the robot,
∆δ = 2δmax

(b) Example of a dynamic window considerably
reduced due to the time interval used. All other
parameters are the same.

Figure 6: Two examples of dynamic windows for the steering angles for two different time intervals
with identical initial conditions δi = 0.2 rad and δ̇i = 0.1 rad/s. The velocity profiles are also
shown in blue and purple for the upper and lower boundaries respectively.

for finding the boundaries of the dynamic window, but they do not represent any control action
applied to the steering wheels.

Both the initial steering velocity δ̇i and the initial steering angle δi are taken into account
when computing the dynamic window boundaries, which provides a more accurate estimation of
the dynamic window.

4.2 Trajectory generation

Once the boundaries of the dynamic window have been computed as explained in section 4.1, it
is time to generate a set of trajectory candidates to be evaluated.

The boundaries define a two dimensional subspace with all the feasible values of translational
speed and steering angle. Since it is not computationally feasible to evaluate all the possible
candidate pairs, an uniform sampling is performed in both dimensions, and a reduced set of
candidate pair is generated.

For each pair of steering angle and translational speeds, the resulting trajectory is generated
for the desired time interval using the kinematic and dynamic constraints of the robot. Each
trajectory is then evaluated with a set of cost functions. The usual costs functions used to
evaluate each trajectory are:

• oscillation: This cost function penalizes trajectories that would change the motion direc-
tion in order to avoid oscillations.

• obstacles: This cost function eliminates the trajectories that would collide with an obsta-
cle, either an static one from the map or a dynamic one detected by the sensors.

• path: This cost function evaluates the trajectory in terms of how close it is to the planned
path.

• goal: This cost function evaluates the trajectory in terms of how close the final position
reached by the trajectory is to the global (or local) goal.

Each cost function assign a cost to the trajectory, and the total cost assigned to it is the
weighted sum of all these costs. Some of the cost functions may discard the trajectory without
assigning any cost (trajectories that would collide with an obstacle for example).

Section 5 ROS integration 11

After all the candidate trajectories have been evaluated, the one with the lowest cost value
is selected to be executed on the robot for the current iteration. The whole process is repeated
for each control iteration until the robot reaches its target position or no feasible trajectory can
be found to continue.

4.2.1 Heading cost function

Due to the motion limitations introduced by the kinematic constraints of an ackermann based
robot, it is useful to introduce a new cost function to be evaluated. This cost function compares
the heading of the robot in several points along the candidate trajectory with the heading of the
desired path, and assigns a cost proportional to the angular difference in all evaluated points (the
greater the error, the greater the cost). This cost function is intended to minimize the heading
error of the robot along the path, and therefore minimize the need of re-planning required.

In general the number of points in the global path segment and the number of points in the
candidate trajectory do not coincide, because the former is fixed by the user when generating
the motion primitives (see section 3.1), and the later depends on the chosen resolution. For this
reason, for each evaluation point in the candidate trajectory, it is necessary to find the closest
point in the current global path segment.

Once the two closest points are found, a vector representing the slope of each curve is gen-
erated by using the current and the previous points, vseg for the global path segment and vtraj
for the candidate trajectory. With theses two vectors, the heading difference for a single point
is computed as shown in Eq. 13:

∆θ = atan2

(
vseg × vtraj
vseg · vtraj

)
. (13)

The heading differences at all evaluation points are accumulated and then multiplied by a
scale factor.

5 ROS integration

This section summarizes the work done to integrate the global and local planner introduced in
sections 3 and 4 respectively into the ROS middleware framework used at IRI. First a general
overview of the navigation framework used in ROS is presented in section 5.1, and then section
5.2 deals with the global planner and section 5.3 with the local planner.

The software is publicly available through the SVN server at IRI:

https://devel.iri.upc.edu/pub/labrobotica/ros/iri-ros-pkg_hydro/metapackages/
iri_navigation/iri_ackermann_local_planner

and can be used together with the developed car simulator:

https://devel.iri.upc.edu/pub/labrobotica/ros/iri-ros-pkg_hydro/metapackages/
car_robot

in order to test the navigation framework proposed in this document.

12 Ackermann navigation

5.1 ROS navigation framework

The ROS navigation framework is built around a simple package namedmove_base. This package
implements the basic sequence of events necessary to navigate the robot from an arbitrary initial
position, through a dynamic environment, until it reaches the desired goal position, or the action
is canceled because the target position is unreachable.

Rather than integrating both the local and global planners into this package, which will
require to replicate the basic code for each combination of local and global planners, this package
uses the concept of plug-in, which allows it to use any number of local and global planner that
comply with a simple generic interface, as shown in Fig. 7.

Figure 7: Simplified structure of the move_base package with the global and local planners
plug-in interfaces.

By using plug-ins, the task of testing different planners in similar set-ups is greatly simplified,
and also allows the user to customize them to their particular needs. The necessary interface for
the global planner is listed here (see the BaseGlobalPlanner class in the nav_core package for
more details):

• initialize: This function is called at construction time to initialize all the necessary pa-
rameters of the global planner. It returns either false or true depending on whether the
initialization failed or not respectively.

• makePlan: This function is called each time a new navigation goal is received. Given the
current position and the desired target this function should return a plan. Alternatively,
this function can also return a cost associated to the generated plan. This function returns

Section 5 ROS integration 13

either true if the path have been generated successfully, or false if it was impossible to find
a feasible path.

The necessary interface for the local planner is listed here (see the BaseLocalPlanner class in
the nav_core package for more details):

• computeVelocityCommands: This function is periodically called to get a new velocity
command for the robot. This function returns true if a feasible motion command has been
found and false otherwise.

• initialize: This function is called at construction time to initialize all the necessary pa-
rameters of the local planner. It returns either false or true depending on whether the
initialization failed or not respectively.

• isGoalReached: This function is periodically called to check whether the target position
has been reached (it returns true) or not (it returns false).

• setPlan: This function is called once for each new navigation target or when re-planning
is necessary, immediately after the makePlan function of the global planner returns a valid
plan. This function return true or false depending on whether the new global plan could
be set properly or not, respectively.

The move_base package executes the simple state machine shown in Fig. 8. At the Initial-
ize/idle state, the corresponding initialize functions of the global and local planner are called. If
no initialization error is reported, the move_base package waits for a new navigation request.

Figure 8: Simplified state machine executed by the move_base package.

When a new navigation request is received, a new plan is requested to the global planner
through the makePlan function in the planning state. If a new plan is not returned within a

14 Ackermann navigation

specified amount of time (planner_patience), the planning is aborted, and the state changes to
clearing, where the robot will try to execute any recovery behavior available in order to clear the
internal costmap.

If any the recovery behaviors have been successful in clearing the costmap of old obstacles,
the state returns to planning in order to try to find a path to the desired target. Otherwise, the
state changes to idle and the navigation request is aborted.

On the other hand, if a plan is found in time, the state changes to controlling and the setPlan
function is called to load the global plan into the local planner. In this state, the isGoalReached
and computeVelocityCommands are called at each iteration to detect whether the robot has
arrived to the target position or not, and to compute a new motion command if not.

In the controlling state, if a new valid motion command can not be found, the state changes
to planning to try to find an alternative plan to reach the goal. If the impossibility of finding
a valid motion command persists for a given amount of time (controller_patience) the state
changes to the clearing state to clear the cost map.

Finally, when the goal is reached, the state returns to idle where the navigation action is
successfully ended top notify the user that the goal has been reached. At any point, if a new
navigation request is received, the current action is canceled, and the process starts over with
the new goal.

5.2 Global planner

As introduced before in section 3, the global planner used for the car-like robot is a lattice
planner developed by [3] which has already been integrated into ros (sbpl_lattice_planner ROS
node). Therefore, the only necessary step has been to generate a compatible motion primitives
file which take into account the kinematic constraints of the robot.

The trajectory splitting presented in section 3.2, although being part of the global planner,
it has been implemented inside the local planner for simplicity, as will be presented in the next
section.

As of ROS Groovy, the sbpl_lattice_planner ROS package is no longer maintained by ROS,
and its correct operation in newer versions of the ROS framework depends on a branch of the
original repository created by Johannes Meyer [2].

5.3 Local planner

Integrating the local planner into ROS has been more difficult, because it has been necessary
to develop a new plug-in compatible with the local planner interface of the move_base package.
To develop this new plug-in we used the dwa_local_planner as a starting point, and made the
necessary changes and additions to adapt it to the ackermann configuration.

The dwa_local_planner uses the modular structure shown in Fig. 9, which in turn uses
several standard modules provided by the base_local_planner package.

Given the relatively high computational cost of generating a global plan using the search
based algorithm introduced in section 3, it is not feasible to search for a new global plan the first
time a valid motion command can not be found, as shown in Fig. 8. Therefore, the behavior of
this state machine is slightly modified so that a new global plan is generated only when no valid
motion command has been found for several iterations. The number of iterations the algorithm
will wait can be configured using the controller_patience parameter.

Also, all the parameters of the kinematic and dynamic constraints of and ackermann based
robot can be changed, so that it would be easy to adapt it to several different implementa-
tions. The kinematic parameters are axis_distance, wheel_distance and wheel_radius, and the
dynamic parameters are max_trans_vel, min_trans_vel, max_trans_acc, max_steer_angle,
min_steer_angle, max_steer_vel, min_steer_vel and max_steer_acc.

Section 5 ROS integration 15

Figure 9: Software structure of the dwa_local_planner ROS package with its most relevant
modules.

The main changes to the original dwa_local_planner are described in the next few sections.

Trajectory splitting

When the setPlan function of the local planner interface is called, the original input plan is split
as explained in section 3.2 and stored internally as local goals. The fact that a single global goal
can be split in several local goals make it necessary to change a little bit the behavior of the local
planner interface, as shown in the flow chart in Fig. 10.

Figure 10: Flow chart of the isGoalReached function taking into account the trajectory splitting
and the possibility that the robot get stuck before reaching the goal.

In this case, when the isGoalReached function of the local planner interface is called, it first
checks whether the segment that is being executed is the last one or not. In the case that the
robot is not executing the last segment of the whole global plan, this function will always return
false. On the other hand, the generic function provided by the base_local_planner is used to

16 Ackermann navigation

check whether the robot has reached the final local goal, and therefore the final target position.
If so, true is returned and the whole navigation action will finish successfully.

However, because the accumulation of errors in the execution of each of the segments or
sudden changes in position and orientation forced by a localization system, the local or global
goal may never be reached, because the kinematic constraints of an ackermann based robot make
it impossible to further reduce the position and orientation errors. In this case the robot is stuck
(see Fig. 11 for an example of this situation).

Figure 11: An example of a situation in which the robot would get stuck trying to complete a
trajectory segment due to an initial orientation error.

To solve this problem, a stuck detector has been added. This detector checks the translational
velocity of the robot and the distance to the desired goal. If the translational speed is either
small or it changes in direction continuously, and the distance to the goal is bigger than the goal
reached tolerance but smaller than a predefined value, the robot is considered to be stuck.

In this case, as shown in Fig. 10, the isGoalReached function will either return true if it
is the last segment, or jump to the next trajectory segment, even though the real goal reached
condition is not satisfied, which will allow the navigation framework to continue with its normal
operation.

Motion commands and odometry

For holonomic and quasi-holonomic robots, the motion commands are defined by the velocities
in the relative x and y axis and the turn rate, and the corresponding fields in the Twist message
of the cmd_vel topic are filled. However, as seen in section 2, the motion commands for an
ackermann-based robot must include the translational speed, the steering angle and, optionally,
the steering speed.

The best solution would be to generate a new topic message specific for car-like robots and
publish it instead of the standard Twist message, but this would require to modify the ROS
navigation framework. A simpler solution has been chosen, in which some of the fields of the
Twist message are overloaded to carry the ackermann specific information. Table 2 shows the
overloaded Twist message.

The information returned by the Odometry message does not directly represent the state of
an ackermann based robot. It is possible to use this information to estimate the real state of the
robot, but the performance of the planner may be degraded due to errors in the state estimation.
Therefore, some of its fields are overloaded to carry ackermann specific information. In this case

Section 5 ROS integration 17

Table 2: Overloaded fields of the Twist message for cmd_vel topic of an ackermann based robot.

Twist message

linear
x translational speed
y always 0
z not used

angular
x not used
y not used
z steering angle

however, only message fields normally not used by wheeled mobile robots are overloaded because
the odometry information may be used by other ROS nodes.

Table 3 shows the overloaded Twist fields inside the Odometry message. All other fields of
the Odometry message are not modified.

Table 3: Overloaded fields of the Twist field inside the Odometry message for ackermann based
robot.

Twist inside Odometry message

linear
x unchanged
y unchanged
z translational speed

angular
x steering angle
y steering speed
z unchanged

Trajectory sample generator

This class inherits from the TrajectorySampleGenerator class provided by the base_local_planner
ROS node, and performs the following actions:

• find the best time interval for the current iteration in terms of the distance to the global
or local goal and the maximum translational speed of the robot as explained in section
4.1. The computed time interval is limited by a maximum and minimum values specified
as configuration parameters. See parameters max_sim_time and min_sim_time.

• find the boundaries of the dynamic window at each iteration taking into account the current
state of the robot (translational speed and steering angle and speed) as explained in section
4.1.

• given the number of samples for both the translational speed and steering angle and the
boundaries of the dynamic windows, generate the actual trajectory candidates for each
pair of the control parameters in order to evaluate all of them using the cost functions, as
explained in section 4.2.

Cost functions

A new cost function has been added, that inherits from the TrajectoryCostFunction class pro-
vided by the base_local_planner ROS node, and implements the trajectory evaluation procedure
introduced in section 4.2. The number of points to be evaluated and the final scale factor of this

18 Ackermann navigation

cost function can be changed by the user by the heading_points and hdiff_scale configuration
parameters.

The number of points to evaluate must be chosen carefully because of its relatively high
computational cost, and the fact that it will be called for each trajectory candidate at each
iteration.

Configuration parameters

This section summarizes and provides a brief description of the configuration parameters specific
to an ackermann based robots, but the standard navigation framework parameters are not listed
here.

• max_trans_vel (double, default: 0.3m/s): the maximum allowed forward speed of the
robot in m/s.

• min_trans_vel (double, default: −0.3 m/s): the maximum allowed backward speed of
the robot in m/s.

• max_trans_acc (double, default: 1.0m/s2): both the maximum translational accelera-
tion and deceleration the robot is capable in m/s2.

• max_steer_angle (double, default: 0.45 rad): maximum steer angle in the counter-
clockwise direction in rad.

• min_steer_angle (double, default: −0.45 rad): maximum steer angle in the clockwise
direction in rad.

• max_steer_vel (double, default: 1.0 rad/s): maximum steering speed in rad/s.

• min_steer_vel (double, default: −1.0 rad/s): minimum steering speed in rad/s

• max_steer_acc (double, default: 0.36rad/s2): both maximum steering acceleration and
deceleration in rad/s2.

• axis_distance (double, default: 1.65m): distance in m between the front and back axles
of the robot.

• wheel_distance (double, default: 0.3 m/s): distance in m between both wheels in the
same axle.

• wheel_radius (double, default: 0.4329m): diameter of the wheels in m.

• max_sim_time (double, default: 10s): maximum allowed time interval for the Dynamic
Window Approach algorithm in s.

• min_sim_time (double, default: 1.7s): minimum allowed time interval for the Dynamic
Window Approach algorithm in s.

• planner_patience (int, default: 2): number of iterations the local planner can not find
a valid motion command before trying to find a new global plan.

• hdiff_scale (double, default: 1.0): scale factor used to weight the heading cost function
presented in section 4.2.1.

• heading_points (int, default: 8): number of equally spaced points taken on the candidate
trajectories to evaluate its heading.

Section 6 Conclusions 19

All of these parameters can be set at the beginning by assigning a value in the launch file,
and also they all can be changed at any time by using the the dynamic reconfigure feature of
ROS.

6 Conclusions

The overall navigation framework for ackermann based robots presented in this technical report
has been implemented and tested both in the real robot shown in Fig. 1 and in simulation. The
proposed framework is successful in finding a path to reach a desired goal, both in reduced spaces
and large open spaces.

However, most of the times the resulting global path is sub-optimal in terms of the number of
maneuvers necessary to achieve the goal, specially when the goal position is close to the current
position of the robot. The global planner tends to use short segments (made of a single motion
primitive) instead of longer segments (made of several similar motion primitives) which would
reduce the number of maneuvers required.

It has been shown that the type of motion primitives used and the costs assigned to them
play a crucial role in the quality of the resulting global paths, and also that different tasks may
require different control sets, that is, the best motion primitives to find paths in reduced spaces
may not generate good quality paths for large open spaces, and vice-versa. Therefore, a method
to switch the motion primitives depending on the environment conditions may be necessary in a
general case.

Regarding the local planner, it is capable of effectively follow the global path executing each
of the maneuvers, but its ability to avoid dynamic obstacles is quite limited, and in general the
whole framework ends up finding a new path when an unexpected obstacle is found. This problem
is mainly caused by the kinematic and dynamic limitations of the robot, but the algorithm could
be modified in order to overcome it, for example, by increasing the dynamic window time interval,
and thus allowing the local planner more time to react to changing conditions.

The stuck detector, is quite useful in paths with several consecutive maneuvers in order to
continue the execution of the path even when the accumulated error is bigger than the allowed
tolerance, however it is not perfect, and some times is incapable of properly detecting the stuck
condition, mainly when the localization system makes big pose correction.

The computational complexity of the overall framework (global and local planners) is quite
high, and prevents it from being used in rapidly changing environments such as roads with
moving traffic.

20 Ackermann navigation

A Global planner MATLAB scripts

This Appendix includes the source code of the MATLAB scripts used to generate and handle the
motion primitives for the search based algorithm used the global planner for the car-like robot
at IRI. These scripts are included in the car_rosnav ROS package that can be downloaded from
the SVN server at IRI:

https://devel.iri.upc.edu/pub/labrobotica/ros/iri-ros-pkg_hydro/metapackages/
car_robot/car_rosnav

A.1 Find feasible trajectory parameters

The MATLAB script shown in Listing 1 uses a simple linear optimization method to find the
parameters of a trajectory from the current pose of the robot to the desired one, if any exists.
See section 3.1 for details on the problem formulation, the equality and inequality constraints
used, as well as for the cost function.

Listing 1: MATLAB function to find the trajectory parameters for the current and final robot
poses

func t i on [l 1 R l 2 s t a tu s]= find_traj_params (theta_i , theta_f , delta_x , . . .
delta_y ,Rmin)

A_eq=[[cos (theta_i) s i n (theta_f)− s i n (theta_i) cos (theta_f)] ; . . .
[s i n (theta_i) −(cos (theta_f)−cos (theta_i)) s i n (theta_f)]] ;

b_eq=[delta_x ; delta_y] ;
A_ineq=ze ro s (3 , 3) ;
b_ineq=ze ro s (3 , 1) ;
f=ze ro s (3 , 1) ;
nx=cos (theta_i) ;
ny=s i n (theta_i) ;
norm=sq r t (delta_x^2+delta_y ^2) ;
i f (nx∗delta_x/norm+ny∗delta_y/norm>0)

% po s i t i v e l 1
A_ineq (1 , :)=[−1000 0 0] ;
f (1)=1;

e l s e
% negat ive l 1
A_ineq (1 , :)= [1000 0 0] ;
f (1)=−1;

end
i f (nx∗delta_x/norm+ny∗delta_y/norm>0)

% po s i t i v e l 2
A_ineq (3 , :)= [0 0 −1];
f (3)=1;

e l s e
% negat ive l 2
A_ineq (3 , :)= [0 0 1] ;
f (3)=−1;

end

Section A Global planner MATLAB scripts 21

nx=cos (theta_i+pi / 2) ;
ny=s i n (theta_i+pi / 2) ;
i f (nx∗delta_x/norm+ny∗delta_y/norm>0)

% po s i t i v e R
A_ineq (2 , :)= [0 −1 0] ;
b_ineq(2)=−Rmin ;
f (2)=0;

e l s e
% negat ive R
A_ineq (2 , :)= [0 1 0] ;
b_ineq(2)=−Rmin ;
f (2)=0;

end
[x , f va l , e x i t f l a g] = l i np r og (f , A_ineq , b_ineq ,A_eq , b_eq) ;
i f e x i t f l a g~=1

warning ([’ Imposs ib l e to f i nd a f e a s i b l e s o l u t i o n f o r i n i t i a l heading ’ . . .
, num2str (theta_i) , ’ , f i n a l heading ’ , num2str (theta_f) , . . .
’ and disp lacement (’ , num2str (delta_x) , ’ , ’ , num2str (delta_y) , ’) ’]) ;

l 1 =0;
R=0;
l 2 =0;
s t a tu s =0;

e l s e
l 1=x (1) ;
R=x (2) ;
l 2=x (3) ;
s t a tu s =1;

end

A.2 Generate trajectory points

The MATLAB script shown in Listing 2 generates the actual trajectory points for the corre-
sponding initial and final poses and the trajectory parameters l1, l2 and R. See section 3.1 for
details of its operation.

Listing 2: MATLAB function to generate the trajectory points from the trajectory parameters

func t i on po in t s=generate_tra j (l1 ,R, l2 , x_i , y_i , theta_i , x_f , y_f , . . .
theta_f , numofsamples)

% compute the t o t a l l ength to move
L=abs (l 1)+abs (l 2)+abs (R∗(theta_f−theta_i)) ;
%generate samples
dtheta=theta_i ;
l ength2=0;
po in t s = ze ro s (numofsamples , 3) ;
f o r i = 1 : numofsamples

dL = L∗(i −1)/(numofsamples −1);
i f (dL < abs (l 1))

i f (l1 >0)
po in t s (i , :) = [x_i + dL∗ cos (theta_i) . . .

22 Ackermann navigation

y_i + dL∗ s i n (theta_i) . . .
theta_i] ;

e l s e
po in t s (i , :) = [x_i − dL∗ cos (theta_i) . . .

y_i − dL∗ s i n (theta_i) . . .
theta_i] ;

end
e l s e

i f (dL<(L−abs (l 2)))
i f (theta_i<theta_f)

dtheta = dtheta+(L/(numofsamples−1))/ abs (R) ;
po in t s (i , :) = [x_i + l1 ∗ cos (theta_i) + R∗(s i n (dtheta) − . . .

s i n (theta_i)) y_i + l1 ∗ s i n (theta_i) − R∗(cos (dtheta) − . . .
cos (theta_i)) dtheta] ;

e l s e
dtheta = dtheta−(L/(numofsamples−1))/ abs (R) ;
po in t s (i , :) = [x_i + l1 ∗ cos (theta_i) + R∗(s i n (dtheta) − . . .

s i n (theta_i)) y_i + l1 ∗ s i n (theta_i) − R∗(cos (dtheta) − . . .
cos (theta_i)) dtheta] ;

end
e l s e

i f (l2 >0)
po in t s (i , :) = [x_i + l1 ∗ cos (theta_i) + R∗(s i n (theta_f) − . . .

s i n (theta_i)) + length2 ∗ cos (theta_f) y_i + . . .
l 1 ∗ s i n (theta_i) − R∗(cos (theta_f) − cos (theta_i)) + . . .
l ength2 ∗ s i n (theta_f) theta_f] ;

l ength2=length2+(L/(numofsamples −1)) ;
e l s e

po in t s (i , :) = [x_i + l1 ∗ cos (theta_i) + R∗(s i n (theta_f) − . . .
s i n (theta_i)) + length2 ∗ cos (theta_f) y_i + . . .
l 1 ∗ s i n (theta_i) − R∗(cos (theta_f) − cos (theta_i)) + . . .
l ength2 ∗ s i n (theta_f) theta_f] ;

l ength2=length2−(L/(numofsamples −1)) ;
end

end
end

end

% compute f i n a l pose e r r o r
e r ro rxy = [x_f − po in t s (numofsamples , 1) . . .

y_f − po in t s (numofsamples , 2)] ;
i n t e r p f a c t o r = [0 : 1 / (numofsamples −1) : 1] ;
po in t s (: , 1) = po in t s (: , 1) + er ro rxy (1)∗ i n t e r p f a c t o r ’ ;
po in t s (: , 2) = po in t s (: , 2) + er ro rxy (2)∗ i n t e r p f a c t o r ’ ;

A.3 Generate motion primitives

The MATLAB script shown in Listing 3 calls the find_traj_params (see Listing 1) and gener-
ate_traj (see Listing 2) for all the provided final configurations and all the possible orientations,
and generates an structure with all feasible motion primitives.

Section A Global planner MATLAB scripts 23

Listing 3: MATLAB function to generate all the motion primitives.

f unc t i on p r im i t i v e s=genera te_pr imi t ive s (r e s o l u t i on , num_angles , po ints , . . .
co s t s ,Rmin)

p r im i t i v e s . r e s o l u t i o n=r e s o l u t i o n ;
p r im i t i v e s . num_angles=num_angles ;
p r im i t i v e s . num_prim=s i z e (po ints , 1) ;
p r im i t i v e s . num_samples=32;
p r im i t i v e s . t r a j e c t o r i e s = [] ;

f o r ang l e ind = 1 : num_angles
%i t e r a t e over p r im i t i v e s
f o r primind = 1 : s i z e (po ints , 1)

%cur rent ang le
cu r r en tang l e = (angle ind −1)∗2∗ pi /num_angles ;
p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .

primind) . s tar t_ang le=angle ind−1;% in d i s c r e t i z e d s t a t e s
p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .

primind) . id=primind−1;

t ra j_po in t s (primind ,1)= po in t s (primind , 1)∗ cos (cu r r en tang l e) − . . .
po in t s (primind , 2)∗ s i n (cu r r en tang l e) ;

t ra j_po in t s (primind ,2)= po in t s (primind , 1)∗ s i n (cu r r en tang l e)+ . . .
po in t s (primind , 2)∗ cos (cu r r en tang l e) ;

t ra j_po in t s (primind ,3)= po in t s (primind ,3)+ cur r en tang l e ;

% f i nd the c l o s e s t po int on the r e s o l u t i o n g r id
res_points (primind ,1)= round (t ra j_po in t s (primind , 1) / r e s o l u t i o n) ∗ . . .

r e s o l u t i o n ;
res_points (primind ,2)= round (t ra j_po in t s (primind , 2) / r e s o l u t i o n) ∗ . . .

r e s o l u t i o n ;
res_points (primind ,3)= tra j_po in t s (primind , 3) ;

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . endpose=ze ro s (1 , 3) ;

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . endpose (1:2)= round (res_points (primind , 1 : 2) . / r e s o l u t i o n) ;

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . endpose (3)=round (rem(res_points (primind , 3) ∗ . . .
num_angles /(2∗ pi) , num_angles)) ;

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . co s t=co s t s (primind) ;

i f (po in t s (primind ,3)==0)% s t r a i g h t segments
l 1=po in t s (primind , 1) / 2 ;
l 2=po in t s (primind , 1) / 2 ;
R=0;
s t a tu s =1;

e l s e

24 Ackermann navigation

[l 1 R l 2 s t a tu s]= find_traj_params (cur rentang l e , . . .
r e s_points (primind , 3) , re s_points (primind , 1) , . . .
r e s_points (primind , 2) ,Rmin) ;

end
i f (s t a tu s==1)

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . po in t s=generate_tra j (l1 ,R, l2 , 0 , 0 , cur rentang le , . . .
r e s_points (primind , 1) , re s_points (primind , 2) , . . .
r e s_points (primind , 3) , p r im i t i v e s . num_samples) ;

p l o t (p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . po in t s (: , 2) , p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ . . .
s i z e (po ints ,1)+ primind) . po in t s (: , 1)) ;

hold on ;
e l s e

p r im i t i v e s . t r a j e c t o r i e s ((angle ind −1)∗ s i z e (po ints , 1) + . . .
primind) . po in t s = [] ;

end
end

end

A.4 Save motion primitives

The MATLAB script shown in Listing 4 saves the motion primitives into an output file compatible
with the sbpl_lattice_planner ROS node once the primitives have been successfully generated.

Listing 4: MATLAB function to save the motion primitives into a file.

f unc t i on save_pr imit ives (output_filename , p r im i t i v e s)

f i l e = fopen (output_filename , ’w ’) ;

f p r i n t f (f i l e , ’ resolution_m : %f \n ’ , p r im i t i v e s . r e s o l u t i o n) ;
f p r i n t f (f i l e , ’ numberofangles : %d\n ’ , p r im i t i v e s . num_angles) ;
f p r i n t f (f i l e , ’ t o ta lnumbero fp r im i t i v e s : %d\n ’ , . . .

p r im i t i v e s . num_prim∗ p r im i t i v e s . num_angles) ;

f o r primind = 1 : p r im i t i v e s . num_angles∗ p r im i t i v e s . num_prim
i f (isempty (p r im i t i v e s . t r a j e c t o r i e s (primind) . po in t s)==0)

f p r i n t f (f i l e , ’ primID : %d\n ’ , p r im i t i v e s . t r a j e c t o r i e s (primind) . id) ;
f p r i n t f (f i l e , ’ s ta r tang l e_c : %d\n ’ , . . .

p r im i t i v e s . t r a j e c t o r i e s (primind) . s tar t_ang le) ;
f p r i n t f (f i l e , ’ endpose_c : %d %d %d\n ’ , . . .

p r im i t i v e s . t r a j e c t o r i e s (primind) . endpose (1) , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . endpose (2) , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . endpose (3)) ;

f p r i n t f (f i l e , ’ add i t i ona l a c t i on co s tmu l t : %d\n ’ , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . co s t) ;

f p r i n t f (f i l e , ’ i n t e rmed ia t epos e s : %d\n ’ , . . .
p r im i t i v e s . num_samples) ;

f o r i n t e r i nd = 1 : p r im i t i v e s . num_samples

REFERENCES 25

f p r i n t f (f i l e , ’%.4 f %.4 f %.4 f \n ’ , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . po in t s (i n t e r i nd , 1) , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . po in t s (i n t e r i nd , 2) , . . .
p r im i t i v e s . t r a j e c t o r i e s (primind) . po in t s (i n t e r i nd , 3)) ;

end ;
end

end
f c l o s e (f i l e) ;

References

[1] Dieter Fox, W. Burgard, and Sebastian Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics and Automation, 4(1), 1997.

[2] Johannes Meyer. Branch repository for the sbpl_lattice_planner for ros hydro and newer
versions of ros. https://github.com/meyerj/sbpl_lattice_planner, July 2015.

[3] sbpl. Search-based planning lab. http://www.sbpl.net/, March 2015.

26 REFERENCES

IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.

