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Abstract

An output-feedback control strategy for pollution mitigation in combined sewer networks is pre-
sented. The proposed strategy provides means to apply model-based predictive control to large-scale
sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous
works, the authors presented a hybrid linear control-oriented model for sewer networks together with
the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By itera-
tively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation
(RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE
algorithm has been extended to take into account both flow and water level measurements and the
resulting control loop has been extensively simulated to assess the system performance according
different measurement availability scenarios and rain events. All simulations have been carried out
using a detailed physically-based model of a real case-study network as virtual reality.

1 Introduction

Public sewer networks can be classified into separate sewer networks and combined sewer networks. In
separate sewer networks, both wastewater (domestic, commercial and industrial) and stormwater are
conveyed to treatment facilities through two separate pipe systems, while in combined sewer networks a
single pipe system for both types of water exists. During heavy rain events the volumetric capacity of
combined sewer networks can be overloaded leading to untreated water discharges to surrounding water
bodies known as Combined Sewer Overflows (CSOs). To reduce the frequency and intensity of CSOs,
combined sewer networks are equipped with flow regulation and storage elements that can be operated
by means of different control strategies: from fully automatic control to passive control or even expert
operator man-made decisions.

During the last two decades a number of automatic control strategies for flow regulation in combined
sewer networks to mitigate CSO events and reduce pollution in the surrounding water bodies have ap-
peared in the literature [15, 35, 6, 24, 29, 26, 27, 39, 19]. Among these strategies, Real-Time Control
(RTC) is widely regarded as the best option [37], since it is based on recomputing the control actions
every few minutes by using the last available network measurements and rainfall forecasts. On the other
hand, RTC strategies cannot rely on algorithms requiring extensive computation, since in that case the
up-to-date information from sensors and forecasts would be obsolete by the time the computations were
finished, ruining the main feature of the technique.

The classical physically-based model obtained by applying the principles of mass and energy con-
servation to water transport in open channels is based on a set of partial differential equations (the de
Saint-Venant equations [7]). The numerical solution of these equations can only be obtained by means of
algorithms of high computational burden. Therefore, these algorithms cannot be included in the compu-
tation of control actions in an RTC strategy for most sewer networks [37, 32]. To overcome this problem,
it is a common practice that RTC strategies are based on simplified models of the network dynamics (that
is, the temporal evolution of flows and volumes along the network). Simplified models can be obtained
in a number of ways: manipulation of the physically-based equations (omission of some phenomena, lin-
earization, discretization), conceptual models (mathematical description of the most relevant properties
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of the system) or identification-based models (obtained from data) (see [18] for examples of each type of
model for flow-routing applications).

In a RTC strategy, the simplified model, called the control model, is used to predict the future state
of the system over a finite time window according to different control actions (mostly gate, pump or weir
flows) and rainfall forecasts. These predictions are systematically evaluated to come up with the most
convenient control actions by means of an Optimal Control Problem (OCP). This procedure is repeated
every few minutes taking into account new rainfall forecasts, updating the model initial conditions using
the last available measurements and moving the prediction time window in a so-called Receding Horizon
Control strategy (RHC; also known as Model Predictive Control, MPC) [3, 33].

A drawback of the model-predictive RHC technique for combined sewer networks is the need for full-
state initial conditions to update the model at each computation. Combined sewer networks are usually
large-scale systems for which only a limited number of measurement points are available. Therefore, to
apply the RHC strategy, state estimation techniques must be included in the closed-loop control scheme.
However, since RTC techniques are usually tested against detailed model simulators providing all the
system variables, measurement availability and state estimation techniques are often not considered.

In a previous work [22], a hybrid linear delayed control model for combined sewer networks was
introduced, together with calibration procedures, validation results and sensitivity analysis for a real
case study. Preliminary RHC results were also provided, assessing the performance of a model-based
controller in minimizing CSOs and urban flooding during heavy rain events and proving to provide a
notable improvement with respect to a passive control approach. Since the proposed model is based only
on flows and volumes, the presented controller acts as an upper layer controller, computing set-points for
the local controllers located at the network gates, which adjust the gate positions accordingly. Closed-loop
simulations were performed using a detailed physically-based model simulator of the case study network
as virtual reality. The physically-based model simulator provided not only a realistic way to assess the
closed-loop controller performance but also a means to obtain on-line measurements of the network status.
However, in that first step, closed-loop simulations were carried out under the assumption of full-state
measurement availability of flows at all the network sewers. This is, indeed, an unrealistic assumption,
since due to the large-scale nature of sewer networks, measurements are only available at some particular
points. Moreover, in combined sewer networks, the measurements can take the form of both flow and
water level measurements, with the latter being the most common ones due to precision, maintenance
and economic reasons [5].

The main objective of this work is to extend the RHC approach outlined in [22] to take into account
the available number and type (flow or water level) of measurements and to assess the performance of
the system according to different measurement availability scenarios. To this end, a model-based State
Estimation Problem (SEP) is presented to be used to reconstruct the whole combined sewer system
state out of a few measurements. As in the RHC strategy, the SEP problem is solved at each control
iteration based on the last available measurements and moving the estimation time window in a so-
called Moving Horizon Estimation (MHE) strategy. The state estimate resulting of each SEP is used to
update the initial conditions of a model-based OCP according to the RHC technique. Since the model
in [22] is a hybrid linear model, both the SEP and the OCP result in constrained Mixed Integer Linear
Programming (MILP) problems. The proposed closed-loop RHC/MHE algorithm is then tested using a
commercial physically-based model simulator as virtual reality and considering different configurations
for the measurement availability, including flow measurements and water level measurements. The results
of these simulations are used to assess which is the best measurement configuration by comparing the
results against the full-state measurement case.

The choice of the estimation technique is based on the properties of the process and control models.
As mentioned above, in the process model used for closed-loop simulations water motion is described
by a set of partial differential equations, which prevents the use of nonlinear estimation and error-based
output-feedback techniques, as well as the application of theoretical results (convergence, closed-loop
stability, etc.), for discrete-time systems or differential equation systems [25, 33, 30, 31]. Furthermore,
since the control model is based on a constrained hybrid system, usual estimation techniques such as
the Luenberger observer or the (extended) Kalman filter do not apply. The proposed SEPs consists in a
1-norm variation of the deadbeat observer proposed in [2], which is suitable for hybrid systems. Although
the observability and convergence tests for this type of systems discussed in [1, 14] cannot be applied, since
they rely on the assumption that the process model is also a hybrid linear model, simulation results for
number of different rain events and measurement availability scenarios show the accuracy and suitability
of the proposed approach.
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The remainder of the paper is organized as follows: in Section 2 an outline of the model described in
[22] is provided together with its general mathematical expression, the formulation of the OCP and SEP
and the description of the RHC/MHE algorithm. Section 3 provides a brief description of the case study
sewer network and a discussion of the closed-loop simulation results and computational details of the
RHC/MHE strategy for several real rain events taking into account the following measurement scenarios:
full flow measurements, limited flow measurements, limited water level measurements and mixed flow and
water-level measurements. Finally, in Section 4, conclusions of the whole work are given together with
some future research lines.

2 Combined Sewer Network Modeling, Control and Estimation

2.1 Sewer Network Model

The control and estimation techniques developed in this paper are based on the hydraulic hybrid linear
model for sewer networks presented in [22]. The model describes volumes stored in detention tanks, flows
through sewers, collectors (big sewers with storage capacity, modeled by using a tanks-in-series model
that takes into account inflow delay and storage capacity) and weirs, overflows and flood runoff reentering
the network after an overflow event. The basic flow equations take into account transport delay and flow
attenuation along sewers and mass balance in junctions.Rain inflows to the network appear in the control
model as forecasted disturbances with known values. They are obtained by means of a separate hydrologic
rainfall-runoff model, which computes net inflows to the network from rain intensity data [11].

To keep the model useful for practical real-time applications in large-scale networks, modeling of
backwater effects by means of water level variables and flow-level relations is not included in the model.
Such a modeling approach would turn the OCPs and SEPs intomixed integer nonlinear problems (MINLP)
of very high computational burden in the case of large-scale systems. Therefore, this approach (although
without integer variables) has only been applied to small network instances [36, 9, 13] or to irrigation
channels with simple topologies [40, 34].

Equations for weirs, overflows and flood runoff contain maximum and minimum functions that make
the model nonlinear. These elements have been modeled by using piecewise linear equations, and have
been reformulated by means of the Mixed Logical Dynamic (MLD) systems approach to obtain a set of
linear equations and inequalities involving binary variables [3]. After the MLD reformulation is performed,
the complete sewer network model can be written in the following form:

T
∑

i=0

MiX(t− i) = m(t),

T
∑

i=0

NiX(t− i) ≤ n(t),

(1)

where X(t) contains all the system variables at the discrete-time instant t, including states, inputs, out-
puts and binary variables arising from the MLD reformulation. MatricesMi andNi, i = 1, . . . , T , where T
is the maximum system delay, contain the coefficients of the system equations and MLD inequalities com-
puted using the network topology description and the element parameters [22, 18]. Finally, vectors m(t)
and n(t) contain the influence of both rain inflows and constants introduced in the MLD reformulation.

In [22], in addition to a complete description of the model and parameter calibration procedures,
validation results and sensitivity analysis for the case study described in Section 3.1 are provided.

2.2 Optimal Control Problem Formulation

To formulate the OCP associated to the control oriented model (1), first the model is extended to include
the network equations and MDL inequalities at several time instants ahead in the future as follows:

T
∑

i=0

MiX(t− i+ k) = m(t+ k), k = 1, . . . , H,

T
∑

i=0

NiX(t− i+ k) ≤ n(t+ k), k = 1, . . . , H,

(2)
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where H is called the prediction horizon [3, 33].
At time instant t, it is assumed that all the network variables at the current and T − 1 previous

time instants are known, either through direct measurement or by means of an estimation procedure, as
detailed in the next section. These measured or estimated variables, denoted X̂(t), are collected together
in the vector of initial conditions

X0(t) = (X̂(t)⊤, . . . , X̂(t− T + 1)⊤)⊤. (3)

Forecasts of the rain inflows to the network are also assumed to be available to compute the independent
terms m(t+ k) and n(t+ k), k = 1, . . . , H . Finally, to express the OCP in a compact matrix form, also
the following vector collecting all the system variables at H future time steps is defined:

X (t) = (X(t+H)⊤, . . . , X(t+ 1)⊤)⊤, (4)

and the following block matrices:

M1 =















M0 M1 ... ... MT

. . .
. . .

M0 M1 ... ... MT

M0 ... ... MT−1

. . .
...

M0 M1

M0









































H
blocks , M2 = −

















MT

MT−1 MT

...
...

. . .
M2 M3 ... MT

M1 M2 ... MT−1 MT















































H
blocks , (5)

M3(t) = (m(t+H)⊤, . . . ,m(t+ 1)⊤)⊤, (6)

with analogous expressions for N1, N2 andN3. For the construction of these matrices it has been assumed
that H > T , that is, the prediction horizon is greater than the largest delay in the system. Although
this is not a necessary condition for the formulation of the OCP, it is a common assumption that allows
the OCP to evaluate the performance of the system taking into account all the effects of the network
dynamics.

Now, the OCP can be stated as

OCP (t) : min
X (t)

J(X (t)) = c⊤X (t),

s.t. M1X (t) = M2 X0(t) +M3(t),

N1 X (t) ≤ N2 X0(t) +N3(t),

Aeq X (t) = beq(t),

Aineq X (t) ≤ bineq(t).

(7)

Details on the form of the cost function J(X (t)) used to quantify common management objectives for
sewer network control are given in Section 3.1. Since J(X (t)) is a linear function and some of the variables
involved in vector X (t) are binary, the OCP is an MILP problem.

Additional constraints of the form Aeq X (t) = beq(t) and Aineq X (t) ≤ bineq(t), are added to the OCP
to take into account bounds on variables, bounds on the variation of the gate flows for smooth control
actions and some additional mass balances not included in the basic model equations.

See [20, 18] for additional details.

2.3 State Estimation Problem Formulation

The SEP formulation [23] is analogous to the OCP one, but in this case the system dynamics and
inequality constraints are enforced for the past states rather than for the future ones, as described in
Equation 8.

T
∑

i=0

MiXO(t− i+ k) = m(t+ k),

T
∑

i=0

NiXO(t− i+ k) ≤ n(t+ k),

(8)

k = −HO + T + 1, . . . , 0,
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where HO is the number of past instant measured variables that will be used in the problem formulation.
The vector of unknown variables for the SEP is then defined as

XO(t) = (XO(t)
⊤, . . . , XO(t−HO + 1)⊤)⊤. (9)

Vectors XO(t) are defined in the same way as X(t), but a different notation is used to distinguish the
variables of the SEP and OCP in the closed-loop algorithm.

To express the constraints in matrix form, the following matrices are defined:

MO

1 =

(

M0 M1 ... MT−1 MT

. . .
. . .

. . .
. . .

M0 M1 ... MT−1 MT

)}

HO−T
blocks, (10)

MO

2 (t) = (mO(t)
⊤, . . . ,mO(t−HO + 1)⊤)⊤, (11)

with analogous expressions for NO

1 and NO

2 .
Now, the state estimation problem can be written as

SEP (t) : min
{XO(t), εY , εU}

1⊤
Y
εY + 1⊤

U
εU ,

s.t. MO

1 XO(t) = MO

2 (t),

NO

1 XO(t) ≤ NO

2 (t),

−εY ≤ ΠY XO(t)− Ŷ(t) ≤ εY ,

−εU ≤ ΠU XO(t)− Û(t) ≤ εU ,

AO

eq XO(t) = bOeq(t),

AO

ineq XO(t) ≤ bOineq(t),

(12)

where Û(t) are the measured values of the input variables, Ŷ(t) are the measured values of the output
variables, ΠY and ΠU are matrices that select the input and output variables from vector XO, 1Y and 1U

are vectors of unitary entries of dimensions HO ·ny and HO ·nu, respectively, and εY and εU are auxiliary

variables used to reformulate the minimization of the 1-norms ‖ΠY XO(t)−Ŷ‖1 and ‖ΠU XO(t)−Û‖1 as an
MILP problem [4]. Finally, additional equalities AO

eq X (t) = bOeq(t), and inequalities AO

ineq X (t) ≤ bOineq(t),
are analogous to those commented in Section 2.2 for the OCP case.

For a detailed formulation, see [23, 18]. A discussion on different state-of-the-art approaches to the
formulation of optimization-based SEPs and their suitability for the sewer network regulation problem
can also be found in those references.

2.4 Receding Horizon Control with Moving Horizon Estimation Algorithm

Receding Horizon Control (RHC) is an RTC strategy aimed to take full advantage of model-based control
techniques, real-time measurements and disturbance forecasts. To this end, after solving a finite-horizon
optimal control problem, only the part of the sequence of control actions obtained as a solution corre-
sponding to the first time step is applied to the system. After letting the system respond to this action
for the corresponding time step, measurements are taken. Using these measurements (and, if available,
new disturbance forecasts) a new OCP is formulated and solved to compute the control action for the
next time step and the whole procedure is repeated again. Depending on the available measurements,
the initial conditions for each of the subsequent OCPs can be directly obtained or must be estimated.
In the latter case, before solving each OCP, a SEP is solved to reconstruct the full-state initial condition
necessary to formulate the OCP. The technique consisting in solving a fixed-length finite horizon SEP at
each time step based on the last available measurements is known as Moving Horizon Estimation (MHE)
and is regarded as the state estimation counterpart of the RHC strategy.

In some cases, the time step used in the control model to provide sufficient accuracy might not be
adequate to be used in the RHC strategy as described above. This fact might be due to additional time
required to gather system measurements from a SCADA system and formulate and solve the SEPs and
OCPs or due to limitations in the actuators. In any case, the RHC/MHE strategy can still be applied by
updating and solving the SEPs and OCPs every few time steps instead of at every one. The number of
time steps tc elapsed between updating and solving two consecutive SEPs and OCPs is called the control
interval.
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Algorithm 1 details the whole RHC/MHE procedure in terms of the OCPs and SEPs described in the
previous sections for an event of ts time steps. Variables with a star upper index indicate that they are
the solution of the corresponding optimization problem.

Algorithm 1: RHC-MHE Algorithm

Input : X0(1) =
(

X̂(0)⊤, . . . , X̂(−T + 1)⊤
)⊤

= 0

begin

Set t := 1
while t ≤ ts do

Compute rainfall-runoff prediction RH(t) =
(

r(t + 1)⊤, . . . , r(t +H)⊤
)⊤

Compute M3(t), N3(t), beq(t), bineq(t), MO

2 (t), NO

2 (t), from X0(t), RH(t)

Solve OCP(t) → X ∗(t) =
(

X∗(t+H)⊤, . . . , X∗(t+ 1)⊤
)⊤

Let the system evolve during time interval (t, t+ tc) with gate PID set-points GPID = G∗(t)
Read measurements through the SCADA system: Û(t), Ŷ(t)

Solve SEP(t+ tc) → X ∗
O
(t+ tc) =

(

X∗
O
(t+ tc)

⊤, . . . , X∗
O
(t+ tc −HO + 1)⊤

)⊤

Set X0(t+ tc) :=
(

X∗
O
(t+ tc)

⊤, . . . , X∗
O
(t+ tc − T + 1)⊤

)⊤

Set t := t+ tc
end

end

Regarding closed-loop stability (in the Bounded-Input Bounded-Output sense, [28]), notice first that
due to the constraints added to the actuator flows in the OCPs, the setpoints for local controllers are
always bounded by their maximum operative values, given by their physical properties. Therefore, in-
stability can only be a consequence of overtuning of the local controllers. However, in a sewer network,
the actuators (gates, pumps, weirs) cannot add any flow to the network but only redirect it: the outflow
from an actuator is always limited by its upstream inflow (volume in case of an actuator controlling a
tank). Therefore, even if the local controllers are not suitably tuned, it is not possible that the closed-loop
system unstabilizes since the actual flow will be limited by the inflow to the actuator (which is finite,
since the total rain inflow is finite). A poorly calibrated model of the system or overtuned local PID
controllers can only lead to poor performance results and increased flooding events but never to unstable
behavior.

3 Receding Horizon Control with Moving Horizon Estimation

Results

3.1 Case Study and Simulation Algorithm

To test the proposed RHC/MHE strategy, an implementation of a real network in the physically-based
model sewer network simulator MOUSE [12] has been used as virtual reality. In addition to simulating
the flows along the whole network by means of the complete de Saint-Venant model, MOUSE is also able
to simulate local PID controllers at network actuators. The studied network, called the Riera Blanca
sewer network, is located in the city of Barcelona. The company responsible for the network management,
CLABSA (Clavegueram de Barcelona, S.A.), has provided the MOUSE implementation of the network
used in this study including detailed geometry, materials and hydrological parameters (rainfall catchment
area and slope, surface storage and infiltration capacity, and perviousness, among others), which were
calibrated by using real measurement data. The company has also provided the data corresponding to
the four real rain events used for calibration and simulation which are moderate to strong events (with a
return period of about two years), which require proper management of the network to avoid flooding.

Using data generated by the physically-based simulator, the model described in [22] was implemented,
calibrated and validated for the case-study sewer network. After a mild topological simplification con-
sisting in only considering junctions with more than just a single inflow (also taking into account rain
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Figure 1: Riera Blanca sewer network after topological simplification and detail of its downstream part
(adapted from [22]).

inflows) and a single outflow, the network consists of

nv = 2 tanks,
nq = 145 sewers,
nw = 3 weirs,
nf = 11 overflows,
ng = 10 gates,
nc = 1 collector,
nr = 68 rain inflows,
ny = 20 measurement points.

Figure 1 shows the network diagram after simplification. It can be noticed that the network converges at
its downstream end to a collector (q139) with a controlled gate at its downstream end (g7). Collector q139
has a total volume of about 6.4×104 m3, which can be used for in-line retention and is modeled using a
tank equation with inflow delay, as detailed in [21]. All the flow released through gate g7 is either routed
to the WWTP or discharged to the Mediterranean sea as CSO. Since the WWTP has an inflow rate of
just 2m3/s, the proper management of the storage capacity of collector q139 is of capital importance to
minimize CSO discharges and maximize WWTP usage. Further details on the case study network can
be found in [18, 22].

The management objectives for the Riera Blanca sewer network are:

1. Minimize overflows

2. Minimize CSO discharges
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3. Maximize WWTP usage

These objectives are quantified in the following multi-objective cost function for the OCPs:

J(X (t)) = γCOF JCOF (X (t)) + γOF JOF (X (t)) + γCSO JCSO(X (t)) − γWWTP JWWTP (X (t)), (13)

where JCOF (X (t)) is the overflow of collector q139, JOF (X (t)) contains the sum of the rest of the overflow
variables at junctions, JCSO(X (t)) contains the sum of flow variables corresponding to the sewers con-
necting the network to the sea and JWWTP (X (t)) contains the sum of flow variables corresponding to the
sewers connecting the network to the WWTP. The values of the weights have been chosen as follows:

γCOF = 10,
γOF = 1,
γCSO = 1,

γWWTP = 10−1.

A discussion on the choice of these values is provided in [22], together with some indications to determine
them in an arbitrary network. As a result of the minimization of this objective function, flows through
actuators are computed by the solver so that the undesired flows (overflow and CSO) are minimized and
the desired ones (WWTP) maximized. This is achieved by using the gates to route part of the flow to
the two detention tanks at the upper part of the network (see Figure 1) and by using gate g7 to activate
the storage capacity of sewer q139 to retain the incoming volume while providing an outflow that can be
handled by the WWTP whenever possible.

In the Riera Blanca sewer network, to provide a suitable approximation of the flow delay in the
sewers, a sampling time of ∆t = 1minute was chosen. Taking into account that gates can only be moved
at limited speeds, this time step is not sufficient for the local controllers to achieve the gate flow set-points
G∗(t) obtained as the solution of the OCPs. Therefore, a control interval of tc = 5 time steps (i.e., five
minutes) was chosen and the set-points produced by the OCP are assumed to be constant for five minutes
periods. To take this into account in the control model, a constraint forcing gate flows to remain constant
along five time steps was added to the OCPs.

Rainfall-Runoff
model

Pluviometer Data

Physically-based
model

(Mouse)

Ĥ, Û

Flow-Level
Relation

Ŷ, Û
SEP

OCP

Receding Horizon

Controller

Control
Objectives

X0 GPID = G∗(t)

Figure 2: Closed-loop simulation algorithm diagram with water level measurements, denoted by Ĥ
(adapted from [22]).

By performing simulations with MOUSE, the SCADA measurements mentioned in Algorithm 1 can
be substituted by the results of the simulations. Since these results provide complete information of all
the flows and water levels in the network, by selecting the variables to be used when solving the SEPs,
different measurement availability scenarios can be tested.

According to Algorithm 1, at time instant t an SEP with an estimation horizon of HO = 15 time steps
is solved. The solution values corresponding to the last T = 6 time steps are used as initial conditions to
formulate and solve an OCP with a prediction horizon H = 40 time steps. The (constant) values of the
gate flows for the first five minutes are used as set-points for PID controllers implemented in MOUSE
to run a simulation of the system evolution during five minutes. The result of this simulation is then

8



used to obtain the system measurements to formulate and solve the SEP at time instant t + 5 and the
procedure is repeated again. Figure 2 shows a diagram of this procedure. Notice that, since the model,
and therefore the OCPs, are based only on both flow and volume variables, water level measurements
must be transformed into flow ones by means of some flow-level relation before solving the SEPs, as
described in Section 3.4.

3.2 Simulation Algorithm Implementation

According to the RHC/MHE strategy described above, for the simulation of a closed-loop control event
a series of SEPs, OCPs and physically-based model simulations (substituting the real evolution of the
system) must be solved and executed.

From an implementation point of view, closed-loop simulations require a bidirectional communication
between the physically-based simulator and the optimization module. The overall closed-loop simulation
algorithm is written as a MATLAB script, which calls the numerical solver for the SEPs and OCPs and
calls the simulator executable through command line orders.

The results of the OCPs and SEPs are directly obtained as MATLAB vectors and no post-processing
is required. The elements of the OCP solution vector corresponding to the gate flow set-points are written
in the simulator configuration files by the MATLAB script before running the simulations. The result of
these simulations are binary files that must be extracted into text files, again using command line orders
called by the MATLAB script. Finally, the text files are read by the MATLAB script and transformed
into the “measurement data” vectors needed to formulate the next SEP and OCP.

3.3 State-Feedback RHC Results

The first test to assess the performance of the proposed RHC strategy is carried out assuming a rather
improbable situation in which measurements of the network flows are available at all the network sewers,
gates and weirs. In this case, in Algorithm 1, no SEP needs to be solved, since, using the measured
flows, the rest of the model variables can be computed through the model equations. Although assuming
full-flow measurement is unrealistic, the results of this test will be useful as a reference to assess the
performance of the RHC strategy when used together with the MHE technique. From now on, this
measurement scenario will be referred to as Full-State Measurement (FSM).

Table 1: RHC with FSM results and variations with respect to passive control.

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (-96.26%) 9.21 (-91.04%) 107.20 (75.57%)
09-10-2002 1.01 (-96.09%) 341.74 (-31.56%) 101.27 (20.38%)
15-08-2006 0.25 (-96.40%) 4.87 (-94.60%) 100.71 (117.20%)
30-07-2011 0.75 (-95.95%) 39.38 (-72.85%) 108.14 (125.48%)

Table 1 shows the results obtained from those simulations and the variations in the objectives com-
pared with the results obtained by simulating the rain events with gates set at fixed positions (passive
control). The actual network regulation is performed by expert operators and no data related to the real
management of the network for the considered rain scenarios is available for comparison. Results show
that an appropriate management of the detention tanks at the upper part of the network can mitigate
overflows almost completely by reducing the peak flows in the network sewers (most overflow volume
reported in Table 1 corresponds to overflow points upstream of any control action). The volume stored
into the tanks can be released later at adequate flow rates to maximize the use of the WWTP capacity.
On the other hand, the proper use of the detention tanks and the in-line storage capacity of sewer q139
yields a considerable reduction of the CSO volumes.

3.4 Output-Feedback RHC/MHE Results

Due to the large-scale nature of sewer networks, the most common situation is that measurements of
the network variables are only available at certain points. Moreover, instrumentation for water level
measurements is cheaper, more reliable and requires less maintenance than that aimed to measure flow
rates (for details on instrumentation for level and flowmeasurements in sewer networks see [5, 38]). To take
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into account these facts, the model-based RHC/MHE strategy proposed in this paper has been applied to
the case study network taking into account the available instrumentation. In fact, only level measurements
through limnimeters are available in the Riera Blanca network. The measurement points are depicted
with stars in Figure 1. Since the local PID controllers at the gates implemented in the physically-based
model simulator use flow measurements to regulate the gate position, it has been assumed in the following
that flow measurements are always available at the gate outputs. Notice that flow-level relations near
gates (in general, near hydraulic structures) are well known and described in a number of classic open
channel flow references [7, 16]. These relations allow to obtain accurate flow approximations from level
measurements. In fact, the physically-based model used in this work as virtual reality makes use of these
formulas to impose internal conditions among sewers connected by gates [10]. Therefore, instead of re-
implementing the formulas described in the software documentation, flow values are directly used. If, by
means of a measurement, the level at a gate outflow is found to be below the gate leaf, the gate relations
mentioned above should be replaced by other approximated flow-level relation such as the polynomials
used in other points of the network.

In the following, the performance of the model according to four configurations regarding the available
measurements are compared and discussed:

• Flow measurements at the limnimeter locations (from now on, this scenario will be referred to as
MHEF)

• Water level measurements at the limnimeter locations (from now on, this scenario will be referred
to as MHEL)

• Water level measurements at the limnimeter locations plus flow measurement at the collector inflow
(from now on, this scenario will be referred to as MHEC)

• Water level measurements at the limnimeter locations plus flow measurement at the collector inflow
and at the collector’s upstream sewer inflow (from now on, this scenario will be referred to as
MHEC2)

3.4.1 Flow-Level Relation

Notice that, since the model does not contain water levels but flows, in the last three scenarios, water level
measurements must be converted to flow values. To compute flow values from water level measurements,
third-degree polynomial approximations for the flow-level relation have been used, i.e.,

q̂(t) = p0 ĥ(t)
3 + p1 ĥ(t)

2 + p2 ĥ(t) + p3, (14)

where ĥ(t) is the measured water level and q̂(t) the flow approximation (the symbol ˆ is used in the
following to denote values obtained from measurements/simulations, as opposite to those generated by
the control model). Calibration of the polynomial coefficients pi, i = 0, 1, 2, 3, has been performed by
means of least squares fitting using data from four rain events. The resulting coefficients for each rain
event have been averaged to obtain the final set of coefficients. The choice of the polynomial degree is
based on trial and error tests, which showed that no improvement in the fitting is obtained using higher
degrees.

Once the flow variables have been recovered by using the flow-level approximations, the SEP and
OCP are solved as in the flow measurements case, as shown in Figure 2.

Polynomial approximations for flow-level relations are accurate when they are applied to sewers that
are not affected by backwater effects. However, for collector q139, the presence of the downstream gate
causes the flow-level relation to become not even one to one. This effect is even increased if the gate
position changes: the loop shape present in the flow-level relation for calibration data with a fixed
downstream gate becomes a much more complex curve in the case of a moving gate leading to poor
polynomial approximations, as shown in Figure 3.

3.4.2 SEP Results

To assess the performance of the state estimation strategy in approximating the initial conditions for
the OCPs, two error indices have been defined. First, for each sewer i = 1, . . . , nq, and each SEP solved
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Figure 3: Polynomial approximation of the flow-level relations for a free-flow upstream sewer (q92) and
a backwater-affected downstream one (q139) corresponding to the rain event 09-10-2002 with fixed gate
positions (blue) and for the MHEL closed-loop simulation scenario (green). The polynomial coefficients
correspond to a single event fitting.
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Figure 4: Polynomial flow-level estimation for a free-flow upstream sewer (q92) and a backwater-affected
downstream one (q139) for the MHEL closed-loop simulation scenario and rain scenario 09-10-2002.
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k = 1, . . . , ts/5, the maximum error in the last T estimates (that is, the values used in the OCP updating)
is computed as

eO

i (k) = max
τ=5k−T+1,...,5 k

|q̂i(τ)− qO

i (τ)|

[

m3

s

]

. (15)

And secondly, the previously defined maximum error is averaged over all the solved SEPs, i.e.,

ēO

i =
5

ts

ts/5
∑

k=1

eO

i (k)

[

m3

s

]

. (16)

These error indices provide a measure for the state estimation accuracy for each network sewer. Finally,
to obtain a description of the overall performance of the state estimation for the whole network, define

EO =
(

ēO

1 , ē
O

2 , . . . , ē
O

nq−1, ē
O

nq

)

. (17)

Table 2 provides the mean, maximum and variance values of vector EO. The maximum error values
always occur for the estimation of the flow at the collector q139 and its immediate upstream sewer q138.
These errors are mainly caused by the presence of backwater effects and by the fact that those sewers
show the highest flow values and variation rates as a consequence of being at the downstream end of
the network, where all flows converge. In Figure 5, plots of the flows obtained as the solution of several
consecutive SEPs (including the one with the highest maximum error) and the corresponding flow values
to be estimated are shown for collector q139 (for the MHEL scenario the flow obtained from the polynomial
flow-level transformation is also shown).

It can be noticed from Table 2 and Figure 5 that when flow measurements are used (MHEF scenario),
the flow estimates provided by the SEP, thanks to the hydraulic model, are quite close to the values
provided by the physically-based model simulator. On the other hand, for the water level measurements
scenario MHEL, the collector inflow is considerably overestimated. This is because the solution of the
SEPs aims to produce flows close to the ones obtained from the flow-level relation, rather than the actual
flows, which, as discussed in Section 3.4.1, are not accurate in case of backwater effects. By adding a
flow measurement at the collector inflow (MHEC scenario), estimates of the collector flow are partially
corrected, but still suffer from the influence of the flow-level approximation at the sewer upstream of
the collector, which is also affected by backwater. Finally, measuring flows at both the collector and its
upstream sewer, the obtained results become closer to those obtained with the MHEF scenario, since
flow-level transformations in upstream sewers produce suitable approximations. Taking into account that
flows at the collector reach values of 30 to 50 m3/s, the average maximum error between 2 and 4 m3/s
of the MHEF, MHEC and MHEC2 scenarios (Figure 5) means that the approximations are sufficiently
accurate to be used in a RHC scheme. For the MHEL case, however, the high errors in the collector
inflow estimation lead to a considerable performance loss, as discussed in the next section.

3.4.3 Closed-Loop RHC/MHE Results

Table 3 collects the performance results for the four RHC/MHE scenarios and the RHC with full-state
measurement (FSM) ones according to the three management objectives defined in Section 3.1. It can
be noticed that a minimal variation of the overflow and WWTP objectives is obtained with the different
measurement approaches. Overflows occur in the upper to middle part of the network and are avoided by
redirecting part of the flow to the detention tanks. The presence of measurements at the sewers upstream
of the gates redirecting flow to the tanks and the accurate approximations by means of the flow-level
relation at those locations guarantee a proper management of the tanks and an optimal mitigation of
overflows. Regarding the WWTP objective, results are quite similar in all measurement scenarios since
in all cases the plant receives its maximum inflow all the time since soon after the beginning of the rain
event.

The most noticeable variations that can be observed in Table 3 are regarding the CSO values. The
fulfillment of this objective is closely related to the proper use of the in-line retention capacity of the
collector, which is in turn related to the accuracy of the flow approximations at its inflow and at its
upstream sewer inflow. The performance results for the CSO objective are, therefore, correlated with the
accuracy of the SEPs in estimating the collector inflow. Accordingly, it can be noticed from Table 3 that
the CSO volume corresponding to the MHEF scenario is very close to that obtained in the FSM one. On
the other hand the MHEL scenario provides the highest CSO volumes, since the overestimation of the
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Figure 5: SEP solutions of several consecutive problems for collector q139 corresponding to the different
measurement scenarios (rain event 09-10-2002). The first plot of each measurement scenario corresponds
to the maximum absolute error ēO

139 obtained among all the solved SEPs.
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Table 2: Mean, maximum and variance of the averaged maximum error EO.

Episode
Measurement

Scenario

Mean(EO)

[m3/s]

Max(EO)

[m3/s]

Var(EO)

[m3/s]

17-09-2002

MHEF 0.12 1.50 0.03

MHEL 0.26 10.91 1.09

MHEC 0.18 2.98 0.15

MHEC2 0.12 1.50 0.03

09-10-2002

MHEF 0.13 1.57 0.04

MHEL 0.34 12.93 1.48

MHEC 0.24 3.65 0.21

MHEC2 0.18 2.15 0.07

15-08-2006

MHEF 0.09 1.18 0.02

MHEL 0.19 7.34 0.49

MHEC 0.13 1.66 0.06

MHEC2 0.09 1.16 0.02

30-07-2011

MHEF 0.11 1.87 0.04

MHEL 0.29 12.34 1.39

MHEC 0.20 3.27 0.19

MHEC2 0.12 1.73 0.04

Table 3: RHE/MHE results and comparison with state feedback (FSM, Table 1).

Episode
Measurement

Scenario

Overflow

[× 103m3]

CSO

[× 103m3]

WWTP

[× 103m3]

17-09-2002

FSM 0.16 9.21 107.20

MHEF 0.16 (0.00%) 4.06 (-55.86%) 107.43 (0.21%)

MHEL 0.16 (0.00%) 32.61 (254.16%) 106.06 (-1.07%)

MHEC 0.16 (0.00%) 17.06 (85.30%) 106.02 (-1.11%)

MHEC2 0.16 (0.00%) 3.78 (-58.95%) 106.46 (-0.69%)

09-10-2002

FSM 1.01 341.74 101.27

MHEF 1.08 (7.52%) 340.90 (-0.24%) 101.56 (0.28%)

MHEL 1.01 (0.48%) 364.10 (6.55%) 100.81 (-0.45%)

MHEC 1.03 (2.26%) 354.83 (3.83%) 100.90 (-0.37%)

MHEC2 1.01 (0.02%) 333.63 (-2.37%) 101.12 (-0.15%)

15-08-2006

FSM 0.25 4.87 100.71

MHEF 0.25 (0.00%) 5.26 (8.21%) 100.61 (-0.10%)

MHEL 0.25 (0.00%) 11.04 (127.01%) 99.57 (-1.13%)

MHEC 0.25 (0.00%) 6.16 (26.71%) 99.58 (-1.12%)

MHEC2 0.25 (0.00%) 5.74 (17.93%) 99.91 (-0.79%)

30-07-2011

FSM 0.75 39.38 108.14

MHEF 0.75 (0.00%) 41.55 (5.51%) 108.18 (0.04%)

MHEL 0.75 (0.00%) 67.49 (71.38%) 107.27 (-0.80%)

MHEC 0.75 (0.00%) 56.36 (43.11%) 107.14 (-0.93%)

MHEC2 0.75 (0.00%) 40.13 (1.90%) 107.56 (-0.54%)

collector inflow leads also to an overestimation of the collector volume, causing its in-line storage capacity
not to be fully used. By adding a single flow measurement at the collector inflow (MHEC scenario),
the CSO volume is slightly reduced with respect to the MHEL case, but the influence of the flow-level
approximations at the collector upstream sewer q138 still has a negative effect. Finally, by adding a
second flow measurement at sewer q138, the MHEC2 scenario provides results similar to those with flow
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measurements in the MHEF and the FSM scenarios. Therefore, it can be concluded that by installing
of two flow-meters at the collector inflow and upstream sewer, the CSO volume could be considerably
reduced.

3.5 Computational Details

All optimization problems were solved using CPLEX v12.5 [8] MILP solver with standard settings, avail-
able thanks to IBM Academic Initiative [17], on a desktop with an Intel Core 2 Duo CPU with 3.33 GHz
and 8 GB RAM and on a laptop with an Intel Core i7 CPU with 2.2 GHz and 8 GB RAM.

Tables 4 and 5 show respectively the size and computational times needed to solve the OCP and
SEP for the different measurement scenarios and rain events. It is a very important feature of the whole
modeling and control approach that these problems can be solved within short times so that the whole
real-time RHC strategy can be implemented. It can be noticed that almost all the maximum times needed
to solve the OCPs are below 10 seconds, with a single maximum instance of 22 seconds, which are suitable
times for a real-time controller taking into account that the control interval is of five minutes.

Table 4: Details on the number of variables and constraints of the OCPs and SEPs.
OCP SEP

Continuous variables 8520 3645

Discrete variables 1040 390

Equality constraints 7440 1783

Inequality constraints 7240 2510

Table 5: OCP and SEP computational details for the different measurement scenarios and rain events.

Episode
Measurement

Scenario

OCP SEP

Mean Max Mean Max Max Time Limit

Time [s] Time [s] Time [s] Time [s] RMIPG Violations

17-09-2002

FSM 0.59 1.61 - - - -

MHEF 0.42 1.25 3.36 60.12 0.68 % 2

MHEL 0.43 1.39 3.76 60.05 0.47 % 3

MHEC 0.42 0.92 3.48 60.03 0.31 % 1

MHEC2 0.43 0.94 3.27 60.17 0.38 % 2

09-10-2002

FSM 0.65 1.70 - - - -

MHEF 0.62 3.23 4.44 60.03 0.75 % 3

MHEL 0.60 5.41 6.92 60.05 0.92 % 6

MHEC 0.67 21.98 5.13 60.03 0.76 % 4

MHEC2 0.61 5.41 5.01 60.05 0.32 % 3

15-08-2006

FSM 0.59 2.20 - - - -

MHEF 0.49 3.33 2.81 36.47 0.01 % 0

MHEL 0.44 3.20 2.71 42.72 0.01 % 0

MHEC 0.42 2.58 3.07 60.05 0.08 % 1

MHEC2 0.41 1.69 2.92 60.03 0.02 % 1

30-07-2011

FSM 0.58 1.67 - - - -

MHEF 0.45 2.20 3.03 51.25 0.01 % 0

MHEL 0.44 2.14 3.46 60.03 0.09 % 2

MHEC 0.44 1.61 2.81 60.03 0.12 % 1

MHEC2 0.47 1.84 2.57 60.02 0.02 % 1

On the other hand, the SEPs have been proven harder to solve. Even though they have less than half
the number of variables than the OCPs (c.f. Table 4), longer computational times are needed to reach the

15



optimal solution due to stronger conflict among the individual objectives in the cost function (a proper
fitting at a particular measurement point can cause a poorer one at another point), which requires a higher
number of iterations before optimality can be guaranteed. To ensure the computational times within each
RHC/MHE iteration to be suitable for a RTC application, a time limit of 1 minute has been set for all
the SEPs, provided a feasible suboptimal solution is available. Therefore, when the maximum SEP time
shown in Table 5 is above 60 seconds, it means that the optimization has been stopped due to violation
of the time limit constraint and that the best feasible solution found so far has been used to continue
with the RHC/MHE iterations. The last two columns in Table 5 show the maximum percentage of
suboptimality of the best feasible solution found in the SEPs for which the optimization has prematurely
stopped due to the time limit constraint and the number of times this situation has occurred out of 193
SEP instances solved for each rain event.

According to the CPLEX documentation [8], the suboptimality index, called the Relative MIP Gap
(RMIPG), provides an upper bound on the relative difference between the best feasible solution found
by the solver by the time the optimization is terminated and the optimal solution. It is computed taking
into account the solutions of intermediate subproblems solved during the branching algorithm used to
solve, in turn, the corresponding MILP problems.

The number of violations of the time constraint and their corresponding values of the RMIPG (as
a percentage) in Table 5 show that the situation is not common, and even in those cases the obtained
suboptimal solution is sufficiently close to the optimal one to be used without problems in the RHC/MHE
iterations. Notice that when the time constraint is not violated, the RMIPG value is always 0.01%, since
this is the default value below which the solver considers that the best integer solution is already the
optimal one and the algorithm terminates.

4 Conclusions and Future Work

Receding Horizon Control is widely regarded as one of the best options for the regulation of combined
sewer networks since it can take advantage of model-based predictions of the network state using instan-
taneous measurements and rainfall forecasts. However, in real applications on large-scale sewer networks
only a limited number of measurements are usually available, difficulting the implementation of Receding
Horizon Controllers, which require full-state knowledge to formulate Optimal Control Problems. In this
paper, the problem of estimating the state vector of a sewer network from a few measurements to perform
model-based Optimal Control in a Receding Horizon Control strategy has been addressed.

The proposed model-based State Estimation Problems, iteratively solved in a Moving Horizon Es-
timation strategy, have proven to produce accurate estimates of the network flows, provided accurate
flow measurements or approximations are available. Unfortunately, it has also been shown that flow-level
relations in sewers affected by backwater effects result in poor flow approximations that, in turn, have
a negative effect over both the accuracy of the state estimates and the overall RHC/MHE performance.
This problem may be overcome by adding a limited number of flow sensors to improve the state estima-
tion at these specific locations. In the context of this paper, by adding two flow sensors in the case study,
the performance of the proposed control methodology and simulation algorithm have been shown to be
comparable to what could be expected if full knowledge of the states was available.

To further develop the proposed RHC/MHE strategy, improved approximations of the flow-level rela-
tions in presence of backwater are being developed to take advantage of additional water level measure-
ments along the same collector as well as measurements of the downstream gate position.
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