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Abstract— This work solves a model-free resource allocation
problem with two objectives. These objectives represent both
cooperation and competition directions. It is proposed a solution
that combines a centralized cooperative game approach using
the Shapley value to determine a proper partitioning of the
system, and a decentralized non-cooperative game approach
using the Nash equilibrium to achieve the control objective
by means of both partial and local information. Furthermore,
invariant set and stability analysis are discussed for the non-
cooperative game approach. Another contribution regarding the
cooperative game approach relies on a novel and alternative
way to compute the Shapley value for the chosen characteristic
function. This alternative computational way is proposed in or-
der to mitigate the commonly high computational burden issue,
which is associated to the combinatorial explosion associated to
the cooperative game approach.

Index Terms— Population dynamics, Nash equilibrium, coop-
erative games, Shapley value, resource allocation, partitioning
approach.

I. INTRODUCTION

Game theory has become a powerful tool in the design of
learning and optimization-based systems. Both cooperative
and non-cooperative game approaches have been widely
used in the design of controllers depending on the control
objective. In some cases, it is more suitable to work with a
cooperative perspective when agents can collaborate among
them, whereas there are other situations in which it is more
appropriate to set the problem as a competition. However,
there are control problems that integrate cooperation and
competition in two different stages. The ideal centralized
control scheme in which a single entity governs a system
using full information, disposing enough time to gather all
the measurements, and to compute and transmit all the
control actions, is not quite common.
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This work focuses on one of the recent trends in the devel-
opment of non-centralized control techniques. In particular,
during the last years different control strategies have been
proposed to create control systems able to adapt dynamically
to the evolution of the system and its structure. For example,
in [12] plug and play network model predictive controllers
are studied. In [3], a method to design simultaneously
the communication topology and feedback control laws is
proposed. Likewise in [6], a control method that switches
between different linear feedback controllers to attain a
trade-off between communication burden and performance
is proposed. The rationale of this work is somehow similar
since the control architecture changes its topology in order
to reduce the communication burden. However, unlike the
aforementioned works, the control strategy proposed in this
paper uses both a cooperative and a non-cooperative game-
theory approach. Furthermore, the proposed approach is
a model-free control inspired by the resource allocation
problem.

Another contribution of this paper is to deepen into
the relationship between game theory and control. Being
the mathematical field that deals with situations of mutual
interaction [8], game theory has a natural application specif-
ically in the context of non-centralized controllers. Broadly
speaking, game theory has two main branches depending on
whether the players of the game are capable to cooperate
each other or not. In particular, non-cooperative game theory
deals with problems where players make decisions in order
to maximize their utilities. One solution of a non-cooperative
game is given by the Nash equilibrium, condition in which
no player can improve their utilities without the detriment of
other players utilities. In contrast, cooperative game theory
studies the conditions and payoff rules for groups of players
that form coalitions. One possible solution of a cooperative
game is given by the Shapley value, which assigns a fair
payoff to each player according to what it contributes to the
game. There are many control solutions that use both game
theory approaches. For instance in [5], an application of non-
cooperative game theory can be found where a distributed
control strategy based on the convergence to a Nash equi-
librium is proposed [9]. Furthermore, convergence to Nash
equilibrium by using evolutionary game theory has been used
in the design of control and optimization strategies [10], [1],
[15]. On the other hand, cooperative game theory has been
used for example in [6]. In this and other related works
such as [7], the links that compose the network topology are
transformed into the players of a game and the payoff given



by the Shapley value [14] is used as a mean to determine
their relevance. Other works that mainly use the Shapley
value are [4], [2].

In this work, a combination of these two game-theoretical
approaches is used to propose a decentralized control strat-
egy. More specifically, a network system is divided into
different partitions. These partitions are determined by a
criterion based on a cooperative game, i.e., by using the
Shapley value. Furthermore, a population-dynamics approach
is implemented at each partition. Then, a model-free resource
allocation problem is solved at each sub-system by converg-
ing to a Nash equilibrium. Moreover, this work proposes a
different way to compute the Shapley value for the selected
characteristic function in the cooperative game in order to
reduce the computational burden, which is one of the main
issues when using the game-theoretical approach. Finally, in
order to show the performance of the proposed methodology
based on cooperative and non-cooperative games, a resource
allocation problem in a water system treated in [11] is
presented.

The remainder of this paper is organized as follows.
Section II presents the population dynamics approach used
to find the solution given by the Nash equilibrium. Section
III shows the role of the cooperative-game approach in the
control problem by finding the solution given by the Shapley
value. This section also presents the partitioning criterion
based on the Shapley value. Section IV describes the case
study and the control objectives. Afterwards, concluding
remarks are presented in Section VI.

Notation: Column vectors are denoted by bold style, e.g.,
x. Scalar numbers are denoted by non-bold style, e.g., N .
Sets are denoted by calligraphic upper case, e.g., T . Sub-
index refers to the topologies in the system, and super-index
refers to partitions, e.g., Sji refers to a set of a partition j of
a topology i. It is worth to point out that super-index is not
operational, i.e, N3

i refers to partition 3, and N3
i 6= NiNiNi.

Real numbers are denoted by R, and all the non-negative real
numbers by R+. Finally 1N is a column tile with N unitary
entries, and the cardinality of set is defined by | · |, e.g., |O|
is the number of elements of the set O.

II. POPULATION DYNAMICS APPROACH

Consider a population composed by a finite and large
number of rational agents. In the population evolution, agents
make the decision to select among N possible strategies from
the set S = {1, ..., N}, in order to improve their payoff. The
population has T possible different topologies that determine
how the population is distributed over a certain graph. The set
of the population topologies is denoted by T = {1, ..., T}.
Each topology is given by a non–complete graph denoted
by Gi = (Vi, Ei,Ai), where Vi is the set of N nodes
representing the strategies S, Ei is the set of links that
represent the possible interaction among agents selecting the
corresponding strategies, and Ai is the adjacency matrix.
Moreover, each topology i ∈ T has Pi disjoint partitions.
The set of partitions of the population topology i ∈ T is
given by Pi = {1, ..., Pi}.

The partition j ∈ Pi of the topology i ∈ T is denoted
by a complete graph Gji = (Vji , Eji ), where Vji is the set
of N j

i nodes representing the set of strategies within the
corresponding partition Sji , and Eji is the set of N j

i (N j
i −1)/2

links representing the full information sharing and interaction
within each partition. Furthermore, it must be satisfied that all
the partitions form the topology, i.e., ∪j∈PiGji = Gi, for all
i ∈ T . Also, it is necessary that there are no nodes belonging
to more than one partition, i.e., ∩j∈Pi

Vji = ∅, for all i ∈ T .
In the population, xl ∈ R+ is the proportion of agents

selecting the strategy l ∈ S. The vector x ∈ RN+ is a
population state or a strategic distribution composed by all
the proportion of agents selecting the available strategies.
The set of all the possible population states is given by a
simplex denoted by ∆ =

{
x ∈ RN+ : x>1N = 1

}
. Similarly,

xji,a ∈ R+ is the proportion of agents selecting the strategy
a ∈ Sji available in the partition j ∈ Pi of the topology

i ∈ T . The vector xji ∈ RN
j
i

+ is the strategic distribution of
agents in the respective partition and topology. Finally, let mj

i

be the total mass in the partition given by mj
i = xji

>
1Nj

i
.

The payoff that agents receive for being selecting a partic-
ular strategy is given by a function that takes the population
state and returns a reward, i.e., fitness functions have a
mapping fl : ∆ 7→ R, l ∈ S, and the vector of fitness
functions in the population denoted by F is composed by
all the fitness functions fl(x), l ∈ S . Similarly, the vector
of fitness functions of the partition j ∈ Pi of the topology
i ∈ T is denoted by Fji , and it is composed by all the
fitness functions fl(x), l ∈ Sji . The average function in the
population is given by f̄ = x>F. The average for a partition
is given by f̄ ji =

(
xji
>
Fji

)
/mj

i , j ∈ Pi, i ∈ T , and

F̄ji = 1Nj
i
f̄ ji .

The framework of the method proposed in this paper
is given by stable games, which establish a condition
over fitness functions selection for control design, i.e.,
(w − x)>(F(w)− F(x)) ≤ 0, for all x,w ∈ ∆.

Replicator Dynamics: The replicator dynamics is one
of the six fundamental population dynamics and has been
largely used in the solution of engineering problems [13].
These dynamics require information about all elements
within the population and it is the reason why it has been
considered that partitions at each topology are complete
graphs.

For a fixed topology, there is a replicator dynamics system
for each partition. For a topology i ∈ T and a partition
j ∈ Pi, the replicator dynamics are given by

ẋji = diag
(
xji

)(
Fji − F̄ji

)
. (1)

Then, the system switches among topologies in order to
use at each iteration instant a limited number of commu-
nication links. The equilibrium of interest in (1) for this
work is the mixed-strategy Nash equilibrium given by the
condition Fji = F̄ji , for all j ∈ Pi, i ∈ T . Due to the
fact the partition of a topology is a non-connected graph,
this equilibrium is achieved at each partition. Moreover,



since topologies and partitions are varying over time, it is
necessary to identify the equilibrium for all topologies and
partition, i.e., fk(x) = fl(x), for all k, l ∈ S.

Now, it is shown that each partition satisfies an invariant
set and consequently the whole set ∆ is invariant under the
replicator dynamics (1) and switching partitioned topologies.

Proposition 1: If initial condition x0 ∈ ∆, then x ∈
∆, ∀t ≥ 0, i.e., the simplex ∆ is an invariant set under
replicator equation (1) and switching partitioned topologies.

Proof: In order to proof that ∆ is an invariant set, it is
shown that the sum for all partition and topologies of ẋji for
all i ∈ T and j ∈ Pi is null1, i.e.,

∑
i∈T

∑
j∈Pi

1>
Nj

i

ẋji =
∑
i∈T

∑
j∈Pi

xji
>
(
Fji −

1

mj
i

1Nj
i
xji
>
Fji

)
,

=
∑
i∈T

∑
j∈Pi

(
xji
>
Fji − xji

>
Fji

)
,

= 0,

which completes the proof. �
Proposition 2: Let F be a stable game, then the switched

system (1) is uniformly stable since it admits a common
Lyapunov function.

Proof: Consider the entropy function as a Lyapunov
candidate1

L(x) = −
∑
i∈T

∑
j∈Pi

∑
a∈Sj

i

xji,a
∗

ln

(
xji,a

xji,a
∗

)
,

= −
∑
i∈T

∑
l∈S

xl
∗ ln

(
xl
xl∗

)
.

This is a valid Lyapunov function since L(x∗) = 0 and
L(x) > 0, for all x 6= x∗, this is checked by using the
Jensen’s inequality (i.e., E(f(x)) ≥ f(E(x)) for any convex
function as the logarithm). Its derivative is

L̇(x) = −
∑
i∈T

∑
j∈Pi

∑
a∈Sj

i

xji,a
∗

xji,a
ẋji,a.

Replacing dynamics in the Lyapunov function derivative,

L̇(x) = −
∑
i∈T

∑
j∈Pi

xji
∗>
(
Fji −

1

mj
i

1Nj
i
xji
>
Fji

)
,

= −
∑
i∈T

∑
j∈Pi

(
xji
∗ − xji

)>
Fji ,

≤ 0,

and equality holds when xji
∗

= xji , for all i ∈ T , and j ∈ Pi.
The partitions for all the topologies admit the same Lyapunov
function, then the system is uniformly stable for any convex
combination of topologies. �

1Details of this proof have been omitted due to the lack of space.

III. COOPERATIVE GAME ROLE

Cooperative game theory studies how players can be
grouped into coalitions in order to achieve a common goal
and how to share the costs or benefits derived from their joint
effort. In this work it is proposed to use this theory to form
coalitions within the control system. Different topologies
are considered –and consequently different partitions– in the
system, which may vary over time in order to achieve an
equilibrium with a reduction of the communication burden.
To this end, a cooperative game with transferable utility is
defined as a pair (V, V ), where V = {1, .., N} is the set
of players, and V is the characteristic function. From the
cooperative game theoretical point of view, for each topology
i ∈ T , each node l ∈ Vi is considered as a player, and each
partition j ∈ Pi represents a coalition of players.

The characteristic function denoted by V takes a coalition
from the power set 2V and returns a real value. Formally,
the characteristic function is a mapping V : 2V 7→ R. For
each coalition O ⊆ V , V (O) is the value that the players
can share among themselves. Additionally, for the empty
coalition, V (∅) , 0.

A solution of the cooperative game is an allocation rule
that gives a division of the value of the coalition among its
members in a fair way, i.e., achieving a condition in which
each player receives a benefit according to its contribution
to the coalition. Let y ∈ RN be the payoff vector given
by y = [y1 · · · yN ]>. Some desirable properties for
the distribution of the V (O) among the players are: 1)
Efficiency:

∑
l∈O yl ≤ V (V); 2) Coalitional rationality:∑

l∈O yl = V (O) for all coalitions O ⊆ V; 3) Individual
rationality: yl ≥ V ({l}), for all l ∈ V . Prior to defining the
characteristic function, the costs associated to each coalition
are defined as follows:

C(O) =
1

|O|
∑
l∈O

Cl, (2)

where Cl is the individual cost of player l ∈ V . Afterwards,
the characteristic function is given by the difference between
the sum of individual costs and the cost of the correspond-
ing coalition. Then, it is characterized the difference when
adopting a coalition, i.e.,

V (O) =
∑
l∈O

Cl − C(O). (3)

A payoff rule that satisfies the mentioned desired require-
ments is the Shapley value for all the players l ∈ V [14],
which is given by

Φ(l) =
∑

O⊆V\{l}

|O|! (N − |O| − 1)!

N !
(V (O ∪ {l})− V (O)) .

(4)
Notice that the sum considers all the possible coalitions to
which player l ∈ V can be added. One of the main issues of
working with cooperative games is the high computational
burden in the computation of the Shapley value for all
the players when using (4). In particular, the combinatorial
explosion when the number of players is high is a common



issue in this context. Once the characteristic function has
been defined as (3), a mathematical relation between the
Shapley values can be determined in order to mitigate the
high computational cost. This result is shown by using
Proposition 3 stated next.

Proposition 3: Let (3) be the characteristic function of a
cooperative game with the set of players V = {1, ..., N}.
Let Cl be the cost associated to each player l ∈ V , and
(2) be the costs associated to each coalition O ⊆ V . If
one Shapley value Φ(l) for any player l ∈ V is known,
then all the Shapley values for all the players can be found
by using a low–computational–cost operation of the form
Φ(r) = Φ(l)+(Cr−Cl)Θ, where r ∈ V is any other player,
and Θ is a constant for the cooperative game whose value
only depends on the number of players N .

Proof: In order to simplify the notation, it is defined
the operator Ψ(O) = (|O|! (N − |O| − 1)!)/(N !). Then, the
Shapley value Φ(l) of the player l ∈ V in (4) may be re–
written by expressing the set of coalitions to which the player
l ∈ V can be added, in terms of a second player r ∈ V as
follows2:

Φ(l) =
∑

O⊆V\{l,r}

Ψ(O) (V (O ∪ {l})− V (O)) +

∑
O⊆V\{l,r}

Ψ(O ∪ {r}) (V (O ∪ {r} ∪ {l})− V (O ∪ {r})) .

Similarly, the Shapley value Φ(r) of the player r ∈ V may
be written in terms of l ∈ V . Then, it is found the difference
between the Shapley values Φ(r), and Φ(l), denoted by
Φ̃(r, l) = Φ(r)−Φ(l). Also, replacing (3) and (2), and taking
into account that Ψ(O ∪ {r}) = Ψ(O ∪ {l}), i.e.,

Φ̃(r, l) =
∑

O⊆V\{l,r}

Ψ(O)

{(
1− 1

|O|+ 1

)
(Cr − Cl)

}
+

∑
O⊆V\{l,r}

Ψ(O ∪ {r})
{(

1− 1

|O|+ 1

)
(Cr − Cl)

}
.

Briefly, the difference between the Shapley values
Φ̃(r, l) = Φ(r) − Φ(l) is given by

Φ̃(r, l)=(Cr − Cl)
∑

O⊆V\{l,r}

θ1︷ ︸︸ ︷
(Ψ(O) + Ψ(O ∪ {r}))

θ2︷ ︸︸ ︷( |O|
|O|+ 1

)
︸ ︷︷ ︸

Θ

,

the constant value Θ can be re-written as

Θ =

N−2∑
s=1


θ3︷ ︸︸ ︷(

(N − 2)!

s!(N − 2− s)!

) θ2︷ ︸︸ ︷(
s

s+ 1

)

(
s! (N − s− 1)! + (s+ 1)! (N − s− 2)!

N !

)
︸ ︷︷ ︸

θ1

 , (5)

2Details of this proof have been omitted due to the lack of space.

TABLE I
COMPARISON OF COMPUTATIONAL BURDEN FOR COMPUTING THE

SHAPLEY VALUE FOR DIFFERENT NUMBER OF PLAYERS.

Total Number Computational Computational
of players burden using (4) burden using (5)

N Time [s] Time [s]
3 0.4232 0.1461
4 0.8020 0.1912
10 5.9998 0.6120
14 110.6065 7.9103
18 53938.9433 2996.6542

the factor θ3 represents the amount of coalitions that can be
formed in the cooperative game with s players, i.e., |O| = s.
Finally Φ(r) = Φ(l) + (Cr − Cl)Θ, obtaining the desired
relationship that completes the proof. �

In order to verify the difference between the computational
burden of computing the Shapley value with (4), and by using
the relation proposed in Proposition 3 with the constant value
(5), different Shapley values for several amount of players
have been computed, and the respective computational bur-
den is presented in Table I.

Partitioning Procedure

In order to perform the partitioning of the system, first
it is defined a time ∆t that determines when the proper
topology is evaluated. Every time k ∈ Z+ with the sampling
time ∆t, the Shapley value Φ(l, k) of all the players l ∈ V
is computed by using the low-computational-cost operation
using the factor Θ in (5). As a second necessary parameter
to define is the size of the desired coalitions denoted by g,
i.e., perform partitions of g number of players.

Remark 1: Notice that depending on the desired size of
the coalitions, it is possible to obtain at most one coalition
composed by a number of players lower than g, e.g., consider
the case of N = 8 players, and if it is desired to perform a
partition of size g = 3, then there are going to be obtained
two coalitions of g players and one coalition of 2 < g
players. ♦

In the partitioning procedure, it is desired to gather the
player with the highest Shapley value with the g− 1 players
with the lowest Shapley values. In this sense, it is possible
to make a cooperation in which the best players share their
benefits with those in worse situation. It is worth to highlight
that this partitioning criterion might be different depending
on the control objectives and the system dynamical behavior,
but it is proper to make this partitioning in function of the
Shapley value.

IV. CASE STUDY

The case study is shown in Figure 1a), which is composed
by N = 12 tanks. There are two control objectives. The first
control objective is to maintain all the tanks at the same
and maximum level; this objective is solved by finding a
Nash equilibrium. Furthermore, the costs associated to the
communication links determine a Key Performance Indicator
(KPI) given by KPIlinks = 1

2

∫ tf
t0
1>NAi1N dt, i ∈ T , for

the current topology i ∈ T , where t0 is an initial time and
tf a final time. As a second control objective, it is desired to
determine the fair cost that each player should pay for these



communication links according to the player contribution
to the system in order to achieve the desired equilibrium.
Then, the fair cost that each player should pay is expressed
in function of the Shapley value, i.e.,

KPIlinks,l =
Φ(l, k)∑N
r=1 Φ(r, k)

KPIlinks, l ∈ V. (6)

The Shapley value is normalized in (6) since it is computed
in terms of the error rather than economical units. These
communication links share, in a local way, information about
the measured levels in order to achieve the first control
objective. Notice that this is a decentralized control scheme
since each control action is computed by using only partial
and local information.

In order to solve the control problem, it is proposed
to perform a partitioning based on the Shapley value as
presented in Section III. Therefore, the costs associated to
each player are going to be the error between the current
level and the maximum level capacity of each tank, i.e.,

Cl = hmax,l − hl, (7)

where hmax,l denotes the maximum possible level for the lth

tank. This cost characterization shows that it is more costly
to increase the level in a tank rather than reduce it. Once
the partitions are made, a population-dynamics approach is
applied to each partition where the fitness function for each
strategy is given by the error fl = hmax,l − hl. Notice
that this is a model-free approach since knowledge about
dynamics is not required in the design, i.e., fl is computed
just by measuring hl. It is assumed that this fitness function
is always non-negative since physically the current measured
level hl ≤ hmax,l. Notice that, with this fitness function,
more resource is assigned to empty tanks. Moreover, this
fitness function is decreasing with respect to xi, since the
error is expected to be reduced when more resource is
assigned to the tank. In this way, it is guaranteed that the
population game F is stable and then Proposition 2 holds.

· · ·

· · ·h1 h2 h3 hN

x1 x2 x3 xN

qout,1 qout,2 qout,3 qout,N

Q

1

2

3
4

5

6

7

8

9
10

11

12

a) b)

Fig. 1. a) Case study: Resource Q allocation throughout N tanks. b)
Complete graph given by the grand coalition.

The dynamics for the lth tank in continuous time are
given by ḣl = qin,l − qout,l, with qout,l = Klhl, where
hl is the level, Kl is a constant factor characterizing the
outflow, qin,l is the inflow, and qout,l is the outflow of
the lth tank. There is a constant available resource given
by Q = 30. Each inflow qin,l is controlled by a valve
commanded by a control signal xl, i.e., qin,l = Qxl, with
0 ≤ xl ≤ 1. It is assumed that there is a local controller
at each valve that guarantees the desired flow given by xl.
The limited resource establishes a constraint over all inflows,

i.e.,
∑N
i=1 qin,l = Q. This constraint leads to the condition∑N

i=1Qxl = Q, and consequently, x ∈ ∆. This condition is
also satisfied in the partitioned system if the initial condition
of the proportion of agents satisfies

∑
j∈Pi

1>
Nj

i

xji (0) = 1,
for the initial topology i ∈ T , following Proposition 1.

V. RESULTS

As a reference to analyze the performance of the proposed
control strategy, results for the centralized case are also
presented, i.e., the case with the unique topology given by a
complete graph, or with the grand coalition (see Figure 1b)).

For the presented example, ∆t = 0.1s. The Shapley
value is computed in function of the error costs (7). It is
important to mention that initial condition for each tank
level has been established as a random value within the
interval [0, 1]. The control objectives are given by: i) maintain
all the tank levels at the same maximum value; and ii)
determine the fair economical costs for the players, then
more KPIs are defined to evaluate the performance. For
instance, it is of interest to analyze the error of each
tank level with respect to the average levels of the entire
system, i.e., KPIerror,l =

∫ tf
t0

(
hl − 1

N h>1N
)
dt, l ∈ V,

where h = [h1 · · · hN ]>. Then, there is a KPI for
the whole system in function of the mentioned error levels,
i.e., KPIerror =

∑N
l=1KPIerror,l. Finally, it is defined

the settling time with criterion of the 5% as a KPI, i.e.,
KPIsettling = mint{t : ∀ t̃ ≥ t, h ≤ h(t̃) ≤ h̄}, where
h = 0.95h∗, h̄ = 1.05h∗, and h∗ being the equilibrium
point of the system.

Figure 2 shows the evolution of the tank levels for three
different cases (coalitions of 2 players, coalitions of 3 players
and the grand coalition), and it is also shown the gap that
determines the settling time. The topology in the system
is determined every ∆t, Figure 3 shows some different
topologies obtained based on the Shapley value at five time
instants. In Figure 3, it can be seen how topologies vary
dynamically with coalitions of two and three players. In
Figure 2, it can be seen that the first control objective is met
for all the cases. The second control objective is determined
by the Shapley value as presented in Table II.

TABLE II
FAIR ECONOMICAL COSTS FOR EACH PLAYER.

Player Fair costs according Shapley value
l ∈ V (Φ(l, k)KPIlinks)/

(∑N
r=1 Φ(r, k)

)
1
2
3
4
5
6
7
8
9
10
11
12

Total

Coalitions 2 Players Coalitions 3 Players
68.5457 163.2923
88.3214 176.9323
66.0268 296.4736
85.9647 202.0730
122.4891 172.0995
107.3169 223.4468
71.7682 197.5349
147.2266 248.4602
130.3143 237.5863
124.9356 145.3167
106.6134 169.3707
80.4768 167.4130
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Fig. 2. Evolution of tank levels for three cases. a) coalitions of 2 players, b) coalition of three players, and c) grand coalition N players (full information).
Initial condition for each tank level has been determined by a random value in the interval [0, 1].
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Fig. 3. Evolution of the topology graphs given by coalitions of two and three players (i.e., g = 2, and g = 3), for five different iterations, i.e.,
k = 1, . . . , 1585.

Finally, the comparison of the three cases with the three
proposed KPI is presented in Table III. In these results, it can
be seen the proper performance of the proposed methodology
with respect to the centralized case with full information
given by the grand coalition. Economical costs are reduced
significantly by sacrifying transitory errors and settling time.

TABLE III
CONTROL PERFORMANCE FOR DIFFERENT TOPOLOGIES.

Players per Communication Error Settle time
coalitions g KPIlinks KPIerror KPIsettling

2 players 1200 94.7748 29.76
3 players 2400 31.9961 22.51
N players 13200 19.6141 20.14

VI. CONCLUSIONS

A multi-objective control problem that combines both
cooperation and competition has been presented. The first
control objective has been associated to a resource allocation
problem, where it has been desired to achieve a maximum
and equal level for all the tanks, and the second control
objective has been to designed determine a “fair” distribution
of communication costs. It has been proposed to use a non-
cooperative-game approach to solve the former objective,
whereas a cooperative-game approach has been proposed to
solve the latter objective. Moreover, an alternative way to
compute the Shapley value for the selected characteristic
function has been presented in order to mitigate the high
computational burden issue.
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and E.F. Camacho. A coalitional control scheme with applications to
cooperative game theory. Optimal Control Applications and Methods,
35:592–608, 2014.

[7] F. J. Muros Ponce, J. M. Maestre, E. Algaba, C. Ocampo-Martinez, and
E. F. Camacho. An application of the Shapley value to perform system
partitioning. In Proceedings of the American Control Conference
(ACC), pages 2143–2148, Chicago, USA, 2015.

[8] R. B. Myerson. Game Theory. Analysis of Conflict. Hardvard
University Press, 1997.

[9] J. Nash. Equilibrium points in n-person games. Proc. of the National
Academy of Sciences, 36:48–49, 1950.

[10] G. Obando, A. Pantoja, and N. Quijano. Building temperature control
based on population dynamics. IEEE Transactions on Control Systems
Technology., 22(1):404–412, 2014.

[11] E. Ramirez-Llanos and N. Quijano. A population dynamics approach
for the water distribution problem. International Journal of Control,
83(9):1947–1964, 2010.

[12] S. Riverso, M. Farina, and G. Ferrari-Trecate. Plug-and-play decentral-
ized model predictive control for linear systems. IEEE Transactions
on Automatic Control, 58(10):2608–2614, 2013.

[13] W. H. Sandholm. Population games and evolutionary dynamics.
Cambridge, Mass. MIT Press, 2010.

[14] L.S. Shapley. A value for n-person games. Annals of Math. Studies,
28:307–317, 1953.

[15] H. Tembine, E. Altman, R. El-Azouzi, and Y. Hayel. Evolutionary
games in wireless networks. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 40(3):634–646, 2010.


