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Abstract— This paper develops a simple and low-cost method
for 3D, high-rate vehicle state estimation, specially designed for
free-flying Micro Aerial Vehicles (MAVs). We fuse observations
from inertial measurement units and the recently appeared low-
cost optical flow smart cameras. These smart cameras integrate
a sonar altimeter, a triaxial gyrometer and an optical flow
sensor, and directly provide metric ego-motion information in
the form of body velocities and altitude. Compared to state-
of-the-art visual-inertial odometry methods, we are able to
drastically reduce the computational load in the main processor
unit, and obtain an accurate estimation of the vehicle state at
a high update rate of 100Hz. We thus extend the current use
of these smart cameras from hovering purposes to odometry
estimation. In order to propose a simple algorithmic solution,
we investigate the performances of two Kalman filters, in the
extended and error-state flavors, alongside a large number of
algorithm variations, using simulations and real experiments
with precise ground-truth. We observe that the marginal
performance gain attained with these algorithm improvements
does not pay for the effort of implementing them. We conclude
that a classical EKF in its simplest form is sufficient for
providing motion estimates that coherently exploit the available
measurements.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs), and in particular quadrotor
systems, have substantially gained popularity in the research
community in recent years, motivated by their significant
increase in maneuverability, together with a decrease in
weight and cost. In order to perform high level tasks with
MAVs, such as autonomous exploration or scene interaction,
robust state estimation at a high update rate is crucial for
robot navigation and agile flight control.

Low-cost, low complexity systems for rich and high-
dynamics MAV state estimation are rare. A first family of lo-
calization systems for MAVs relies on external infrastructure
(GPS, RF beacons, visual tags, IR cameras), e.g. [1], which
may not always be practical. When using low-cost setups,
these systems usually lack precision, dynamics, or both. A
second family of methods embark all hardware and software
for self-localization, thus not relying on any external setup.
These include any kind of SLAM or odometry system drawn
from other robotics fields [2], [3].
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Fig. 1. Quadrotor used in the experiments with the IMU and optical flow
measurement units attached below.

Combinations of IMU and visual sensors (especially in
monocular mode) are becoming very popular, thanks to their
low weight, power consumption and price. However, many
of these systems are computationally expensive and require
last-generation processors and complex algorithms that rely
on a vast diversity of techniques that are often difficult to
master. Their typical high precision outcome is attained by
jointly estimating a subset of past camera poses and a number
of landmarks in the environment, which are tracked in the
image over relatively long periods. Key examples are [4], [5]
using EKF, [6] using the multi-state constraint KF, [7] using
bundle adjustment, or [8] using graphical models.

In order to reduce the computational burden and increase
the update rate, several authors opt to exploit the image
information only locally and in 2D. Ref. [9] proposes a
speed-estimation module, which converts the pair camera-
IMU into a metric body-speed sensor at 40Hz update rate,
using optical flow information of at least 2 image features,
within an EKF framework. In [10], optical flow information
is fused with inertial measurements, however results are only
shown in simulations. A similar approach is [11].

The solution we propose (Fig. 1) belongs to this last group
of approaches. It uses exclusively low-cost sensors and low-
complexity algorithms: As hardware, we use a MicroStrain
IMU [12] and the recently appeared PX4 smart camera [13].
The PX4 integrates a low-cost sonar altimeter, a triaxial
gyrometer and an optical flow sensor, and processes the data
to deliver metric measurements of altitude and velocity at
100Hz. As software, we have developed two Kalman filters,
in the extended (EKF) and error-state (ESKF) forms, for the
sake of performance comparison. All the image processing
for the optical flow is computed by the PX4. The overall
system acts as an odometer that provides absolute altitude,
velocity, orientation, angular rate, and acceleration, with
respect to a precise gravity reference, at 100Hz data rate.
XY position and yaw orientation are not observable, and



their output is the result of dead-reckoning, subject to drift.
These modes can be observed by a higher level task, such
as a visual servoing ([14], [15]), with a lower update rate.

To the knowledge of the authors, this work is the first
example of the usage of such a low-cost visual-range-inertial
sensor setup for 6DoF motion estimation, using also low
complexity algorithms without sophisticated features. This
sensor setup has the advantage of being simple, lightweight,
low power and low cost, and is already included, with
minor variations, in several commercial multi-copters as their
basic instrumentation, being typically used as a means for
automatic hovering. As such, a setup like this is already
available to a huge amount of teams worldwide, both in
research and industry. Many of these teams may not have
the energy, the time or the interest of implementing complex,
CPU-demanding motion estimation algorithms, yet they are
not satisfied with a pure hovering solution.

When compared to other visual-intertial approaches, the
optical-flow nature of the PX4, with a very narrow field
of view of only 64 × 64 pixels or 1.6◦, represents an
important limitation, in the sense that visual features are only
exploited locally, and there is no notion of features being
tracked over long periods of time. The number and length of
feature tracks are key to the high precision attained by the
aforementioned sophisticated methods, and in consequence,
we cannot expect performances of our setup comparable to
other visual-odometry systems. But importantly, the number
and length of these feature tracks are responsible for their
algorithmic complexity and CPU consumption.

Fortunately for us, the high filter update rate made pos-
sible by the PX4 contributes to increase the validity of
linearizations, minimizing the accumulation of error and thus
enabling simpler methods for an equivalent performance. In
this scenario, the main aim of this paper is to show that,
given a sensor setup with such capabilities, we are able
to derive motion estimates that are useful in the mid term
(a few minutes, i.e., from a significant fraction to a full
battery recharge), without the need to implement complicated
algorithms.

Indeed, we explore a large number of algorithm improve-
ments and variations defended in the literature, and show
that their impact on system performance is marginal. These
variations are shown in Tab. I, and are properly defined
later in the text. They are summarized hereafter. First, we
implement extended (EKF) and error-state (ESKF) Kalman
filters [16]. Second, we express the orientation errors of
ESKF both in local (LE) and global (GE) frames [17].
Note that in EKF the orientation error is additive and this
distinction is irrelevant. Third, we compare different schemes
for rotational motion integration of the quaternion [18],
including forward zeroth-order (Q0F), backward zeroth-order
(Q0B), and first-order (Q1). Fourth, we compare different in-
tegration forms and approximations of the system’s transition
matrix (F1,F2,F3) [5].

Other contributions of the paper follow. First, the obser-
vation model of the PX4 sensor, and its analytical derivation
to get, together with the IMU, all the observable modes.

TABLE I
KALMAN FILTERS AND ALGORITHM VARIATIONS

Filter type Quat. error Quat. integration Trans. Mat. Trunc.

EKF – Q0F, Q0B, Q1 F2

ESKF GE, LE Q0F, Q0B, Q1 F1,F2,F3

Also, we propose algorithmic solutions to correct some
limitations of the PX4 that make it produce, under particular
circumstances, aberrant measurements.

The remainder of this article is structured as follows. In
the next section we provide a brief description of the system
setup, with its sensor models and state parametrizations. The
system kinematic equations are described in Sec. III, together
with a brief note on observability. Sec. IV shows the EKF
and ESKF filters. Simulation validations come in V, and real
robot experiment results in Sec. VI. Finally, conclusions are
given in Sec. VII.

II. SYSTEM SETUP

We consider a quadrotor equipped with a MicroStrain
3dm-gx3-25 IMU and a PX4 optical flow sensor, moving
with respect to a global coordinate frame, assumed inertial.
Our goal is to track the vehicle state, i.e., the position,
orientation and velocities of the platform, using the inertial
measurements, and to correct these estimates with the PX4
readings, observing in turn the IMU biases for their proper
compensation. The PX4 integrates a monocular camera look-
ing downwards, an ultrasound range sensor in the same
direction, and a triaxial gyrometer. It processes these data and
delivers horizontal velocities vof (x, y) in local (i.e., body)
frame, plus altitude pof (z) with respect to a flat, horizontal
ground. The PX4 can also provide the raw optical flow data,
which can be used in critical situations to recover from
aberrant PX4 readings, as we explain in section VI-A. In
order for the PX4 to perform correctly, scene lighting must
be adequate, and the ground is required to have good visual
texture and sufficient ultrasound reflectivity.

The IMU and the PX4 optical flow sensors are rigidly
attached together as shown in Fig. 1. Their respective frames
are aligned with each other and with the frame of the MAV
via careful mechanics, without further calibration.

A. State vectors: notation and conventions

We are interested in estimating a true state xt defined by

xt =
[
pt vt qt abt ωbt

]>
, (1)

where {p,v,q} are position, velocity, and orientation quater-
nion1, all expressed in inertial frame, and {ab,ωb} are
accelerometer and gyrometer biases. In EKF, we estimate
xt directly. In ESKF, we speak of true-, nominal- and
error-state values, the true-state xt being expressed as a

1We use the Hamilton convention for quaternions, which defines ij =
−ji = k. This is the most widely used convention (e.g. Eigen, Ceres, ROS,
and most literature), but it is in contrast with quite a few remarkable works
on visual-inertial odometry (e.g. [5], [6], [18]) using the JPL convention,
with ji = −ij = k. Because of the sign change, the Hamilton quaternion
is right-handed, while the JPL is left-handed [18].



suitable composition (linear sum or quaternion product) of
the nominal-state x, which is only propagated in time, and
the error-state δx, which is estimated by the filter. They are
related as follows,

xt = x⊕ δx (2)

x =
[
p v q ab ωb

]>
(3)

δx =
[
δp δv δθ δab δωb

]>
. (4)

where ⊕ denotes a generic composition. This composition is
the trivial addition for all state variables (e.g., pt = p + δp)
except for the orientation. We use a minimal orientation error
δθ ∈ R3, which may be defined in the global frame (GE)
or in the local frame (LE), i.e., its composition is computed,
respectively, with a product on the left or right hand sides
of the nominal quaternion,

global error (GE): qt = δq⊗ q , (5a)
local error (LE): qt = q⊗ δq , (5b)

where δq = q{δθ} is the orientation error expressed in
quaternion space,

δq =

[
cos(||δθ||/2)
δθ
||δθ|| sin(||δθ||/2)

]
≈
[

1
δθ/2

]
. (6)

Finally, we note R{x} and q{x} the rotation matrix and
quaternion equivalents to the generic orientation x. Likewise,
we write R , R{q} and Rt , R{qt}.

B. Sensor Models
The IMU is composed of a 3-axis accelerometer and a

3-axis gyrometer. The accelerometer measures acceleration
at and gravity g together, expressed in body frame. This
measurement is affected by additive bias abt and noise
an. The gyrometer measures angular rates in body frame,
likewise affected by additive bias and noise. The sensed
values are thus,

aS = R>t (at − g) + abt + an (7a)
ωS = ωt + ωbt + ωn . (7b)

The PX4 optical flow sensor outputs the altitude from the
ground, and a 2D linear velocity vector in the body XY
plane, all affected by additive Gaussian noise. This can be
expressed in compact form aspof (z)

vof (x)
vof (y)

 = S

[
pt

R>t vt

]
+ nof , (8)

where S =
[
03×2 I3×3 03×1

]
is a 3×6 matrix that selects

the respective rows. The measurement noise nof is assumed
to be Gaussian with zero mean and covariances matrix Nof .
The planar velocity measurement vof is computed directly
by the PX4 from its own optical flow Φof , angular rates
ωof , and altitude hof measurements, according to

vof =
−Φof · hof
4t · f

+ S′
(
ωof ×

[
0 0 hof

]>)
, (9)

where f is the focal length of the PX4’s camera, expressed
in pixels, and S′ = [ I2x2 02x1] is also a selection matrix.

III. SYSTEM KINEMATICS FOR EKF AND ESKF

A. Continuous time

As it is common practice in the literature of IMU naviga-
tion (e.g. [4]), we express the true dynamics of our system
with the following set of equations,

ṗt = vt (10a)
v̇t = Rt(aS − abt − an) + g (10b)

q̇t =
1

2
qt ⊗

[
0 ωS − ωbt − ωn

]>
(10c)

ȧbt = aw (10d)
ω̇bt = ωw , (10e)

where true acceleration at and angular rates ωt have been
substituted by those isolated from the IMU model (7).
The biases have been considered non-constant, and in such
case two small-energy random walks with white Gaussian
generator noises aw and ωw are used as dynamic models.

The system above, after integration to discrete time (see
below), is estimated by an EKF. For the ESKF, we isolate
the nominal-state kinematics by simply removing all error,
noise and perturbation terms. The error-state kinematics are
obtained by considering the composition of each system
equation, solving for the error-state, rearranging some cross-
products and simplifying all second order terms, yielding,

˙δp = δv (11a)
˙δv = −bR(aS − ab)c×δθ −Rδab −Ran (11b)
˙δθ = −R δωb − Rωn (11c)
˙δab = aω (11d)
˙δωb = ωω , (11e)

which, remarkably, is a time-variant linear system. This
system is valid for the globally-defined angular error, (GE,
5a). For a local definition, (LE, 5b), we just need to substitute
equations (11b,11c) with,

˙δv = −RbaS − abc×δθ −Rδab −Ran (11f)
˙δθ = −bωS − ωbc×δθ − δωb − ωn . (11g)

B. Computing the integral to discrete time

The integral of continuous differential equations of the
type ẋ = f(x,u) from times (k−1)∆t to k∆t can be approx-
imated in a number of ways. We want to evaluate the impact
of these approximations on final performance, and thus we
perform these integrals with different degrees of accuracy.
For all the variables except the quaternion, we integrate the
linearized system, ẋ = A x + B u, with A = ∂f/∂x, B =
∂f/∂u, into the discrete-time xk ≈ F xk−1 + B u∆t, and
we truncate the Taylor series expressing the transition matrix
F = eA∆t at different orders, N ∈ {1, 2, 3}, obtaining the
different approximations FN in Tab. I,

FN ,
N<∞∑
n=0

1

n!
An∆tn . (12)



For the quaternion, we contemplate the Q0F, Q0B, and Q1
integrators [18] of the differential equation (10c),

Q0F: qk ≈ qk−1 ⊗ q{ωk−1∆t} (13a)
Q0B: qk ≈ qk−1 ⊗ q{ωk∆t} (13b)

Q1: qk ≈ qk−1 ⊗
(
q{ω̄∆t}+

∆t2

24

[
0

ωk−1×ωk

])
(13c)

where ωk , ωS,k − ωbt,k , ωbt,k ≈ ωbt,k−1 and ω̄ ,
(ωk−1 + ωk)/2.

C. Discrete time

For convenience, we start with the integration of the error
state. For space reasons, we show here only the case with
first-order Taylor truncation of the transition matrix (F1),
zeroth-order backward quaternion integration (Q0B), and
global angular error definition (GE), to integrate the error-
state equations (11),

δp← δp + ∆t δv (14a)
δv← δv − bR(aS−ab)c×∆t δθ −R∆t δab + vi (14b)
δθ ← δθ −R∆t δωb + θi (14c)
δab ← δab + ai (14d)
δωb ← δωb + ωi , (14e)

where “←” stands for “gets updated with”, i.e., x← f(x, •)
is equivalent to xk = f(xk−1, •). Here, vi, θi, ai and
ωi are random impulses applied to the velocity, orientation
and bias estimates, modeled with Gaussian processes. Their
mean is zero, and their covariance matrices are obtained by
integrating the variances of the IMU measurement noises,
an, ωn, and the IMU bias random walks, aω , ωω , over the
time step ∆t,

Vi = σ2
an ∆t2 I3 [m2/s2] (15a)

Θi = σ2
ωn

∆t2 I3 [rad2] (15b)

Ai = σ2
aw ∆t I3 [m2/s4] (15c)

Ωi = σ2
ωw

∆t I3 [rad2/s2] , (15d)

where σan [m/s2], σωn
[rad/s], σaw [m/s2

√
s] and

σωw
[rad/s

√
s] are to be determined from the information in

the IMU datasheet, from real measurements, or –preferably
as a last resort– via filter tuning.

Integration of the EKF equations (10) and the nominal
state of the ESKF follow exactly the same scheme. We
use 2nd order Taylor truncation (F2), and show here the
expression with Q0B quaternion integration (we removed all
subscripts •t for clarity),

p ← p + v ∆t+
1

2
(R(aS − ab) + g) ∆t2 (16a)

v ← v + (R (aS − ab) + g) ∆t+ vi (16b)
q ← q⊗ q{(ωS − ωb)∆t+ θi} (16c)

ab ← ab + ai (16d)
ωb ← ωb + ωi . (16e)

D. Observability, and marginally-observable modes

The observability analysis of the system needs the evalua-
tion of the rank and continuous symmetries of the observabil-
ity matrix defined from the Lie derivatives [19]. Following
this work, we detect three continuous symmetries,

ω1
s = [1, 0, 0, 0, · · · , 0] (17)

ω2
s = [0, 1, 0, 0, · · · , 0] (18)

ω3
s = [−py, px, 0,−vy, vx, 0,−

qz
2
,−qy

2
,
qx
2
,
qw
2
, 0, · · · ](19)

corresponding to the non-observable modes of XY transla-
tion, and rotation around the direction of gravity (i.e., the
yaw angle), see [19]. All other modes, including all biases,
are observable as long as the maneuvers performed span
the observable directions. This means that the limitations
on maneuverability imposed by the MAV dynamics have a
negative impact on the observability of certain modes, in
particular on the accelerometer bias in the XY axes, and the
gyrometer bias in the Z axis. We explore these marginally-
observable modes experimentally in section V.

IV. EXTENDED AND ERROR-STATE KALMAN FILTERS

A. Extended Kalman filter

The development of an EKF from equations (16) and (8)
is standard procedure and we do not include it here for space
reasons. The transition matrix F2 is the Jacobian of (16).

B. Error-state Kalman filter

a) Nominal-state propagation: The nominal state is
propagated according to (16) with all perturbation impulses
{vi,θi,ai,ωi} set to zero.

b) Error-state KF prediction: The error-state system
(14) can be posed as

δx← FN δx + i (20)

where i ∼ N{0,Q} is a vector of Gaussian random impulses
with zero mean and covariances matrix Q ,

Q = diag(03×3,Vi,Θi,Ai,Ωi) . (21)

The ESKF time-update is applied only to the covariance,

P ← FN P F>N + Q , (22)

with FN computed according to (12) with N ∈ {1, 2, 3},
and where A is the system matrix derived from (11),

A =


0 I 0 0 0
0 0 −bR(aS−ab)c× −R 0
0 0 0 0 −R
0 0 0 0 0
0 0 0 0 0

 (23)

which may accept some variations depending on the algo-
rithm options, especially GE vs. LE.



c) Error-state KF correction: Our PX4 sensor output
depends on the system state as shown in (8). This is written
in function form as,

vof = h(xt) + nof . (24)

Based on this, the ESKF update is written,

K = PH>(HPH> + Nof )−1 (25a)

δ̂x = K(vof − h(x)) (25b)

P← P−K(HPH> + Nof )K> (25c)

x← x⊕ δ̂x , (25d)

where H = ∂h(xt)/∂δx is the observation matrix, derived
from (8) and (3–5a) for GE (a slightly different expression
is obtained for LE using with (5b)),

H = S

[
I3×3 03x3 03x3 03x6

03x3 R> R>bvc× 03x6

]
, (26)

and ⊕ is the same composition operator explained in Sec.
II-A, paying special attention to the options in (5).

V. VALIDATION WITH SIMULATIONS

In order to study the performances and limitations of the
proposed setup, we first present experiments with synthetic
data under realistic flight conditions. Quadrotors are typi-
cally equipped with four aligned coplanar propellers. Motion
control is achieved by altering the rotation speed of these
propellers, thereby changing its torque load and thrust lift
characteristics. With this actuation technique, a quadrotor
becomes an under-actuated vehicle with only 4 DOF. Trans-
lational accelerations are achieved by tilting the rotor plane
in the desired direction. We generate a ground truth trajectory
that accounts for these motion constraints. We subsequently
generate corrupted PX4 and IMU measurements, with noise
and bias characteristics similar to those of the real units
(see next section for noise values). Both sensors deliver data
synchronously at 100Hz.

Fig. 2 shows the results with simulated data using an
ESKF with GE, Q0B and F1. The 60 s trajectory encom-
passes an initial phase of hovering (phase A); a forward
movement along the x axis (B); a backward movement (C) to
the initial position; a second hovering phase (A); and finally
left (D) and then right (E) movements along the y axis. The
true trajectory finishes precisely at the starting position. X-
Y-Z magnitudes are colored R-G-B, and ±3σ estimated error
bounds are also plotted.

The xy position is not observable, and its estimated error
increases with time (top frame in Fig. 2). However, the drift
is small, a few centimeters after the whole one-minute flight.
Altitude and velocity estimates converge quickly thanks to
the PX4 measurements. Notice the transient increase of the
position and velocity errors (phases B and D). This is due to
the uncertainty in yaw (blue track of third plot in Fig 2, not
observable) which produces position errors perpendicular to
the displacement vector. These errors decrease as the MAV
returns to the origin (C and E).
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Fig. 2. Trajectories of all the estimated states, with their ±3σ bounds, for
the simulation experiment. The vertical sections indicate the hovering (A),
forward (B), backward (C), left (D) and right (E) maneuvers.
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Fig. 3. Evolution of the estimated error of the accelerometer bias in the
x (y) axis for different pitch (roll) angles.

One of the most interesting aspects is the marginal observ-
ability of some of the biases. On one hand, an acceleration
bias becomes observable when the quadrotor orientation pro-
duces a non-null projection of the gravity vector over its axis.
This makes the accelerometer’s z-bias readily observable,
but x- and y-biases require tilting the rotor plane. This is
observable in Fig. 2, plot ‘Acc. Bias’. This is a critical issue
due to the quadrotor’s restricted dynamics, seeking always
horizontality and thus making these observations difficult. To
further investigate this effect, the impact of a rotation over
y (resp. x) on the observability of ab(x) (resp. ab(y)) is
illustrated in Fig. 3. A quadrotor can easily tilt to 20o, but
holding this tilt for a period of seconds represents a sustained
high acceleration that is usually not desirable. Otherwise, this
bias should be estimated beforehand and set up in the filter.

On the other hand, The gyroscope’s pitch and roll biases
are well observable thanks to the gravity vector. The yaw
bias ωb(z) (blue in ‘Ang. Vel’ plot) becomes observable
only after a very long period, by taking small profit of
transient inclinations that bring the gravity vector away from
the local z axis. To achieve a better performance in yaw-bias,
it is advisable to use extra heading measurements such as a
compass or other stable external references.



TABLE II
KF TUNING PARAMETERS (STD; σ SYMBOLS OMITTED)

Sensor noises Initial std. dev.
an ωn zof vof δz δφ, δθ δab δωb

m/s2 rad/s m m/s m rad m/s2 rad/s
0.4 0.005 0.05 0.1 0.05 0.05 0.02 0.004

VI. REAL MAV EXPERIMENTS

We present experiments with an ASCTEC PELICAN
quadrotor. The IMU and the optical flow sensors deliver data
asynchronously at 100Hz, and we associate each PX4 mea-
surement with the closest IMU measurement. The sensors are
attached below the platform (Fig. 1) using silicon damping
links to reduce motor vibrations.

Tab. II shows all non-null sigma values for the filter
tuning. All filter variants use the same parameters. For the
IMU noises, we followed the datasheet to obtain σan =
5.3mm/s2 and σωn = 3.6mrad/s. However, empirical
IMU data has revealed that the mechanical damping is
not sufficient, and propeller vibrations inject much higher
noises to the acceleration measurements. For this reason,
the value of σan is significantly increased as shown in the
table. We assume null bias random walks, as our flights are
short enough. Initial uncertainties are mostly null, except for
altitude σδz , initial roll σδφ and pitch σδθ, accelerometer bias
σδab , and gyrometer roll and pitch bias σδωb

.

A. Improving PX4 usability

The PX4 sensor has two key limitations that need to be
addressed algorithmically in order to improve its robustness
and usability. The first one is its inability to measure altitudes
below 30 cm. For this, we divide each experiment in 4 phases
depending on the robot state: landed (A), taking-off (B),
flying (C) or landing (D). Thus during A, B and D intervals,
the PX4 output is not reliable. We address this problem by
reading status data of the robot to acknowledge whether it
is in flying mode or not (e.g., motors on/off). Before take-
off (phase A), we overwrite the optical flow measurements
by assuming that the MAV is on zero position, with zero
velocity, and we set a small observation covariance. Thus,
the bias uncertainties on the z acceleration and x and y
angular velocities are reduced. If the robot is flying below
the minimum altitude of 0.3m (phases B and D), detected
with PX4 readings, we set high PX4 covariances because the
measures are not trustable. Hence the filter is propagating the
nominal state with the IMU dynamical model, and practically
does not correct with the PX4 sensor. During regular flight
(phase C) the observation covariances are set to those in
Tab. II, thus allowing the PX4 to correct the estimations
properly.

A last feature of our algorithm deals with the second
PX4 data integrity issue. In some occasions, tilts over 20
degrees produce wrong sonar echoes, deriving in aberrant
PX4 outputs. We detect altitude outliers using the modified
Thompson Tau method [20]. Once an outlier is detected, the
filter correction can be accomplished by using the optical
flow measurement as a function of the IMU’s gyrometer
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Fig. 4. Outlier detection and correction of PX4 measurements. Top: full
500 s altitude sequence with numerous outliers. Bottom plots: zoom of
the arrowed outliers, showing original and corrected altitude and velocity
measurements.

measurement ωS and the state variables,

Φof = S′
(
ωS ×

[
0 0 1

]> − R{q}>v

p(z)

)
4t · f + nΦ

(27)
with nΦ a one-pixel Gaussian noise. For simplicity, we
however re-used the observation model (8) by computing the
velocity vof with (9) substituting hof ← p(z) and ωof ←
ωS . In this case, to compensate for the correlation between
the state and the measurement, we increased the sensor
covariances Nof slightly. Fig. 4 shows the reconstructed vof
in front of typical outliers.

B. Benchmarking all filter variants against ground truth

We present the results in an indoor testbed equipped with
an eight-camera Optitrack motion capture system [21], with
a flying area of some 3× 5 m. Our aim is at comparing
the outcome of our different filter variants against ground
truth. Fig. 5(a) shows the overhead plot of a 100m sample
trajectory (using an ESKF with GE, Q1, and F3). Inspired
by the methodologies in [7], [22], [23], we evaluate the
odometry RMS errors as a function of the trajectory length,
over 9 different trajectories. For each segment, the starting
ground truth and estimation poses are aligned, and the error
is evaluated at the end of the segment. Fig. 5(b) shows the
negligible difference existing between a simple EKF and
the aforementioned ESKF. Considering our flying zone, the
statistic evaluation of these errors is only relevant for segment
lengths up to around 10m (less than one turn to the arena),
because after that the trajectory is rolled over itself and the
nonlinear composition of angular and linear errors produces
optimistic error evaluations. Below these 10m, odometry
errors fit with the expected law of the square root of the
length d of the evaluated segments, as shown in Fig. 6(a).
This good fit indicates that the yaw error contribution to
position error is small. The yaw error, Fig. 6(b), does not
suffer from this nonlinear composition and fits the

√
d better.

At an average of 0.2◦ over the 10m, the induced linear error
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Fig. 6. Benchmark results. Translation and yaw RMS errors with respect to
ground-truth, measured for different path segment lengths d between 0.1 m
and 20 m.

would be of the order of only 10m ∼ (0.2◦) = 3.5 cm, a
small fraction of the 30cm total position drift.

To evaluate all 21 possible filter variants (shown previ-
ously in Tab. I), we identified 100 straight segments of 2m
long over 9 paths. The position RMSEs at the end of the
segments are shown in Tab. III. Notice that the performance
of all filter variants is essentially equivalent.

C. Outdoor arena experiments

The outdoor scenario corresponds to a GPS-denied zone in
which ground truth from external positioning systems is not
available. Instead, we perform manual flights around some
fixed obstacles, taking care to take-off and land on the same
base point.

Fig. 7 shows the calibrated outdoor scenario with the take-
off and landing platform in the center, surrounded by vertical
cylindric obstacles. Fig. 8 shows the estimated trajectories of
15 flights of approximately two minutes and 70 m each (using
an ESKF with GE, Q1 and F3). The quadrotor is driven

TABLE III
POSITION RMS ERRORS (m) AFTER 2 M FLIGHT.

Quat. error GE LE
Quat. int. Q0F Q0B Q1 Q0F Q0B Q1

EKF F2 - - - 0.1984 0.2003 0.1993
ESKF F1 0.1986 0.2007 0.1996 0.1986 0.2005 0.1995
ESKF F2 0.1987 0.2007 0.1997 0.1987 0.2005 0.1996
ESKF F3 0.1987 0.2007 0.1997 0.1987 0.2005 0.1996
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Fig. 7. Calibrated outdoor flying arena for real robot testings. The quadrotor
takes off and lands at the same point in the middle of the field (base).

Fig. 8. Trajectory estimations for 15 different flights (2 minutes, 70 m
each). A sample trajectory is shown in blue. The orange ellipse corresponds
to the 95% confidence region for the landing point.

manually around the obstacles, which results in different
flight paths. The final estimated land points have a standard
deviation of σ =

[
0.50 0.53 0.01

]
m from the center of

the landing base. The orange ellipse in Fig. 8 corresponds
to the zone of confidence of 95% probability of this landing
point distribution. All true landings were done inside the
base area which measures 0.4×0.4m. The orange ellipse is
thus the composition of the landing error and the estimation
error. The blue line corresponds to a sample flight whose
specific results are shown in Fig. 9. Notice in the zoomed
details of position and velocity plots how the estimation
errors increase during take-off and landing periods due to
the PX4 limitations explained in Sec. VI-A. The transition
to observability B→C once the PX4 data is recovered is also
visible.

VII. CONCLUSIONS

This paper presents a simple method for rich and high-
frequency vehicle state estimation fusing low-cost inertial
and smart optical flow measurement units for a MAV, using
low complexity algorithms without sophisticated features.
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Fig. 9. Trajectories of all the estimated states, with their ±3σ bounds,
for the outdoors experiment. The vertical sections indicate the landed states
(A), and the take-off (B), flight (C) and landing (D) maneuvers. Zooms are
provided to appreciate the transition between phases B→C.

A large amount of variants for nonlinear KF have been
benchmarked, revealing that, for such a basic setup, with high
input data rates, the plain EKF filter performs equivalently
to other, more sophisticated options.

A new observation model is derived for this sensor com-
bination, and the observability limitations of the system are
pointed out. Namely, it is difficult to recover the IMU’s
xy accelerometer and yaw gyrometer biases because the
quadrotor dynamics prevent from severe orientation changes.

Methods have also been proposed to overcome situations
of poor PX4 data integrity, mainly due to low altitude or high
tilt angles where the sonar data fails. These improvements
have revealed crucial for improving the robustness of such a
low-cost setup to acceptable levels.

We can think of three avenues for further research. First,
a calibration warm-up period can be specially designed for
quadrotors to compensate for the marginal observability.
Second, some other validation experiments can be done
using an IMU with lower cost than the Microstrain 3dm-
gx3-25. Finally, the non-observable modes can be made
observable by adding other sensor readings; for example,
compass readings can easily avoid the yaw drift.
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