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ToF cameras for eye-in-hand robotics
G. Alenyà, S. Foix and C. Torras

I. INTRODUCTION

A Time-of-Flight (ToF) camera is a relatively new type of

sensor that delivers 3-dimensional images at high frame rate,

simultaneously providing intensity data and range information

for every pixel. It has been used in a wide range of applications

and here we will describe the lessons learned by using such

cameras to perform robotic tasks, specifically in eye-in-hand

configurations. In such configurations, the camera is attached

to the end-effector of a robot manipulator, so that new images

can be obtained by actively changing the point of view of the

camera (Fig. 1).

In an eye-in-hand scenario, some particular characteristics

of the sensor system are appreciated. Mainly, the compactness

and the detection in a short range, besides the obvious require-

ment of quality (precision and accuracy) in the obtained data.

On the one hand, operation in a short range is desired because

manipulator robots have typically a limited workspace, and the

distance from the end-effector to an object located in front of

the robot is short. As will be demonstrated later, ToF cameras

exhibit good performance in short ranges. On the other hand,

as the sensor system is mounted on a robot arm it has to be

lightweight, with no mobile parts, and as small as possible to

avoid interference with the environment or the robot itself.

ToF cameras fit well this description, as they are usually

lightweight, have no mobile parts, and they can be compact

and small as well. Section II introduces ToF cameras and

presents a critical comparison with RGBD cameras (Kinect),

a different 3D sensor that is more and more commonly used

in robotics.

Eye-in-hand configurations have been used extensively for

object modelling [1], and more recently to enable robot

interaction with the environment [2]. Section III presents and

places in context some of the relevant works.

Regarding the quality of data, it is well known that raw

ToF data is quite noisy and prone to several types of distur-

bances [3]. Some of them are systematic and can be calibrated,

and others are non-systematic and sometimes can be filtered

out. In Section IV systematic and non-systematic error sources

are reviewed. Section V shows the combination of both ToF

and color images to obtain colored point-clouds.

The ability to actively move the camera depending on the

scene provides some advantages. In Section VI we show three
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Fig. 1: Example of an eye-in-hand configuration, with a ToF

camera attached to the manipulator end-effector, in this case

a Chlorophyll meter.

Fig. 2: Typical raw ToF image of a flat surface at short

distance. Depth, ranging from 0.41 to 0.46 m, is color coded.

Observe that over-illumination in the center leads to under-

estimation of depth (shift to red), while under-illumination at

borders causes over-estimation (shift to blue).

illustrative examples: understanding the 3D structure of some

relevant parts of the scene to enable robot-object interaction,

obtaining detailed views of 3D structures, and disambiguation

to enhance segmentation algorithms. Finally, some conclusions

are drawn in Section VII.

II. TOF CAMERAS

In ToF cameras depth measurements are based on the well

known time-of-flight principle. A radio frequency modulated

light field is emitted and then reflected back to the sensor,

which allows for the parallel measurement of its phase (cross-

correlation), offset and amplitude [4]. Figure 2 shows a typical

raw image of a flat surface with the depth values coded as

different color values.
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Camera model PMD CamCube Swissranger 4K Kinect

Technology ToF ToF Structured light

Image size 200x200 176x144 640x480 (depth)
1280x1024 (color)

Frame rate 40 fps 30 fps 30fps (depth)
up to 80fps up to 50fps 30/15fps (color)

Lens CS mount f = 12,8 Standard/Wide option fixed

Range 0.3 - 7m 0.8 - 5m 0.5 - 3.5m
0.8 - 8m

Field of view 40x40 43.6x34.6 57x43
69x56

Focus Adjustable Adjustable Fixed

Integration time Manual Manual Auto

Illumination Auto Auto Auto (depth)

Suppression
Outdoor Background No No

Illumination

Depth Depth Depth
Images Intensity Intensity Color

Amplitude Amplitude
Confidence Confidence

Interface USB USB - Ethernet USB

TABLE I: Specifications of different ToF cameras, and comparison with Kinect features.

The main characteristics of two ToF sensors, PMD Cam-

Cube 3 and Mesa Swissranger 4K are detailed in Table I. We

include also the specifications of the Kinect sensors to compare

with a very common alternative 3D sensor. Both camera types

can deliver depth images at reasonably high frame rates. The

main difference is in resolution: ToF cameras still have limited

resolution (typically around 200 x 200), while the Kinect depth

camera exhibits VGA resolution. Both camera types are auto-

illuminated so in principle they can work in a wide variety of

illumination conditions.

We focus this review on 3D perception for robotic manip-

ulation and object modelling, thus resolution is an important

factor. It is worth mentioning that closest working depth for

Kinect is 0.5m1 whereas that for ToF can reach 0.3m, and even

0.2m when equipped with new illumination units [5]. Kinect

resolution is higher but closer views can be obtained with ToF

cameras. Consequently, the resulting horizontal (or vertical)

resolution in mm per pixel of both cameras is very similar

as the lower resolution of ToF cameras can be compensated

with closer image acquisition. The major consequence is that

the density of the point cloud when viewing a given object is

similar for both camera types.

However, placing ToF cameras closer to the object has two

problems, related to focus and integration time, respectively.

Like any other camera that uses optics, focus determines

the depth of field (distance range where sharp images are

obtained). If we set the focus to obtain sharp images of closer

objects then the depth of field is small. ToF cameras do not

have autofocus capabilities, so the focus (and consequently the

desired depth of field) has to be determined in advance.

Moreover, integration time has to be manually adjusted.

Integration time has a strong impact on the quality of the

obtained images, and each integration time sets the camera

for a specific range of depths. As before, for close distances

1It is commonly accepted that 0.7m is the closest distance, but in our tests
we have been able to obtain depth images at 0.5m. New Kinect camera, to
appear in the beginning of 2014 is supposed to work at 0.3m.

the range of possible depths for a given integration time is

small.

Some of the ToF cameras have the capability of auto-

adjusting the integration time. However, depth calibration of

ToF cameras is dependent on the current integration time, and

a common practice is to calibrate for only one integration

time, which is manually determined depending on the expected

depth range.

One of the advantages of Kinect is the ability of delivering

colored depth points if required. As will be presented in

Section V, coloring ToF depth points is also possible but

requires some additional efforts.

One common problem with both cameras is that they do

not provide a dense depth map. The delivered depth images

contain holes corresponding to the zones where the sensors

have problems, whether due to the material of the objects

(reflection, transparency, light absorption) or their position (out

of range, with occlusions). Kinect is more sensitive to this

problem by construction.

Finally, we have tested ToF cameras in outdoor scenarios

with sunlight [6]. An algorithm has been proposed to select

the best integration time depending on the sun conditions, as

well as a suitable strategy to combine two frames to obtain

depth images even when a plant is partially illuminated with

direct sunlight and partially in shadow, as it is common in

greenhouses. As could be expected, a ToF camera provides

depth information but with more noisy depth readings in parts

exposed to direct sunlight.

III. USING TOF CAMERAS IN ROBOTIC MANIPULATION

TASKS

ToF cameras have been used to sense relatively large

depth values for mapping or obstacle avoidance in mobile

robotics, and also for human detection and interaction. At

closer distances, ToF cameras have been applied to object

modelling [7], [8], precise surface reconstruction [9], and

to grasp known [10] and unknown [11] objects. We focus
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TABLE II: ToF camera usage in scene-related tasks

Article Topic Advantages Type of Sensor

Weingarten et al. [12] Obstacle avoidance in static env. 3D at high rate SR2 (depth)

May et al. [13], [14] 3D mapping 3D at high rate/No required Pan-Tilt SR2 (depth)

May et al. [15] Pose estimation/3D mapping Registered depth-intensity SR3 (depth + intensity)

Hedge and Ye [16] Planar feature 3D mapping 3D at high rate/No required Pan-Tilt SR3

Ohno et al. [17] 3D mapping 3D at high rate SR2

Stipes et al. [18] 3D mapping / Point selection Registered depth-intensity SR3

May et al. [19] 3D mapping/SLAM 3D at high rate SR3

Gemeiner et al. [20] Corner filtering Registered depth-intensity SR3 (depth + intensity)

Thielemann et al. [21] Navigation in pipelines 3D allow geometric primitives search SR3

Sheh et al. [22] Navigation in hard env. 3D at high rate SR3 + inertial

Swadzba et al. [23] 3D mapping in dynamic env. 3D at high rate/Registered depth-intensity SR3 (depth + intensity)

Acharya et al. [24]
Safe car parking Improved depth range/3D at high rate Canesta

Gallo et al. [25]

Gortuk et al. [26] Object classification (airbag app.) light/texture/shadow independence Canesta

Yuan et al. [27] Navigation and obst. avoidance Increased detection zone SR3 + laser

Kuhnert and Stommel et al. [28] 3D reconstruction Easy color registration PMD + stereo

Netramai et al. [29] Motion estimation 3D at high rate PMD + stereo

Huhle et al. [30] 3D mapping Easy registration of depth and color PMD + color camera

Prusak et al. [31] Obst. avoidance/Map building Absolute scale/better pose estimation PMD + spherical camera

Swadzba et al. [32] 3D mapping/Map optimisation 3D at high rate SR3

Vaskevicius et al. [33]
Localization/Map optimisation

Neighbourhood relation of pixels
SR3

Poppinga [34] No color restrictions

our review on two complementary areas: scene-related tasks

and object-related tasks. Scene-related tasks generally involve

moving the camera using a mobile robot. Although the range

of distances involved is rather long, the techniques and ideas

can be applied to eye-in-hand algorithms. Object-related tasks

involve the use of ToF cameras at close distances. The most

common application is object modelling, and to a lesser extent

to enable object manipulation.

A table is provided in each section to summarise and

give a comprehensive view of its contents. Our conclusion

is that the most exploited feature of ToF cameras is their

capability of delivering complete scene depth maps at high

frame rate without the need of moving parts. Moreover,

foreground/background segmentation methods based on depth

information are quite straightforward, so ToF images are used

in many applications requiring them. A good characteristic is

that geometric invariants as well as metric constraints can be

naturally applied to ToF depth images.

The depth-intensity image pair is also often used, exploiting

the fact that both images are delivered already registered. In

applications where the reduced resolution of a ToF camera

is critical, it is complemented with other sensors, usually

color cameras. ToF cameras are used in human environments

because they are eye-safe and permit avoiding physical contact

and dedicated markers or hardware.

Some of the reviewed works do not apply any calibration

method to rectify the depth images. We believe that this

explains several of the errors and inaccuracies reported in some

experiments, and that with proper calibration better results can

be obtained. We note that ToF technology is evolving and

depth correction methods are still subject to investigation.

The first works that appeared were comparisons between

ToF and other technologies. Then, in subsequent works, these

technologies were gradually complemented, and sometimes

substituted, by ToF sensors.

A. Scene-related tasks

This kind of applications deal with tasks involving scenes

that contain objects like furniture and walls. Observe that the

expected range of distances to these objects is relatively wide.

A usual framework in these applications is to install the camera

on a mobile robot and use it for robot navigation and mapping.

As it will be seen, one of the areas where ToF sensors are

adequate is in obstacle avoidance, because the detection region

is not only horizontal (like in laser scanners) but also vertical,

allowing the robot to detect obstacles with complex shapes.

Clearly, the most appreciated characteristic of ToF sensors

here is the high frame rate (see Table II). Some applications

also benefit from the metric information obtained with depth

images.

Comparison. Initial works were devoted to the comparison

of ToF with other sensors, mainly laser scanners. Thanks to the

larger vertical field of view of ToF cameras, difficult obstacles

(like tables) are better detected by them than by 2D laser

scanners. For example, Weingarten et al. [12] demonstrated

this in the context of an obstacle avoidance algorithm.

To obtain a comparable detection area, a 3D scanner can be

built from a pivoted 2D laser scanner. May et al. [13], [14]

compared the performance of their robot navigation algorithm

using such sensor and using a ToF camera. One of the

main difficulties they encountered is the accumulated error

in the map created with the ToF camera, leading to failures

when closing loops, for instance. Compared to pivoted laser

scanners, accumulated errors usually occur more often with

ToF cameras due to their smaller field of view. As we will

see in the next section, this problem is also present in objects

modelling tasks.

Only ToF. ToF sensors have been used successfully as the

unique sensor in some mobile robotic applications, despite

their characteristic limited resolution. For mapping purposes,

ToF sensors are very interesting because they allow to ex-
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tract geometric features. Most of the reviewed applications

extract planar regions using both intensity and depth images.

In [15], May et al. explored different methods to improve pose

estimation. They propose additionally a final refinement step

that involves the alignment of corresponding surface normals

leading to improved 3D scene maps computed at frame rate.

The normal of the extracted planes is also used by Hedge

and Ye [16] to detect badly conditioned plane detection, as

horizontal planes in a staircase. Also Pathak et al. [35] have

reported the use of ToF to extract planes for 3D mapping.

Alternatively, the acquired crude point clouds can be pro-

cessed by a variant of the Iterative Closest Point (ICP)

algorithm to find the relation between two point clouds.

For example, a real time 3D map construction algorithm is

proposed by Ohno et al. [17] in the context of a snake-like

rescue robot operating in complex environments, like rubble

in disaster-like scenarios. Here, a modification of the classical

ICP algorithm is proposed to cope with ToF noisy readings

and to speed up the process.

Another adaptation of an ICP-like algorithm for ToF images

is presented by Stipes et al. [18], where both the depth and

the intensity images are used. They present a probabilistic

point sampling process to obtain significant points used in the

registration process.

ICP assumes that both point clouds overlap, so wrong depth

points can distort the result. May et al. [19] presented an

ICP variant to take this explicitly into account. They propose

a mapping algorithm using a Simultaneous Localization and

Mapping (SLAM) technique to reduce the reconstruction error

that is specially useful when a zone of the scenario is revisited,

i. e., when closing a loop.

Also with potential applications to SLAM, Gemeiner et

al. [20] proposed a corner filtering scheme combining both

the intensity and depth images of a ToF camera.

Complex environments are a good test field for ToF sensors,

as they are capable of naturally recovering their geometry. In

the context of pipeline inspection, Thielemann et al. [21] have

proposed to use a ToF camera to detect the different junctions

based not on appearance but on geometric properties. Here

the self-illumination mechanism of ToF sensors is appreciated.

Furthermore, Sheh et al. [22] have proposed a ToF based

navigation system for a random stepfield terrain2. They use the

depth information to color an array of pixels and then perform

some classical edge detection algorithms in this array, which

is called heightfield. The heading and attitude compensation

of the image is performed using an inertial unit.

ToF sensors have proved to be also applicable in dynamic

environment mapping thanks to their characteristic high frame

rate. Swadzba et al. [23] present a scene reconstruction algo-

rithm that discards dynamic objects, like pedestrians, using

a static camera in the difficult case of short sequences (2-

3 sec.). Motion is recovered via optical flow in the intensity

images, and then transferred to the depth image to compute a

3D velocity vector.

ToF cameras have been employed also in the automotive

2Stepfield terrains are the NIST proposal to generate repeatable terrain for
evaluating robot mobility.

field to assist in parking operations. In [24] Acharya et al. de-

scribe the system design of a ToF camera for backup obstacle

detection. In [25] the same group presents an application of a

similar camera for the detection of curves and ramps also in

parking settings. A modified Ransac algorithm, that uses only

the best inliers, is used to find the best fitting of the planar

patches that model the environment. ToF has been used also

to control the deployment of the airbag system depending on

the nature of the occupant in a car [26]: adult, child, child seat

or objects.

Fusion with other sensors. Some other authors have started

recently to fuse ToF cameras with other sensors, i.e. laser scan-

ners and different types of color cameras. A simple approach is

to integrate ToF into existing algorithms. For example, Yuan et

al. [27] propose a fusion process to integrate 3D data in the

domain of laser data by projecting ToF point clouds onto

the laser plane. This is applicable when considering a simple

shaped robot, i.e. one that can be approximated by a cylinder,

and it entails a minimum update of their previous laser-

scanner-based algorithm. Nevertheless, the resulting algorithm

can cope with new kinds of obstacles in a simple way. Note

that this is not a pure 3D approach and it is not using the

potentiality of having full 3D information at a high frame rate.

Fusion of color and depth information in scene tasks

seems to have a great potential. In a preliminary work,

Kuhnert and Stommel [28] present a revision of their 3D

environment reconstruction algorithm combining information

from a stereo system and a ToF sensor. Later, Netramai et

al. [29] compared the performance of a motion estimation

algorithm using both ToF and depth from stereo. They also

presented an oversimplified fusion algorithm that relies on the

optical calibration of both sensors to solve the correspondence

problem. These works propose fusion paradigms combining

the results produced in two almost independent processes.

Contrarily, Huhle et al. [30] present a color-ICP algorithm

useful for scene-based image registration, showing that in-

troducing color information from a classical camera in the

beginning of the process effectively increases the registration

quality.

Depth information allows to identify in a robust manner

not only obstacles but also holes and depressions. Prusak et

al. [31] proposed a join approach to pose estimation, map

building, robot navigation and collision avoidance. The au-

thors use a PMD camera combined with a high-resolution

spherical camera in order to exploit both the wide field of

view of the latter for feature tracking and pose estimation,

and the absolute scale of the former. The authors relied on a

previous work on integration of 2D and 3D sensors [36], [37],

showing how restrictions of standard Structure-from-Motion

approaches (mainly scale ambiguity and the need for lateral

movement) could be overcome by using a 3D range camera.

The approach produced 3D maps in real-time, up to 3 frames

per second, with an ICP-like algorithm and an incremental

mapping approach.

Noisy data enhancement. Swadzba et al. [32] propose a

new algorithm to cluster redundant points using a virtual plane,

which apparently performs better in planar regions and reduces

noise, improving registration results. Furthermore, a group at
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TABLE III: ToF camera usage in object-related tasks

Reference Topic Advantages Type of Sensor

Ghobadi et al. [39] Dynamic object detection and classification Color and light independence PMD

Hussmann and Liepert [40] Object pose Easy object/background segmentation PMD

Guomundsson et al. [41] Known object pose estimation Light independent / Absolute scale SR3

Beder et al. [42] Surface reconstruction using patchlets ToF easily combines with stereo PMD

Fuchs and May [9] Precise surface reconstruction 3D at high rate SR3/O3D100 (Depth)

Dellen et al. [7]
3D object reconstruction 3D at high rate SR3 (Depth)

Foix et al. [8]

Kuehnle et al. [10] Object recognition for grasping 3D allow geometric primitives search SR3

Grundmann et al. [43] Collision free object manipulation 3D at high rate SR3 + stereo

Reiser and Kubacki [44] Position based visual servoing 3D is simply obtained / No model needed SR3 (Depth)

Gachter et al. [45]
Object part detection for classification 3D at high rate

SR3
Shin et al. [46] SR2

Marton et al. [47] Object categorisation ToF easily combines with stereo SR4 + color

Saxena et al. [11] Grasping unknown objects 3D at high rate SR3 + stereo

Zhu et al. [48] Short range depth maps ToF easily combines with stereo SR3 + stereo

Lindner et al. [49] Object segmentation for recognition Easy color registration PMD + color camera

Fischer et al. [50] Occlusion handling in virtual objects 3D at high rate PMD + color camera

Jacobs University [33], [34] has proposed to identify surfaces

using a region growing approach that allows the poligonization

of the resulting regions in an incremental manner. The nature

of the information delivered by ToF cameras, specially the

neighbourhood relation of the different points, is explicitly

exploited and also their noisy nature is taken into account.

Moreover, some comparisons with results from stereo rigs are

reported.

Finally, Huhle et al. [38] propose an alternative representa-

tion of the map by means of the Normal Distribution Trans-

form, which efficiently compresses the scan data reducing

memory requirements. This representation seems to be well

suited also for the typical noisy ToF depth images.

B. Object-related tasks

ToF cameras have also been successfully used for object

and small surface reconstruction, where the range of distances

is small. A comprehensive summary is given in Table III

Comparison with stereovision. A classical solution in the

area of object modelling is the use of calibrated stereo rigs.

Therefore, initial works were devoted to their comparison

with ToF sensors showing the potential of the latter when

poorly textured objects are considered, and when background-

foreground segmentation is difficult. For planar and untex-

tured object surfaces, where stereo techniques clearly fail,

Ghobadi et al. [39] compared the results of a dynamic object

detection algorithm based on SVM using stereo and ToF depth

images. In the same manner, Hussmann and Liepert [40] also

compared ToF and stereo vision for object pose computation.

The key difference favourable to ToF camera is its ability to

effectively segment the object and the background, even if

their color or texture is exactly the same (i.e. a white object

on a white table). They also propose a simple method to obtain

object pose from a depth image.

Another comparison is presented by Guomundsson et

al. [41]. They classify and estimate the pose of some simple

geometric objects using a Local Linear Embedding (LLE)

algorithm, and contrast the results of using the intensity image

and the depth image. Their analysis shows that range data

adds robustness to the model, simplifies some preprocessing

steps, and in general the generated models capture better the

nature of the object. Stereo and ToF have also been compared

by Beder et al. [42] in the framework of surface patchlet

identification and pose estimation. In their setup, using a

highly textured surface for stereo experiments, ToF slightly

outperforms stereo in terms of depth and normal direction

to the patchlet. Thus, ToF can be used to benchmark stereo

surface reconstruction algorithms.

ToF for surface reconstruction. To obtain 3D object

surfaces, multiple 3D images need to be acquired and the

resulting 3D point clouds should be combined. The setups

for these object modelling algorithms usually include a ToF

camera mounted on the end-effector of a robotic arm. Point

cloud registration is more critical in object modelling than

in scene modelling. Even if the hand-eye system is precisely

calibrated, the displacement given by the robot is usually not

enough and the transformation between different point clouds

has to be calculated. The application of ICP in two consecutive

views naturally accumulates errors and consequently more

precise algorithms need to be used.

To obtain precise object models, Fuchs and May [9]

perform a circular trajectory around the object to acquire

equally spaced images, and use a simultaneous matching

algorithm [51] instead of classical ICP to distribute the errors

in all the estimated displacements. Their work also includes

a comparison of two different ToF cameras. Alternatively,

Dellen et al. [7] propose a fine registration algorithm based

on an ICP algorithm using invariant geometric features. The

resulting model is obtained after reducing noise and outliers

by treating the coarse registered point cloud as a system

of interacting masses connected via elastic forces. Alterna-

tively, Foix et al. [8] propose a method to compute the

covariance of the point clouds registration process (ICP), and

apply an iterative view-based aggregation method to build

object models under noisy conditions. Their method does

not need accurate hand-eye calibration since it uses globally

consistent probabilistic data fusion by means of a view-based

information-form SLAM algorithm, and can be executed in
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real time taking full advantage of the high frame rate of the

ToF camera.

ToF for object manipulation. Object recognition and

object pose estimation algorithms are usually related to robotic

manipulation applications: objects have to be identified or

categorised with the aim of finding and extracting some char-

acteristics to interact with them. This is usually a challenging

task as ToF depth images are noisy, and low sensor resolution

leads to only few depth points per object.

Kuehnle et al. [10] explore the use a ToF camera to

recognise and locate 3D objects in the framework of the

robotic manipulation system DESIRE. Objects are modelled

with geometric primitives. Although they use depth images

rectified up to some level, their system is not reliable enough.

In a subsequent work [43] they use the ToF camera to detect

unknown objects and classify them as obstacles, and use a

stereo camera system to identify known objects using SIFT

features. As it is widely known, this second approach requires

textured objects while their first approach does not. In the same

project, Reiser and Kubacki [44] have proposed a method to

actively orientate the camera using a visual servoing approach

to control a pan-and-tilt unit. They proved that position-based

visual servoing is straightforward by using a ToF camera,

because of its ability to deliver 3D images at high rate.

In a different way, Gächter et al. [45] propose to detect

and classify objects by identifying their different parts. For

example, chairs are modelled by finding their legs, which in

turn are modelled with vertical bounding boxes. The tracking

of the different parts in the image sequence is performed using

an extended particle filter, and the recognition algorithm is

based on a SVM, that proves again to be useful in typical

noisy ToF images. Later, Shin et al. [46] used this incremental

part detector to propose a classification algorithm based on a

geometric grammar. However, they use a simulated environ-

ment because the classification in real scenarios does not seem

to be reliable enough.

Depth information is very useful in cluttered environments

to detect and grasp unknown objects: the 3D region of in-

terest can be extracted easily, and some object segmentation

algorithms can be developed combining cues from both a ToF

sensor and a color camera. Using such a combined sensor,

Marton et al. [47] proposed a probabilistic categorisation

algorithm for kitchen objects. This work uses a new SR4000

camera. This sensor assigns a confidence value to each depth

reading that allows to infer if the object material is producing

bad sensor readings.

Thanks to the depth information, some grasping proper-

ties can be easier to evaluate, i.e. form- and force-closure,

sufficient contact with the object, distance to obstacles, and

distance between the center of the object and the contact point.

Saxena et al. [11] used this advantage to propose a learning

grasp strategy that identifies good grasping points using partial

shape information of unknown objects. The contribution of

the depth information allows to update an already presented

method using a color camera, with the advantage of having

depths even in textureless portions of the objects.

Fusion algorithms. In fact, ToF and stereo systems natu-

rally complement one another. As has been argued before, ToF

performs correctly in poorly textured surfaces and object seg-

mentation becomes easy even in poorly contrasted situations.

Contrarily, it has difficulties precisely in textured surfaces and

in short distances, where stereo outperforms it. This fact has

been exploited in several works. For example, Zhu et al. [48]

propose a probabilistic framework to fuse depth maps from

stereo and the ToF sensor. They use a depth calibration method

to improve the ToF image, which is useful in small depth

ranges (from 1m to 1.4m).

Another fusion framework is proposed by Lindner et al. [49]

using calibration and scaling algorithms. They obtain a dense

colored depth map using the geometrical points correspon-

dence between the ToF and color cameras by assigning a color

to the ToF depth points, and interpolating the depth of the rest

of the color camera pixels. A way to detect areas not seen by

the color camera is also provided, as well as some techniques

to enhance edges and detect invalid pixels.

Finally, in the context of augmented reality, Fischer et

al. [50] combine a ToF camera and a standard color camera

to handle virtual object occlusions caused by real objects in

the scene. Fast 3D information is highly valuable, as well as

its independence on lightning conditions, object texture and

color. They do not use any depth calibration or noise outlier

removal algorithm, and consequently the negative effect of

noise is clearly visible in their results.

Summary and final remarks.

ToF cameras have been successfully used for object and

small surface reconstruction at close distances. In general the

scenario for these applications involves a robotic manipulator

and the task requires modelling object shape. In such settings,

one has to expect that some over-saturation problems may

occur when acquiring depth images. On the contrary, as the

range of depths is short, calibration can be simplified.

Some of the reviewed works do not apply any calibration

method to rectify the depth images. We believe that this

explains some of the errors and inaccuracies reported in some

experiments, and that with proper calibration better results can

be obtained. We note that ToF technology is evolving and

depth correction methods are still subject to investigation.

Foreground/background segmentation methods based on

depth information are quite straightforward, so ToF images

are used in many applications requiring them. A good charac-

teristic is that geometric invariants as well as metric constraints

can be naturally used with the ToF depth images.

ICP-like techniques are the preferred solution to reconstruct

surfaces. A common approach to identify objects is the use

of Support Vector Machines, which perform adequately when

considering the noisy point models obtained with one ToF

image or when merging different ToF views.

The high frame rate of ToF sensors is a key advantage,

but also the natural combination with color cameras and

stereo rigs. The fact that the depth and intensity images are

delivered already registered is handy in some contexts, but in

applications where the reduced resolution of a ToF camera is

critical, it is complemented with other sensors, usually color

cameras. Actually, a growing trend is observed not to use the

intensity image supplied by the ToF camera, preferring the

combination with high-resolution conventional cameras.
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IV. DEPTH MEASUREMENT ERRORS

Raw measurements captured by ToF cameras provide noisy

depth data. Default factory calibration can be used in some ap-

plications where accuracy is not a strong requirement and the

allowed depth range is very large. For the rest of applications

ToF cameras have to be specifically calibrated over the defined

application depth range. Two types of errors, systematic and

non-systematic, can interfere and consequently corrupt ToF

depth readings. Two of the most important systematic errors

are depth distorsion, an offset that affects all the image and that

is dependent on the measured depth (Fig. 3), and built-in pixel

errors, which is a constant offset of each pixel independent of

the measured depth. While systematic errors are compensated

by calibration, non-systematic ones are minimised by filtering.

One of the know problems with ToF is the so called flying

points. These are false points that appear between the edges

of the objects and the background. These points can be easily

located in the depth image and the 3D point cloud, and easy-

to-implement filtering methods are available [3].

Our interest is to place the sensor very close to the scene

components, usually in a range from 30 to 50cm. This high

proximity makes ToF cameras easier to calibrate but more sus-

ceptible to some error sources. For example, depth distortion

can be approximated linearly due to the reduced range, and

the built-in pixel errors can be approximated with a look-up

table. Special care should be taken to compensate errors due

to saturation (amplitude-related) [8], light scattering [52] and

multiple light reflections [9]. Note that newer ToF cameras

allow to easily detect saturated pixels.

ToF cameras are evolving and a lot of work is being carried

out to understand the source of errors and to compensate them.

The next section presents a classification and short description

of the different errors. A detailed ToF error description and

classification can be found in [3].

A. Systematic Errors

Five types of systematic errors have been identified:

Depth distortion appears as a consequence of the fact that

the emitted infra-red light cannot be generated in practice as

theoretically planned (generally sinusoidal) due to irregular-

ities in the modulation process. This type of error produces

an offset that depends only on the measured depth for each

pixel. Usually, the error plotted against the distance follows a

sinusoidal shape3 (see Fig. 3). This error is sometimes referred

to as wiggling or circular error.

Built-in pixel-related errors arise from two main sources.

On the one hand, errors due to different material properties in

CMOS-gates. This produces a constant pixel-related distance

offset, leading to different depths measured in two neighbour

pixels corresponding to the same real depth. On the other

hand, there are latency-related offset errors due to the capacitor

charge time delay during the signal correlation process. This

can be observed as a rotation on the whole scene (Fig. 4a)

3This has been explained as due to perturbations in the measured signal
phase caused by aliasing of odd harmonics contained in the emitted reference
signal [53].

Fig. 3: Depth distortion offset (wiggling effect). (Blue) Mea-

surements captured with a SR3100 ToF camera at several

integration times (2ms - 32 ms). (Red) 6-degree polynomial

approximated function.

reporting wrong depth measurements. After calibration, the

complete scene pose can be correctly recovered (Fig. 4b).

Amplitude-related errors occur due to low or saturated

reflected amplitudes. Low amplitude appears more often in

the border of the image as the emitted light is lower that in

the center where the depth is overestimated. Contrarily, when

the object is too close to the camera, saturation can appear and

depth is underestimated (observe Fig. 2). Moreover, amplitude-

related errors occur due to differences in the object reflectivity,

causing differences in the amount of reflected light, and thus

yielding different depth measurements for the same constant

distance. This effect can be recognized in Fig. 4c. The image

corresponds to a typical calibration pattern: a checker-board

of white and black squares. Observe the difference in depth

of the points corresponding to squares of each color.

Both pixel-related errors (depth and amplitude) cause a

constant depth miss-measurements and can be compensated

by means of pixel-offset-based calibration methods as the so-

called Fixed Pattern Noise (FPN) [54]. After the correction

determined by calibration, the checkerboard 3D structure can

be recovered (Fig. 4d).

Integration time-related error. Integration time (IT) can

be selected by the user. It has been observed that for the

same scene different IT cause different depth values in the

entire scene. The main reason for this effect is still subject of

investigation.

Temperature-related errors happen because internal cam-

era temperature affects depth processing, explaining why some

cameras include an internal fan. Depth values suffer from a

drift in the whole image until the temperature of the camera

is stabilised.

B. Non-systematic Errors

Four non-systematic errors can also be identified in depth

measurements with ToF cameras, the occurrence of the last

three being unpredictable.
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(a) Uncalibrated (b) Calibrated

(c) Uncalibrated (d) Calibrated

Fig. 4: 3D image of a planar surface and a white/black checker-

board. (a) surface should be horizontal, but built-in pixel-

related error causes a distortion. (b) Once calibrated, the

orientation of the plane and the depth of individual points

is corrected. (c) Observe the difference in depth between the

squares of each color. (d) The calibrated image is rectified

taking into account built-in and amplitude errors.

Signal-to-noise ratio distortion appears in scenes not uni-

formly illuminated. Low illuminated areas are more suscepti-

ble to noise than high illuminated ones. This type of error is

highly dependent on the amplitude, the IT parametrisation and

the depth uniformity of the scene. Non-uniform depth over

the scene can lead to low-amplitude areas (far objects) that

will be highly affected by noise. Usually the IT is calculated

to optimally increase accuracy on the distance range of the

working scene area.

Multiple light reception errors appear due to the inter-

ference of multiple light reflections captured at each sensor’s

pixel. These multiple light reflections depend on the geometric

shape of the objects in the scene and can have two origins.

The more obvious is due to concavities that cause multiple

reflections. The other one is produced when different depths

project to the same pixel, it is more obvious in the edges of

the objects, and generates the so called flying points between

foreground and background. Flying points can be detected and

filtered out (see Fig 5).

Light scattering effect arises due to multiple light reflec-

tions between the camera lens and its sensor. This effect

produces a depth underestimation over the affected pixels,

because of the energy gain produced by its neighbouring pixel

reflections [55]. Errors due to light scattering are only relevant

when nearby objects are present in the scene. The closer an

object, the higher the interference [56]. This kind of errors

are hard to rectify, but some ToF cameras permit to identify

over-exposed pixels using some control flags.

Motion blurring, present when traditional cameras are used

in dynamic environments, appears also with ToF cameras. This

is due to the physical motion of the objects or the camera

during the integration time used for sampling.

(a) Raw image (b) Filtered

Fig. 5: Reduction of noise by filtering pixels using a flying-

points detector and depth threshold filtering.

V. COLORING DEPTH POINTS

The combination of ToF images and color images can be

performed to obtain colored point-clouds [57], like the ones

delivered by Kinect, using the extrinsic calibration parameters

between both cameras.

Traditionally extrinsic calibration has been addressed by

considering the intensity image of the ToF camera and using

classical stereo calibration algorithms [58], [50], [59], [43].

However, the characteristic low resolution of this type of

camera leads to a poor localization of the calibration pattern

points and the obtained calibration parameters are usually

noisy.

Thus, the idea is to take advantage of depth information

when calibrating. Once a color camera has been calibrated

with a known pattern, reconstruction of the calibration poses

is possible, and this can be used to find better extrinsic

parameters [60]. A software to calibrate one or multiple

color cameras with a ToF camera using this principle is

available [61]. This algorithm also includes a depth calibration

model that represents the depth deviation as a polynomial

function, similar to [9].

Once the extrinsic parameters of the coordinate transfor-

mation between a color camera and a ToF camera have

been obtained, data fusion is possible. The easy part is to

find the correspondences between them and put color to the

depth image, but more can be done. Due to the difference

in resolution (i.e., 204 × 204 pixels a CamCube image, and

640 × 480 a color image), between each pair of neighbour

points in the ToF image there are several points in the color

image. As a consequence, these points can be interpolated to

obtain a dense depth map [58] where all the color points can

be used.

Bartczak et al. [62] use a 3D surface mesh that is rendered

into the color camera view as an alternative algorithm to obtain

a dense depth map. Huhle et al. [38] present a completely

different approach, where the dense depth map is obtained

using a Markov Random Field (MRF). Depths are represented

in the model taking explicitly into account the discontinuities,

which are used as a prior to perform the alignment.

As it is typical in stereovision, some scene points are seen

by one camera but not by the other due to their slightly

different viewpoints. Consequently, for some depth points it is
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Fig. 6: Calibration errors produce bad colored points at the

edge of the leaf. Additionally, observe the wrong color assign-

ment in some background points, marked automatically in red,

corresponding to the shadow of the leaf. This problem arises as

the optical axes of the depth camera and the color camera are

not the same and some depth points have no correspondence

in the color image. Other sensor combinations, like Kinect,

suffer the same problem.

impossible to find their corresponding one in the color image.

Note that these occlusions appear mainly for close objects,

precisely our scenario.

Figure 6 is a detail of an image acquired with a Cam-

Cube + color camera sensor (Fig 7a). In this example, occluded

points are detected and colored in red using a Z buffer

approach. First, the point cloud is transformed to the RGB

camera reference frame using the extrinsic transformation

matrix F. Ideally, this leads to 3D points projecting to the

corresponding pixel in the color image. In the case of oc-

clusion, only the point that is closer to the camera is stored

in the Z buffer. However, as the ToF camera has a lower

resolution than the color camera, it is possible that two 3D

points (namely, the foreground and the occluded background

points) do not project exactly onto the same color point, so

no one is removed. This can lead to a mosaic of foreground-

background pixels in the regions where occlusions occur. A

neighbourhood region can be taken into account to build the

Z buffer, so that the depth of neighbours determines whether

occlusions are to be considered.

To completely avoid the occlusion problem, the ToF and

the color camera optical axes should be the same. This can be

accomplished using a beam splitter between the two cameras

mounted at 90o [63], [64].

VI. APPLICATIONS

Some examples of the applicability of ToF cameras in eye-

in-hand configuration are presented in this section. Three of

the main advantages of actively changing the point of view

of a ToF camera are highlighted: the easy acquisition of 3D

(a) Custom cutting tool and ToF-color camera set.

(b) Chlorophyll meter and ToF camera.

Fig. 7: Details of two different tools in the end-effector of

(a) a WAM robot and (b) a Kuka Lightweight robot. Both

tools require that the leaf is placed inside their lateral aperture.

An eye-in-hand ToF camera permits acquiring the 3D plant

structure required to compute robot motion.

structure (that allows straightforward foreground-background

segmentation), the ability to acquire accurate views of par-

ticular details of the scene, and the ability to disambiguate

scenes.

The examples are based on recent experiences mainly in

the field of plant phenotyping, and to a lesser extent in

that of textile manipulation. In plant phenotyping, a large

number of plants has to be monitored searching for unusual

plant responses to external factors as extreme humidity or

poor watering. Nowadays, automation of greenhouses provides

automatic conveyor belts to transport plants to a measuring

cabin, where a set of sensors perform all the measurements

required. However, plants can have complex shapes, and

having to define the best static position for all the cameras and

other sensors is problematic. The ability to mount a sensor

on a manipulator robot in an eye-in-hand configuration is

highly appreciated. Additionally, some tasks require to place

the sensor or the tool on the surface of a leaf. We provide here

two examples of such tasks: the measurement of chlorophyll
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(a) Frame 1: intensity image and segmentation

(b) Frame 2: intensity image and segmentation

Fig. 8: Scene containing a detected leaf occlusion. After

changing the point of view the occluded leaf is discovered

and more characteristics (e.g., leaf area) can be measured.

Depending on the particular leaf arrangement, it is not always

possible to completely observe the occluded leaf.

with a SpadMeter, and the extraction of sample discs for DNA

analysis (see in Fig. 7 both scenarios with the ToF cameras in

an eye-in-hand configuration).

a) 3D structure: One of the objectives in plant pheno-

typing is to gather as much information as possible about

each specimen, preferably 3D relevant information to enable

its subsequent manipulation. Color vision is helpful to extract

some relevant features, but it is not well-suited for providing

the structural/geometric information indispensable for robot

interaction with plants. 3D cameras are, thus, a good com-

plement, since they directly provide depth images. Moreover,

plant data acquired from a given viewpoint are often partial

due to self-occlusions, thus planning the best next viewpoint

becomes an important requirement. This, together with the

need of a high throughput imposed by the application, makes

3D cameras (which provide images at more than 25 frames-

per-second) a good option in front of other depth measuring

procedures, such as stereovision or laser scanners.

Figure 8 shows an example of two leaves, the one in the

foreground partially occluding the one in the background.

Segmentation using only depth information is straightforward.

Observe that the background leaf can be better observed after a

camera motion. The benefits of moving the camera have some

limits in such complex scenarios, as it is not always possible

to obtain a better viewpoint, for example when occlusions are

too strong, or when the optimal point of view is out of the

working space of the robot.

b) Detailed views: The eye-in-hand configuration allows

to control not only the viewpoint of the camera, but also

the distance to the object. To change the distance is also an

strategy to change the effective resolution of the image, as

(a) Folded (b) On a mannequin

Fig. 9: Details of the perception of a shirt in different

configurations. Observe that the small wrinkles are correctly

perceived, and some characteristic parts, like the collar shape,

are clearly visible.

(a) RGB color image (b) Colored depth image

Fig. 10: Detail of a plant. Observe that the stems, even if they

are thin, are correctly acquired.

relevant details can be better focused.

Figure 9 shows the image of a shirt in two different

configurations: folded and hanged. Here the task is to grasp

the shirt from the collar to allow the robot to hang the shirt

in a hanger. Observe that in both configurations the details

of the collar, the buttons and small winkles are visible. In

the hanged shirt the sleeves are identifiable as well. Previous

works have shown that this 3D structure can be used to identify

wrinkles [65] and also the collar structure, using computer

vision algorithms [66].

Clearly, the point of view determines the nature of the

gathered information, but also the sensor sensitivity determines

the relevant details that can be observed. Figure 10 shows a

view of a plant where the stems are visible. Here, the point

of view is important, but also that ToF cameras are sensible

enough to capture these structures. This is hard to obtain with

classical stereovision, and completely impossible with other

sensors, like Kinect.

c) Disambiguation: Segmentation algorithms use differ-

ent parameters to adapt to the characteristics of the data,

like long ranges, noise type, and sensitivity. The eye-in-hand

approach permits moving the camera to find the view that

fits better the segmentation parameters. Figure 11 shows an

example, where in the first view the segmentation algorithm,
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(a) Frame 1: intensity image and segmentation

(b) Frame 2: intensity image and segmentation

Fig. 11: Scene containing a possible merging of leaves. After

changing the point of view, the ambiguity is clarified and two

leaves are detected instead of one. Depending on the particular

leaf arrangement, it is not always possible to completely

disambiguate the occluded leaf.

that uses depth similarity between adjusted surfaces, fails

to distinguish two different leaves. Using a next-best-view

algorithm [8], a new view is selected that maximizes the

difference in depth of the two leaves, thus the algorithm is

now capable of distinguishing the two leaves.

VII. CONCLUSIONS

ToF cameras have been presented from different perspec-

tives, including: underlying principle and characteristics, cali-

bration techniques, applications where camera advantages are

explicitly exploited, and potential for future research. Over

the last years, performance of ToF cameras has improved

significantly; errors have been minimised and higher resolution

and frame rates have been obtained. Although ToF cameras

cannot yet attain the depth accuracy offered by other types of

sensors such as laser scanners, plenty of research demonstrates

that they perform better in many robotic applications. The

application of ToF cameras in the wide range of scientific

areas we have reviewed indicates their great potential, and

widens the horizon of possibilities that were envisaged in the

past for vision-based robotics research. We have highlighted

here eye-in-hand configurations, where the sensor is mounted

on the end-effector of a robot manipulator and it is placed

at a short-distance from the target object. We have provided

experimental evidence of the effectivity of such approach in

three tasks: 3D structure recovering of plants, acquisition of

detailed views, and disambiguation.

Advantages of this type of sensors are multiple: they are

compact and portable, easing movement; they make data

extraction simpler and quicker, reducing power consumption

and computational time; and they offer a combination of

images that show great potential in the development of data

feature extraction, registration, reconstruction, planning and

optimisation algorithms, among other positive characteristics.

Thus, ToF cameras prove to be especially adequate for eye-in-

hand and real-time applications in general, and in particular

for automatic acquisition of 3D models requiring sensor move-

ment and on-line mathematical calculation.

Finally, some broad challenges need to be mentioned. First,

resolution is still generally low for ToF cameras, despite some

efforts have already led to better resolutions as explained

above. Second, short integration times produce strong noise

ratio, and high integration times can result in pixel saturation

[10]. Although some algorithms dealing with these problems

have already been proposed, more research is needed in this

direction. Third, the bi-static configuration (different position

of the emitter and the receiver) causes problems in close range

situations because the measured intensity is sensitive to the

varying illumination angle. The ability to move the camera is

crucial to minimize this effect.

Other concerns include ambient light noise, motion artifacts

and high-reflectivity surfaces in the scene. Ambient light may

contain unwanted light of the same wavelength as that of the

ToF light source, which may cause false sensor measurements.

Frequency-based filters can be used in order to minimise

this effect. Motion artifacts are errors caused by receiving

light from different depths at the same time due to object

motion in the scene. This type of errors are mostly observed

around the edges of the moving object and can be attenuated

either by increasing the frame rate, or by correction using

motion estimation. Finally, errors due to the coexistence of

low-reflective and high-reflective objects (mirroring effect) can

be addressed by combining multiple exposure settings.
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[6] S. F. W. Kazmi and G. Alenyà, “Plant leaf imaging using time of

flight camera under sunlight, shadow and room conditions,” in IEEE

International Symposium on Robotic and Sensors Environments, 2012,
pp. 192–197.
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