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Abstract

3D metric data of environmental structures is nowadays present in many infor-
mation sources (maps, GIS) and can be easily acquired with modern depth sens-
ing technology (RGBD, laser). This wealth of information can be readily used for
single view calibration of 2D cameras with radial distortion, provided that image
structures can be matched with the 3D data.

In this paper we present an analysis of the level of accuracy that can be ob-
tained when such calibration is performed with the 2D-3D DLT-Lines algorithm.
The analysis propagates uncertainty in the detection of features at the image level
to camera pose, and from there to 3D reconstruction. The analytic error propaga-
tion expressions are derived using first order uncertainty models, and are validated
with Monte Carlo simulations in a virtual indoor environment. The method is gen-
eral and can be applied to other calibration methods, as long as explicit or implicit
expressions can be derived for the transformation from image coordinates to 3D
reconstruction.

We present results with real data for two applications: i) the 3D reconstruction
of an outdoors building for which 3D information is given by a map, observed
by a mobile phone camera; and ii) the uncertainty in the localization at the floor
plane of points observed by a fixed camera calibrated by a robot equipped with an
RGBD camera navigating in a typical indoor environment.
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analysis

1. Introduction

1.1. Background
Camera calibration is required in a wide range of applications. Geo-localization

of detected events, measurement of people’s height or vehicle’s speed, associat-
ing events between cameras, are examples of tasks which can only be tackled if
cameras are calibrated with respect to the coordinate system of a known scenario.
Whereas calibrating camera translation can, in many cases, be performed by a
simple measurement, calibrating rotation and intrinsic parameters are more diffi-
cult tasks. In many cases the selection of the viewing direction, zoom and focus
is only done while mounting the camera. Calibration in-situ is thus convenient for
many applications.

In-situ calibration with conventional calibration tools requires the use of cal-
ibration rigs or patterns which may be impractical in many cases. For instance
the methods of Tsai [1], Heikkilä [2], Zhang [3], Kannala [4] and Bouguet [5]
demand that the known pattern covers most of the imaged area, which requires an
impractically large calibration pattern if the camera is mounted at a high position,
far from the floor level. In addition, conventional calibration methodologies are
mostly focused in the intrinsic parameters, and thus do not provide distances (rigid
pose transformations, extrinsic parameters) among the various units within a cam-
era network. In other words, they are not designed to provide a global coordinate
system for all cameras.

In this work we consider a calibration methodology that instead of using a
calibration pattern, uses the scene data imaged by a camera, mounted in place,
and auxiliary data encoding some 3D structure about the imaged area (Fig. 1).
In some cases the auxiliary data can be simply a map or an aerial image. In-
situ calibration based on world data brings two benefits, (i) there is no need for
calibration patterns, and (ii) the world data specifies a coordinate system which
can be used by multiple cameras.

The most common type of data used for camera calibration is the correspon-
dence between 3D scene points and their 2D image projections [1, 5]. Consid-
ering pin-hole camera models, one finds that 3D points and their 2D projections
are related by simple linear constraints in homogeneous coordinates that can be
combined in the so-called Direct Linear Transformation (DLT) [6, 7]. Particularly
in urban scenarios, straight lines are omnipresent. This motivates the use of lines
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(a) Indoors scenario (b) Outdoors scenario

Figure 1: Indoors and outdoors camera calibration. (a) Calibration of a fixed camera using data
acquired by an auxiliary mobile RGB-D camera. (b) Calibration of a fixed camera using the 3D
structure of imaged buildings. The matching of 3D data (thick lines) with image data allows
calibrating the fixed cameras {C}, and in particular estimating their poses W TC, and intrinsic pa-
rameters K.

for calibration. In fact, using lines instead of points is advantageous specially be-
cause simple image processing tools for local line fitting can be used to reduce the
matching error between 2D and 3D structures. The identification of corresponding
lines in multi-modal data is less sensitive to errors than establishing point corre-
spondences [8, 9]. Interestingly, writing linear constraints for calibration from
line correspondences, i.e. estimating the projection matrix, is as simple as with
points [10]. Once the projection matrix is computed, the camera pose and intrinsic
parameters are readily obtained by factorization [7]. The quality of the estimated
parameters depends on a series of factors: structure of the observed environment,
selected data matches, model parameterization and optimization criteria [11].

1.2. Contributions
The ability to assess the uncertainty in the estimates of a calibration method

is important not only to infer errors on 3D reconstruction but also as a means to
validate and improve the calibration process. One way to do this is to propagate
the uncertainty in the measurement process (variance in pixel coordinates of the
feature points or lines used for calibration) to uncertainty values on the calibration
parameters, either intrinsic, extrinsic, or both; and from these uncertainties, to that
of the computed 3D reconstruction when such calibration values are used.

This paper presents such detailed noise propagation analysis for the case of
the DLT-Lines camera calibration process. We derive expressions to compute es-
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timates for the the covariance of the camera intrinsic parameters as well as esti-
mates for the covariance of the camera pose. To do so, we compute a first order
linearization of the calibration method around the obtained solution and use it to
perform first order error propagation [12, 13]. We validate the obtained uncer-
tainty with synthetic data based on Monte-Carlo simulations, and with real data
from a non-overlapped camera network.

The uncertainty analysis is derived first for the DLT-Lines formulation pre-
sented in [14] and further extended to introduce novel cases of interest, namely
the combination of DLT-Lines with square pixel constraints, and with radial dis-
tortion. Finally, the analysis is also extended for the case in which the scene can
be considered to obey a floor plane constraint, typical of aerial imagery.

2. Related work

Cameras can be installed outdoors or indoors [15, 16], and can be used to
cover overlapped or non-overlapped shared views [17, 18]. Overlapping fields of
view usually allow matching scene features among different cameras and therefore
provide extrinsic information for their calibration. Conversely, non-overlapped
fields of view require alternative sources of extrinsic information.

State of the art techniques for camera calibration require the use of non-
planar [1] or planar [3] patterns, usually made of points, lines or checkerbo-
rads [19], conics [20], or even ArTag markers [21]. Unfortunately, for large out-
door camera networks, calibration patterns of reasonable sizes often project on
images with very small resolution, mainly because cameras are located at a con-
siderable height with respect to the floor. In addition, a pattern-based independent
calibration of each camera would require a secondary process to relate all camera
coordinate systems to a global reference frame, but establishing this relation with
small to null overlapping fields of view is nearly impossible. For planar scenarios,
a DLT [6, 2, 7] suffices to estimate image to plane homographies [22]. In practice
however, the planar scenario assumption is too restrictive as nonparallel locally
planar surfaces, such as ramps and plazas, often occur in real urban environments.

An interesting in situ calibration methodology was proposed by Svoboda et
al. [23]. This technique requires to use a bright moving spot to calibrate the cam-
era network, simplifying the process with respect to the standard approaches. The
technique assumes overlapping fields of view to estimate the epipolar geometry, to
extract homographies, estimate depth, and finally compute the overall calibration
of the camera network. However the method is not suited for outdoor scenarios
or when the fields of view of the cameras do not overlap. Another alternative is to
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place the led light on a moving robot and to have a secondary robot equipped with
a laser sensor track the first one, relating their position estimates to the camera
network [24]. Yet another system that relies on tracking a moving object to es-
timate the extrinsic parameters is [25], which assumes a constant velocity model
for the target. Tracking a moving target each time the system needs recalibration
might be prohibitive. The estimation of the camera location purely by analyzing
cast shadows is also mathematically possible, but with very low position accuracy
in practice [26], and if one is interested only in the topology of the network config-
uration and not in a metric calibration, multi-target tracking of people could also
be an alternative [27]. In contrast to these approaches, we opt for a system that
does not rely explicitly on a moving pattern or shadow to calibrate the network,
and that produces accurate metric calibration, even in outdoor scenarios.

Analogously to use moving targets, one may have moving cameras, e.g. cam-
eras encompassing controlled orientation changes (pan and tilt). Agapito et al. [28]
use the properties of the image of the absolute conic to auto-calibrate such moving
cameras. The computed intrinsic parameters, and the alignement of landmarks to
image features allows to estimate also the extrinsic parameters [29]. However,
camera networks are often composed of fixed cameras and therefore require scene
information to compensate the lack of self-motion. Caprile and Torre [30] use the
properties of vanishing points in two steps. First they estimate the focal length
and the principal point of a camera, while in a second step they estimate the trans-
formation between two cameras, with corresponding vanishing points. Another
way to calibrate the camera network is to use a vertical vanishing point and the
knowledge of a line in a plane orthogonal to the vertical direction on each cam-
era image [31]. In [31] fundamental matrices are used to compute the relative
camera positions. They utilize a vertical vanishing-point and an infinity homogra-
phy. A common world coordinate system is defined to eliminate the overlapping
constrain.

Our work is in this vein of fixed cameras which are calibrated with information
commonly available in urban scenarios. Our calibration scenarios consist of net-
works of fixed monocular cameras which are traversed by an auxiliary LIDAR or
color-depth (RGB-D) mobile camera (see Fig. 1). The auxiliary camera provides
3D data of the scenario which is sufficient for the calibration and thus overcomes
the need of additional calibration artifacts. In addition, the mobile camera is as-
sumed to have an estimate of its own localization, and therefore provide a global
(single) coordinate system to the fixed cameras. As there are many well known
methodologies for self localizing the mobile camera, as e.g. Simultaneous Local-
ization and Map Building (SLAM), we focus our work on the aspect of calibrating
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the fixed camera with respect to the mobile camera. Our recent work on camera
calibration based in point clouds [14], is extended here with a more comprehen-
sive Gauss-Newton formulation. This formulation allows the easy introduction of
additional constraints and algorithm analysis.

An analysis of camera calibration uncertainty is needed to evaluate the qual-
ity of metric reconstructions that can be inferred from the images in the camera
network [33]. In a wide variety of cases, uncertainty propagation can be analyzed
using first order techniques [12]. In [34] for instance, a first order error analysis
is used to propagate the calibration uncertainty to the motion parameters. Ansar
and Daniilidis [35] study the sensitivity of the camera pose estimation while using
points or lines with corresponding 3D coordinates. In Daniilidis and Ernst [36]
uncertainty propagation techniques are used to develop an unbiased estimator.
Salvi et. al. [37] tested the accuracy of several classical calibrations methodolo-
gies. Sun and Cooperstock [38] show empirically the effects in camera camera
calibration, of data size and input noise. In [11], the analysis is made via pa-
rameter correlation, and in [39] we introduce a calibration uncertainty analysis for
cameras without radial distortion. In this paper we propose a first order estimation
analysis of the full extrinsic calibration of cameras that have radial distortion.

3. Camera calibration

The pin-hole camera model maps the 3D projective space to the 2D projective
plane. Using homogeneous coordinates, a scene point, M = [X Y Z 1]T is imaged
as a point m = [u v 1]T ,

m .
= P M = K [R t]M , (1)

where .
= denotes equal up to a scale factor and P is a 3×4 projection matrix. The

3× 3 upper triangular matrix K contains the intrinsic parameters. The rotation
matrix R and translation vector t form a rigid transformation from world to camera
coordinates. In other words, t denotes the location of the origin of the world frame
in camera coordinates and R describes the world frame also in camera coordinates.

To model radial distortion, we use the division model, proposed by Fitzgib-
bon [40], where an undistorted image point, m̂u = [uu vu]

T is computed from a
radially distorted image point m̂d = [ud vd]

T by m̂u = m̂d/(1+λ ‖m̂d‖2), and λ

represents the radial distortion parameter. The coordinates of m̂u and m̂d are ex-
pressed in a 2D coordinate system having the origin coincident with the image
principal point ĉo = [cu cv]

T . The division model can also be conveniently written
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in homogeneous coordinates with uu
vu
1

=̇
 ud

vd

1+λ ‖m̂d‖2

 ⇔ mu=̇md +λed . (2)

3.1. DLT-Points
The Direct Linear Transformation (DLT), developed by Aziz and Karara [6,

2], allows estimating the camera projection matrix in (1), P, by solving a linear
system on the matrix entries using a set of 3D points, {Mi : Mi = [Xi Yi Zi 1]T}
and their corresponding 2D image points {mi : mi = [ui vi 1]T}. Applying a cross
product by mi to both sides of the equation, mi×mi = mi× (P Mi), becomes zero
in the left hand side and thus [mi]× P Mi = 0, where [mi]× represents the linear
cross product operation as a skew-symmetric matrix of mi. The properties of the
Kronecker product [41], ⊗, allow one to obtain an equation factorizing the data
and variables to estimate

(MT
i ⊗ [mi]×) vec(P) = 0 , (3)

where vec(P) denotes the vectorization of the matrix P, formed by stacking the
columns into a single column vector.

Each pair (Mi,mi) provides a set of three equations in the entries of vec(P)
but only two of them are linearly independent. Therefore, one needs at least
six pairs of 3D-to-2D corresponding points to estimate the projection matrix.
Having N ≥ 6 pairs of 3D-to-2D correspondences, in a nondegenerate configu-
ration, allows forming a matrix A, 3N× 12, by stacking N matrices MT

i ⊗ [mi]×.
The singular vector corresponding to the smallest singular value of A is an es-
timate of projection matrix (vectorized), minimizing the error ‖A vec(P)‖2 s.t.
‖vec(P)‖= 1 [42].

Note that pre-normalization of the input data is crucial on implementing this
algorithm [43]. Hartley suggested that the appropriate pre-normalization method
consists in translating all data points (3D and 2D points) so that their centroids
are at the origin. Further the data should be scaled so that the average distance, of
data points to the origin, is equal to

√
2 for image points and

√
3 for 3D points.

Fitzgibbon’s division model provides an extension of the DLT-Points calibra-
tion methodology to deal with the estimation of the camera projection matrix, P,
directly from radially distorted image data. Substituting the right hand side of (2),
in the DLT-Points factorized equation (3) results in(

MT
i ⊗ [mid +λeid]×

)
vec(P) = 0 (4)
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which can be rewritten as (Ai1 +λAi2)vec(P) = 0, where Ai1 = MT
i ⊗ [mid]× and

Ai2 = MT
i ⊗ [eid]×. Considering N pairs (Mi,mi) one forms two 3N×12 matrices,

A1 and A2, by stacking matrices Ai1 and Ai2. As suggested by Fitzgibbon [40],
left-multiplying the stacked matrices by AT

1 results in a polynomial eigenvalue
problem (AT

1 A1 +λAT
1 A2)vec(P) = 03. Its solution gives simultaneously the pro-

jection matrix, vec(P) and the radial distortion parameter, λ . Noting that the dis-
tortion model involves representing points around the principal point, which we
assume to be approximately equal to the image center [40], the estimated projec-
tion matrix is finally obtained with P′ = T−1P, where T is a 3×3 matrix defining
the translation of the image coordinate reference to the principal point. Having es-
timated P′, one has an estimate of the principal point, which can be used to iterate
the calibration procedure and therefore improve the approximation.

However, in some scenarios it is impossible to calibrate a camera using DLT-
Points. An example is shown in Fig. 4 where we do not have direct 2D-3D corre-
spondences between Fig. 4 (b) and (c). In such scenarios one can use DLT-Lines,
as will be discussed in the next section.

3.2. DLT-Lines
The use of lines for camera calibration, as opposed to isolated image points,

allows for fine tuning the location of the lines in the image through simple line
fitting algorithms.

Given a 3D line Li, its projection on the camera image plane, li can be repre-
sented by an implicit equation, f (m) = amx +bmy + c = 0, where m is a point on
the line. The parameters of this equation, l = [a b c]T , can be defined by the cross
product of two normalized points, m1 and m2,

l = m1×m2 =

 m1y−m2y
m2x−m1x

m1xm2y−m1ym2x

 . (5)

Note that a and b form a sub-vector that is perpendicular to the line, nl = [a b]T .
The distance from point to line is d = lT m/‖nl‖, and one can normalize the line
distance with ‖nl‖= 1.

Camera calibration based in DLT-Lines involves matching image lines with 3D
lines or, more precisely, 3D points. As in DLT-Points two cases are considered,
namely (i) no radial distortion and (ii) significant radial distortion. In the case

3Can be solved in Matlab using the polyeig function
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where the radial distortion is considered, it is modeled using Fitzgibbon’s division
model. The case of radial distortion is detailed in the next section. First we detail
the simpler case of no radial distortion.

Any point mki lying on a line li satisfies lT
i mki = 0. Multiplying by lT

i on both
sides of (1), i.e., lT

i mki = lT
i P Mki, leads to:

lT
i P Mki = 0 (6)

where Mki is a 3D point in projective coordinates lying in Li the 3D line imaged as
li. As in the case of DLT-Points, using the Kronecker product one obtains a form
where the elements of the projection matrix are factorized:

(MT
ki⊗ lT

i ) vec(P) = 0. (7)

Each pair of 3D point and its corresponding image line, (Mki, li), provides a single
linear constraint in the entries of vec(P). Considering N pairs (Mki, li), one forms
a matrix B, N×12, by stacking the N matrices MT

ki⊗ lT
i .

From (7) one has that in a noiseless case Bp = 0 with ‖p‖ 6= 0 and therefore
max(rank(B)) = 11. Therefore, in order to estimate P one needs at least six non-
degenerate 3D lines configuration and their corresponding six image lines, i.e. six
four-tuples (Mi1,Mi2,mi1,mi2). Each four-tuple generates two pairs of a 3D point
and an image line, {(Mi1, li),(Mi2, li)} where li = mi1×mi2. Thus, the six lines
generate 12 pairs (Mki, li) which allow B reaching the maximum rank 4 . The least
squares solution

p∗ = arg p min‖Bp‖2 s.t. ‖p‖= 1, (8)

where p = vec(P), is the right singular vector corresponding to the least singular
value of B. As already discussed, to obtain the maximal rank in B requires at least
six 3D lines and their images. However, if one has some calibration parameters
known a priori then the rank of B may be lesser than the maximum and the amount
of required 3D information diminishes.

4Note that in a nondegenerate and noiseless case, the maximum rank of B is 11, and thus one
can drop one of the 12 pairs (Mki, li). This is a similar case as with DLT-Points, where are required
6 pairs (Mki,mki), within which one of the pairs is needed to provide one single constraint, but
provides two constraints as all the other five pairs. Nondegenerate imply, for example, that the 3D
lines cannot be all co-planar. For instance, fig. 1(b) is a case of just vertical and horizontal lines,
where would be useful to have all horizontal lines co-planar but that makes the rank of B lesser
than 11 (more detail in the results section).
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Some more properties of interest can be stated for proposed calibration method-
ologies. From (7) and (3) it is possible to conclude that DLT-Points can be incor-
porated on DLT-Lines, by concatenation of matrices A and B, respectively. Both
matrices represent equations on entries of p, allowing two paired (Mi,mi) points,
be combined with (Mki, li) to estimate the projection matrix P.

Comparing both DLT methods, it is important to note that while in DLT-Points
one has to provide one 3D-point to one 2D-point correspondences, in DLT-Lines
one 2D-line, li is an image of a 3D-line, Li and thus associates many-3D-points
to one-2D-line. Any point Mki ∈ Li forms a linear constraint with li (7). This
property of DLT-Lines allows to apply additional image processing tools that add
robustness to the extraction of calibration data. In particular, DLT-Lines can be
used for fine tuning finding lines both in the RGB and RGBD images.

In addition, any line defined in the RGBD image indicates 3D points (from
the depth data) that are expected to form a line in 3D. The points forming the 3D
line have noise, e.g. due to the finite depth resolution, which is important to filter
using a RANSAC procedure [7].

3.3. DLT-Lines with square pixels
One specific case of interest consists in knowing the pixels aspect ratio. As-

suming the case of square pixels, common in modern cameras, allows decreasing
the required completeness of data forming B, accepting for example rank(B)= 10.
Using SVD factorization, let B = UΣV T and V = [v1 . . . v11 v12] be the singular
vectors of B. In the case of rank(B) = 10 the calibration solution is a linear com-
bination of the last two singular vectors, v11 and v12. The square pixels constraint
allows then writing the calibration problem as a 1D non-linear optimization prob-
lem:

p∗ = w∗v11 +
√

1− (w∗)2v12

w∗ = arg w min‖K(1,1)−K(2,2)‖ (9)

where w∗ ∈ [0, 1] and the intrinsic parameters matrix, K, is computed through
QR decomposition of the vector p∗ reshaped to a 3× 4 matrix. Note that by
construction ‖p∗‖= 1, since v11 and v12 are orthogonal and have unit norm. The
interval w∗ ∈ [−1, 0] is not considered since−p∗ and p∗ lead to the same solution.

3.4. DLT-Lines with radial distortion
Using (2), which describes the relationship between distorted and undistorted

image points, a line l12 can be defined as the cross product of two undistorted
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points:

l12 =

 u1d
v1d

1+λ ‖m̂1d‖2

×
 u2d

v2d

1+λ ‖m̂2d‖2

= l̂12 +λe12 (10)

where the line can be divided in two terms, one without the radial distortion pa-
rameter, and a distortion correction term e12 = [v1d ‖m̂2d‖2−v2d ‖m̂1d‖2 , u2d ‖m̂1d‖2−
u1d ‖m̂2d‖2 , 0]T . Applying (10) into the point-to-line constraint (7), one has:(

MT
k ⊗ (l̂12 +λe12)

T)vec(P) = 0 (11)

where Mk denotes the kth 3D point projecting to the distorted line l12. The equation
can be rewritten as:

(Bki1 +λBki2) vec(P) = 0 (12)

where Bki1 = MT
k ⊗ l̂T

12, Bki2 = MT
k ⊗ eT

12.
Considering N ≥ 12 pairs (Mki, l̂i), where N = kmaximax, one forms two N×12

matrices, B1 and B2, by stacking matrices Bki1 and Bki2.
Let us define the cost function:

f (m,M) = ‖(B1 +λB2)p‖2 (13)

The minimization problem to find p = vec(P) can be written as:

(p∗, λ
∗) = argp,λ min f (m,M; p,λ )

s.t. pT p−1 = 0. (14)

Applying a change of variable λ p = q, one obtains the Lagrangian:

L = pT BT
1 B1 p+ pT (BT

1 B2 +BT
2 B1)q+qT BT

2 B2q+

+σ(pT p−1)+ vT (q−λ p)
(15)

where σ ,v are KKT multipliers, therefore yielding the KKT conditions of the
problem which can be written as the system of equations:

G(m,M, p;v,σ) = 038×1

m

2BT
1 B1 p+(BT

1 B2 +BT
2 B1)q+2σ p−λv = 012×1

(BT
1 B2 +BT

2 B1)p+2BT
2 B2q+ v = 012×1

q−λ p = 012×1

−vT p = 01×1

pT p−1 = 01×1

(16)
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Given the KKT conditions we can use Gauss-Newton to estimate p. More pre-
cisely we solve the system by iterating the solution through the linear system:

JGθ =−G (17)

where θ denotes the Newton step which needs to be solved for, and will be used
to update p,v and σ . The Jacobian JG assumes the form:

JG =


2BT

1 B1 +2Iσ BT
1 B2 +BT

2 B1 −v 2p −Iλ

BT
1 B2 +BT

2 B1 2BT
2 B2 0 0 I

−vT 0T 0 0 −pT

2pT 0T 0 0 0T

−Iλ I −p 0 0

 . (18)

To initialize the iterative method, we use Fitzgibbon’s suggestion [40]: left-
multiplying the stacked matrices by BT

1 results, once more, in a polynomial eigen-
value problem (BT

1 B1 + λBT
1 B2) vec(P) = 0, which was solved in Matlab using

the polyeig function. Its solution gives simultaneously the projection matrix,
vec(P), the radial distortion parameter λ , and P′ = T−1P, where T is defined in
sec 3.1. In a similar way as explained before, both DLT methods applied to the
radial distorted camera, can be combined to estimate P and λ . Note that the so-
lution will only be an approximation since the minimization functions are not the
same.

Having estimated the projection matrix, P, the camera intrinsic and extrinsic
parameters can be obtained using QR-decomposition [7].

3.5. Summary and back-projection application
In the previous sections we described DLT-Points and DLT-Lines, which in-

volved solving for the intrinsic and extrinsic parameters as least squares prob-
lems. In the more general case, in which we estimate also the radial distortion, we
proposed a Gauss-Newton iterative solution. Many other interesting and relevant
cases can be found within these frameworks. For instance, when K is known, its
inverse can applied to the 2D data and, in the case of DLT-Points, the calibra-
tion problem is converted to solving the well known Perspective-n-Point (PnP)
problem [44]. Another simple case is the one where t is given and therefore DLT-
Points and DLT-Lines are reduced to the estimation of an homography, KR, by
subtracting the camera center to all the 3D data. Other interesting cases arise by
specifying constraints in R or t, or in K, such as square pixels and principal point
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coincident with the image center. These cases can be dealt with Gauss-Newton
solutions as proposed for DLT-Lines with radial distortion.

The simple data-based constraints, created by DLT like formulations, are use-
ful in many applications. Here we start describing the application central to this
paper, namely the analysis of uncertainty propagation in calibration. In particular
we detail the effect of calibration uncertainty into the reconstruction of ground
points, i.e. points back-projected to the ground plane. First we introduce back-
projection and in subsequent sections we study its uncertainty propagation.

Consider a point m observed in an image, we know it is related to a 3D point on
the mobile camera coordinate system, MM, through m .

= P MM. Using the trans-
formation from the world coordinate frame to the mobile camera, MTW , we can
rewrite it to consider points in world coordinates m .

= P MTW
W M. Using the plane

constraint of floor points W Mz = 0 we can further write it as m .
= P MTW ET E W M

where E is an elimination matrix removing the third row of W M. Inverting the
system we have the projection of the point on the floor in homogeneous coordi-
nates

E W M .
=
(
P MTW ET)−1

m. (19)

4. Error propagation

In this section we derive first order error propagation formulas, from 2D and
3D data to the calibration parameters, while using the DLT-Lines calibration pro-
cess. Section 4.1 shows that line fitting helps reducing 2D noise when lines are
defined by their end points. However, despite of the fitting, residual 2D noise
remains present due to the discrete nature of pixels, the discrete nature of pixel
values and noise in the pixel values.

Uncertainty in the 3D data (points) is due to a wider variety of reasons. As-
suming that 3D data is acquired by a sensor such as a LIDAR or an RGBD camera,
then error in the estimated pose of the sensor or error in the intrinsic parameters of
the sensor or the discretization of the sensor inputs, are all sources of uncertainty.
For example, an offset in the real location of a sensor implies also an offset in
the position of the calibrated camera. Error in the intrinsic parameters of the 3D
sensor may induce artificial zooming in the calibrated camera.

Having indicated a number of common sources of uncertainty, we detail now
the uncertainty propagation analysis through the DLT-Lines calibration methodol-
ogy. In a first step we derive the expression propagating error in the calibration
data to error in the estimated lines parameters 1©. In a second step, 2©, we derive

13



error propagation between lines parameters and the 3D data to the camera pro-
jection matrix. In a third step, 3©, we derive error propagation from the matrix
entries to the camera projection center, orientation and intrinsic parameters. The
whole process can be summarized as shown in the next diagram:

mi,Mi →
1©

li,Mi →
2©

P →
3©

K,R, t MW

Σmi,ΣMi → Σli,ΣMi → ΣP → ΣK,ΣR,Σt ΣMW

.

While the last section discussed how to compute the solution to 1©, 2© and 3©,
this section will propagate the covariance information through these same trans-
formations. The general rule used is that given a function y = F(x) and assuming
F is differentiable near a particular x, a first order covariance propagation Σy is
obtained from the input noise covariance as Σy = JFΣxJT

F .
Transformation 1© is explicitly available so the Jacobian is readily computable.

Since the covariance of the line measurements is obtained from two image points,
it can be computed as:

Σli = JliΣm1i,m2iJ
T
li (20)

where Jli is the Jacobian of either (5) or (10). The covariance matrix of the imaged
line-segment end-points, Σm1i,m2i , is usually set a-priory according to typical user-
clicking errors. Alternatively, in case one uses a line fitting process (sec. 4.1),
the edge points near the fitted line inform about the fitting error, Σli , which is
transformed to error at the line-segment end-points.

The same approach cannot be used for 2© and 3© where no closed form ex-
pression is known, as they are computed using numeric algorithms. Nonetheless,
since an implicit characterization of these transformations exists, the Jacobian is
computable using the implicit function theorem [45]. Given a system of equations
G(x,y) = 0 defining implicitly an unknown function y = F(x) satisfying the the-
orem conditions, the Jacobian of F can be computed from the derivatives of G
as JF = −[DyG]−1DxG where DxG and DyG are the partial derivatives of G with
respect to x and y respectively. The implicit function theorem requires the matrix
DyG to be invertible, a condition we assume to be true in this paper, as otherwise
the input data consists of a singular case where a calibration solution is not possi-
ble. The rest of this section will make this propagation explicit for the two cases
(with and without radial distortion).

4.1. Image lines uncertainty
DLT-Lines allows filtering the input data by using line fitting methodologies.

This is beneficial as the uncertainty before 1© can be attenuated and, consequently,
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obtaining more precise and accurate calibrations. In this section we detail the
image line fitting methodology we use and study its effect on noisy data.

(a) Selected line

uv

∇
  
I u

v

(b) Selected line (black)
over image gradient

(c) Corrected
line

(d) Corrected line
(black) over image
gradient

Figure 2: Fine tuning the line location. (a) Input data, (b) input data over image gradient, (c) and
(d) result after line optimization.

Each extracted 2D-line li can be the result of fine tuning a line l̂ to better match
edge points in an image. The user defines l̂ by clicking the two ends of the line.
Line l̂ allows defining gradient values, ∇I in a direction perpendicular to l̂. Line
li is therefore refined to better match the image appearance by an optimization
process, that maximizes the sum of image gradients and passes through a constant
texture:

l∗i = argli max∑
k
‖∇I(mk)‖−βσI(mk), mk ∈ (li∩R) (21)

where I is the RGB image converted to gray scale, ∇ denotes the image gradient
in the direction orthogonal to l̂, σI(mk) is the local image variance, β is a constant
gain, and R is a region of interest containing the straight-line segment plus some
tolerance (e.g. ±10 pixel) around the segment extremes. This refinement proce-
dure is illustrated in Fig. 2. Frame (a) shows the initialization of the algorithm. In
this case, the algorithm was initialized with a significant error (see red line). Af-
ter the optimization procedure one can see that the line was correctly estimated,
frame (c). Frames (b) and (d) show that image gradient values at line points (black
line) are maximized by the procedure.

After the optimization procedure, one obtains line end-points, m1 and m2,
whose error is propagated to the line as l̂ = l + ε , where ε is the estimation error.
The error ε has only significant impact on the line parameters if m1 and m2 are
close to each other. If the points are far way, e.g. ‖m1x−m2x‖ � ‖εx‖, the pixel
error can be almost ignored, l̂ = l/‖n̂l‖+ε/‖n̂l‖, since ‖n̂l‖� ‖ε‖⇒ ε/‖n̂l‖≈ 0
.
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(a) Multiple line
orientations and

a sample synthetic line
image.

(b) Noise added
to

end-points.

(c) Fitting error
vs

initialization
error.

(d) Fitting error vs
grouped initialization

error.

(e) Noise attenuation
with

line fitting (histograms).

(f) Angular error vs
line length.

Figure 3: Line fitting Monte Carlo uncertainty analysis. (a) Range of line directions in the test set
used for the Monte Carlo analysis. Sample input image built to represent one ground truth line
(AB in red) from the test set. (b) Histogram of the normal output error, when a uniform noise is
used as input. (c) Plot of the line fitting error according to initialization error. (d) Histogram of the
line fitting error according to initialization error. (e) Example of the noise used in the initialization
process, the noise was a uniform distribution. (f) Evolution of the angular error, arccos n̂l

T nl ,
estimation when is used different line lengths.
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In order to study the estimation error of the line parameters we run a Monte
Carlo test with a simple line fitting algorithm. The test consists in finding a line
in a image, given two initial end points. Figure 3(a-right) shows the typical image
used. The test encompasses several different lines, i.e. with different angles, sizes,
and sub-pixel translations. Figure 3(a-left) shows a subset of the line orientation
and sizes used. In the Monte Carlo simulation we initialized every line fitting with
random uniform noise, between −4 and 4 pixels in each of the u and v directions
(see Fig. 3(b)).

The blue dots in Fig. 3(c) show initialization and fitting errors. The initializa-
tion error (horizontal axis) is the distance from the initialization line end-points to
the ground truth line, which has an approximately uniform distribution between 0
and 4

√
2 pixel, caused by the noise shown in Fig. 3(b). The fitting error (vertical

axis) is the distance from the estimated line end-points to the ground truth line
and has a less than 1 pixel mean error. The red line has unitary slope and thus in-
dicates noise reduction or amplification for blue points under or over the red line.
One observes that in general fitting reduces noise except when the initialization
noise is already subpixel. Figure 3(d) is a box plot indicating median, 25th and
75th percentiles, which is obtained from (c) by splitting the horizontal axis in a
number of regions. This plot shows that fitting error is approximately constant in
the 75th percentiles of subpixel range, and therefore indicates an algorithm that
upon convergence is independent on the initialization error.

Figure 3(e) shows initialization and fitting errors as histograms. The initial-
ization error has an approximately uniform distribution, while the fitting error has
an histogram shifted to subpixel error as desired. Figure 3 (f) shows, as expected,
that the angular distance (arccos n̂l

T nl) between the estimated line and the real line
improves with the line width as shown in [46, 12].

4.2. DLT-Lines error propagation without radial distortion
This section explores the sensitivity of the process 2©, namely how error prop-

agates from Σli,ΣMi to ΣP when it is solved with a least squares (7).
The optimization problem in (8) can be seen as function that accepts lines (li)

and points (Mi) and outputs the least squares estimate of the projection matrix P:

P = f (l1, ..., lN ,M1, ...,MN). (22)

To compute the covariance propagation we need the Jacobian of f , i.e. J f . Al-
though f does not have an explicit solution (it is the result of an optimization

17



problem), an implicit system can be written from the KKT conditions of the con-
strained least squares problem in (8).

G(l,M; p,γ) =

{
2B(l,M)p+2γ p = 0,
pT p−1 = 0.

(23)

The implicit function theorem can then be used to provide

J f =
[
−
(
D{p,γ}G

)−1 D{li,Mi}G
]

12×6N

where the brackets denote taking only the first 12 rows of the result since the last
row is the row equivalent to the Lagrange multiplier γ .

4.3. Error propagation in the presence of radial distortion
Suppose we have used sets m̂ and M̂ to estimate p using the Gauss-Newton

algorithm. Although p = f (l,e,M) does not have an explicit formulation again,
we can use the implicit function theorem to compute the Jacobian of the method:

J f =
[
−
(
D{p,σ ,v}G

)−1 D{l,e,M}G
]

12×6N
,

where G is the KKT system in (16), and whose derivatives are given in (18).
Uncertainty can thus be propagated as

Σp = J f Σl,e,MJT
f (24)

4.4. Error propagation of P towards camera pose
In [7] it is show how the projection matrix can be decomposed by the internal

and external calibration parameters. Here we propagate the uncertainty from ΣP
to ΣK,R,t , 3©.

We start by looking at (1), noticing that we can divide P in two blocks, P3×3 =
KR and p4 = Kt. Once again an explicit solution does not exist, however the
separation of P into two blocks defines an implicit system if we take into account
the upper triangular structure of K and that R is a rotation matrix:

G(P,K,R, t) =



P3×3 = KR
p4 = Kt

RT R = I
K21 = 0
K31 = 0
K32 = 0,
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The derivatives of this implicit system are:

JG =


−I 0 I⊗K RT ⊗ I 0
0 −I 0 tT ⊗ I K
0 0 (I9 +C3×3)(I⊗RT ) 0 0
0 0 1T

2 0 0
0 0 1T

3 0 0
0 0 1T

6 0 0

 , (25)

where C3×3 is a 9×9 circulant matrix (i.e., it’s the matrix that makes vec(RT ) =
C3×3vec(R) true for any 3×3 matrix R), and 1T

i is a vector 9×1 of zeros with 1 in
position i. Note that the constraints RT R = I are redundant (symmetric), hence we
manually remove the rows of JG corresponding to the redundant equations. Once
again we can use the implicit function theorem to find J f =−[DK,R,T G]−1DPG.

The estimation of ΣKRT can be obtained by:

ΣK,R,T = JFΣPJT
F . (26)

These equations are valid for both calibration methodologies, with and without
radial distortion.

4.5. Error propagation of P towards reconstructed floor points
Propagating uncertainty from a camera point m to the world floor takes into

account three sources of uncertainty: the camera point m itself, the camera posi-
tion represented by the projection matrix P and the mobile camera position repre-
sented by MTW . (19) provides an explicit equation but due to the inverse function
involved, its derivatives are not trivial to compute. We do so in two steps, first in-
terpreting (19) as an equality and then applying the normalization. The derivative
of the equality with respect to m, P, and MTW is

D =
[
Q −mT QT E MT T

W ⊗Q −mT Q E⊗Q P
]

where, Q=
(
P MTW ET)−1. After applying the projective normalization, the com-

plete Jacobian of (19) is

J =

[
1/z 0 −x/z2

0 1/z −y/z2

]
D

where [x y z]T is the projective result of (19). Again, the error propagation equation
is

Σx,y = JΣm,P,MTW
JT . (27)
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5. Experimental results

In order to validate the proposed methods and uncertainty analysis we conduct
some experiments in a virtual indoor environment, for which one has available
precise and accurate ground truth. We show a simple real degenerate case which
can be solved using DLT-Lines, with a single constrain. In addition, we apply the
proposed uncertainty analysis to a real setup based on an indoor scene encom-
passing a wall and a couple of doors, which has been reconstructed in 3D using
color-depth (RGB-D) data, thus providing directly the required 3D information
for the DLT-Lines calibration methodology.

5.1. DLT-Lines calibration experiment
In this first experiment we illustrate the DLT-Lines calibration methodology

when available data does not fully constrain the solution (see sec. 3.3 (9)).

(a) Image taken by the camera to
calibrate and image lines used for
the calibration.

(b) Aerial view (Google maps) and horizontal
(blue) and vertical lines (red dots) used for cali-
bration.

(c) Estimated pose of the camera shown by the red
pyramid. Estimated facade heights are used to de-
fine the ground plane.

Figure 4: Calibration and reconstruction experiment. Intrinsic and extrinsic calibration of a camera
based on imaged lines (a) and 3D data inferred from an aerial image (b). The reconstruction of
facade heights complements information not available in the aerial view (c).
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The camera to calibrate is a cellphone camera using a single image of the
streets and buildings from a window in the 5th floor of a tower (see Fig. 4(a)).
The terrain is uneven and therefore the zero height was selected to be defined by
the roof of the large building imaged in front of the camera. The 3D calibration
information is only partially available as the 3D lines are pointed in a 2D aerial
(orthophoto) view and therefore lack a depth coordinate, Z (see Fig. 4(b)). Vertical
lines are defined by two points Z = 0 and Z = 1. Horizontal lines in the planar
roofs of the building are also defined by choosing Z = 0. Other horizontal lines,
not at the roof height, have an unknown Z.

Using only vertical and horizontal lines at the roof level, Z = 0, results in rank
deficient problem, more precisely, rank(B) = 10 in (7). The solution based on
the two singular vectors corresponding to the least singular values, p = w11v11 +
w12v12, has an ambiguity between the camera height and the vertical focal length.
The null space is a set of camera configurations where the camera is fixed at X
and Y coordinates while Z varies. As the Z gets higher the camera is rotated
downwards and the vertical focal length is augmented so that the imaging does
not change.

In order to constrain the solution, we use the square pixels constraint pro-
posed in the form of a 1D optimization problem in (9). The solution obtained,
displayed graphically in Fig. 4(c), allows retrieving the camera pose (localization
and rotation) and its intrinsic parameters. The estimated localization of the cam-
era matches well the information of the aerial view (see in Fig. 4(b) the blue cross
on the facade of the tower).

In addition, the known scale of the aerial (orthophoto) image allows converting
the 3D calibration data and the projection matrix into meter units. Consequently,
it is possible also to infer in meter units some distances in the scenario, such
as heights of buildings. The estimated height of the building observed in the
middle of the image is 11.0 meters which can be compared with the height read
in blueprints, 10.4 meters, yielding an experimental error of just 6% justified by
data noise.
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(a) Setup (b) Setup outside view

(c) Noise in uv and XY Z (d) Noise in uv (e) Noise in XY Z

Figure 5: Single camera setup. (a) Ground truth 3D information is known for the image lines
shown. (c) Standard deviation of the estimation error of p11, entry (2,4) of P, given noise in uv
and XY Z. (d) Standard deviation of calibration error propagated from noise in uv ranging from 0
to 6 pixel, red line; compared against Monte Carlo uncertainty analysis, blue line. (e) Standard
deviation of calibration error propagated from noise in XY Z ranging 0 to 0.02 meters, red line;
compared against Monte Carlo uncertainty, blue line.
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(a) VRML setup (b) Camera to cali-
brate

(c) RGBD camera,
color image

(d) RGBD camera,
range image

(e) 3D error
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(f) First order noise propaga-
tion
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(g) Monte Carlo simulation

Figure 6: Analysis of calibration uncertainty in a two cameras setup. (a) VRML setup. (b) RGB
image. (c) RGBD intensity image. (d) RGBD range image. Each line defined in the RGBD image
corresponds to a line in the RGB image, and leads to a 3D line in the world/RGBD coordinate
system. (e) 3D lines form the required input data for DLT-Lines calibration. (f) Relation between
the error in the RGB image coordinates and the projection matrix parameters. (g) Monte Carlo
simulations of the same relation between image error standard deviation and the standard deviation
of the projection matrix elements.

5.2. Synthetic experiments
In this section the variance of the entries of the projection matrix, ΣP, predicted

using the proposed uncertainty analysis is compared with a Monte Carlo based un-
certainty analysis. The experiments are done using synthetic data (VRML ) which
allows us to define with high accuracy a camera location and a set of fixed image
points and the corresponding set of 3D points. We consider various levels of white
Gaussian noise in image points, 3D points, or both. Experiments are conducted in
three different scenarios in order to show that the proposed uncertainty propaga-
tion methodology effectively takes into account the structure of the scenario.

4The decomposition of estimated projection matrix, detailed in [7], allows factorizing the in-
trinsic and extrinsic parameters as P = K[R t], and therefore comparing them with the ground
truth. The horizontal focal length relative error is defined as Kerr = (K(1,1)−Ke(1,1))/K(1,1),
where K is the VRML camera true intrinsic parameters matrix, Ke is the estimated one and
K(3,3) = Ke(3,3) = 1.
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(a) VRML setup 2 (b) Camera to cali-
brate

(c) RGBD Camera,
color image

(d) RGBD Camera,
range image

(e) 3D lines
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(g) Std P MC
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Figure 7: Calibration uncertainty analysis for a camera with radial distortion. (a) VRML setup 2.
(b) RGB image, with radial distortion. (c) RGBD intensity image. (d) RGBD range image. Each
line defined in the RGBD image corresponds to a line in the RGB image, and leads to a 3D line
in the world/RGBD coordinate system. (e) 3D lines form the required input data for DLT-Lines
calibration with radial distortion. (f) Relation between the error in the RGB image coordinates
and the projection matrix parameters in presence of radial distortion. (g) Monte Carlo simulations
of the same relation between image error standard deviation and the standard deviation of the
projection matrix elements. (h) Monte Carlo simulations and theoretical relation between image
error standard deviation and the standard deviation of the radial distortion parameter.

The first setup is based on a single RGBD camera. The setup can be seen in
Fig. 5(a), which corresponds to a typical ’L’ shaped corridor, the overal setup can
be seen in Fig. 5(b). Camera calibration ground truth is known and is used to
assess the validity of the noise propagation estimation method and the accuracy of
the calibration. Figure 5(c) shows the theoretical value for σP(2,4) in the presence
of noise simultaneously in both the image and the range values. The plot shows
the correlated effects between the image and range noise values.

Monte Carlo simulations were also run for this setup. Plots (d) and (e) show
both the analytic and estimated value of σ for P(2,4) as a function of variations
in image and depth noise.

Plot (d) shows once more that the first order approximation is only valid up to
around σm = 3 pixels. The theoretical prediction is nevertheless accurate for lower
levels of noise showing that the proposed uncertainty analysis takes correctly into
account the scene structure (li,Mi). Noise in range data exhibits less non-linear
effects, as shown in plot (e).
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The second synthetic setup is formed by two cameras, namely a mobile color-
depth (RGBD) camera which collects 3D data and a fixed RGB camera (Fig 6(a)),
in this setup the cameras have different optical centers and orientations. Fig. 6(b)
shows a synthetic image acquired by the RGB camera, while Figs. 6(c) and 6(d)
show the synthetic intensity and range images aquired by the RGBD camera.

In this setup, we analyze what happens when just the RGB image has noise.
In other words, the noise in 3D points is set null (σM = 0)5. Uncertainty analysis
was done using both the proposed propagation methodology and Monte Carlo
simulations. Monte Carlo was configured to do 300 runs for each level of noise.
The standard deviation of the noise in the 2D points varies from 0 to 6 pixels
(σm = 0 : .06 : 6 pixels). Having all the runs, the variance of every entry of P, i.e.
ΣP(i j) for i = 1..3 and j = 1..4, has been estimated.

The linear propagation of the standard deviation of each of the entries of P,
computed with the proposed methodology, is shown in Fig. 6(e). As expected
some entries of P are more robust to noise than others. Figure 6(f) shows the
Monte Carlo simulation results for each level of noise, again for all the entries of
P. Plots (f) and (g) indicate that the analytical values obtained using the linear
propagation analysis match those of Monte Carlo results for values of σm lower
than approximately 3 pixels. Nonlinearities have more incidence for large image
noise, making our first order approximation unreliable. Nonetheless, pixel value
noises in ranges below 3 pixels are acceptable for most imaging sensors.

The final synthetic experiment was done with two cameras, as the previews
one, a fixed RGB camera and a mobile color-depth (RGBD) camera which col-
lects 3D data. See Fig 7(a). However in this case the RGB camera has radial
distortion, Fig 7(b). Figure 7(c) and 7(d) show respectively the RGBD intensity
and 3D range data. Figure 7(e) shows a set of 3D lines given to the calibration
algorithm, in red is the RGBD camera position and orientation, while in blue is
the camera with radial distortion to calibrate. The proposed uncertainty analysis
was once again compared to Monte Carlo simulations. In this case the standard
deviation of noise in 2D varies from 0 to 4 pixels (σm = 0 : .05 : 4 pixels). For
each level of noise we did 400 runs. The theoretical prediction of ΣP is plotted
in Fig. 7(f), while Fig. 7(g) shows the Monte Carlo results. We can observe that
the theoretical results are in accordance with the Monte Carlo simulations. Fig-
ure 7(h) shows the theoretical and the Monte Carlo Σλ . Once again both results

5To improve readability, variance is written using upper case, Σ, and standard deviation is
written using lower case, σ .
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are similar empirically confirming the correctness of our approach.

5.3. Error propagation real dataset
In this section we present the results of our algorithm in a real data set acquired

in a typical indoor scene, with several doors and a corridor, see Fig. 8(b). This
experiment was done with a ASUS X-Tion (RGBD camera) mounted in a mobile
robot, Fig. 8(a), and Axis P1347 (typical RGB surveillance camera). The RGB
image used for calibration is show in Fig. 8(e), and has resolution of 1920 by 2560
pixels. Twenty lines were marked in the calibration process. This camera has
significant radial distortion (see for example the first door in the left). Figure 8(c)
shows the depth image of the RGBD sensor and Fig. 8(b) shows its intensity
image, where the same set of twenty lines that can be seen in the RGB images are
overlayed. The intensity and depth images have the same resolution, 480 by 640
pixels. 3751 3D points along the 20 lines where automatically sampled.

The calibration was done using DLT-Lines with radial distortion. Figure 8(f)
shows the original image without radial distortion. Figure 8(d) shows the theoret-
ical evolution of σt in the presence of white Gaussian noise in the RGB camera.
The plot shows the prediction of σt for different levels of σm, namely from 0 to
3 pixels. Figure 8(g) shows the result of the calibration algorithm, namely the
estimated pose and the position uncertainty of the RGB camera. The uncertainty,
represented as an ellipsoid, was estimated assuming a white Gaussian noise with
σm = 1.5 pixels in the RGB while the 3D noise was set to zero, σM = 0 meters.
Figure 8(h) shows uncertainty at the floor plane, Z = 0 meters, for a number of
image points given the estimated calibration uncertainty. As expected the uncer-
tainty gets higher as the selected points gets farther from the camera. This is
manly explained by foreshortening. Due to the perspective view of the camera, as
we get closer to the vanishing line of the ground plane the 3D distance between
each pixel approaches infinity. As a result the uncertainty tends towards infinity.

6. Conclusions

In this work we presented uncertainty analysis for two in-situ camera calibra-
tion methodologies, namely DLT-Lines and DLT-Lines with radial distortion. We
provide analytic solutions to uncertainty propagation from errors on the input data
to the estimated parameters and empirically verify the validity of the analysis with
Monte Carlo simulations. From the uncertainty in the projection matrix we derive
(i) the uncertainty in intrinsic and extrinsic parameters, including radial distortion,
and (ii) the uncertainty of 3D points in the ground plane.
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(a) Setup
(b) RGB-D
image

(c) RGB-D
depth

(d) Image to
3D uncertainty

(e) Camera
to calibrate

(f) Corrected
radial distortion

Uncertainty Ellipse

(g) Camera position
uncertainty (ellipsoid)

Camera

Robot

(h) Uncertainty
at the ground
plane

Figure 8: Analysis of camera calibration uncertainty. (a) Real indoor setup. (b) RGBD intensity
image. (c) RGBD range image. Each line defined in the RGBD image corresponds to a line in
the RGB image, and leads to a 3D line in the world/RGBD coordinate system. (d) Evolution of σt
with different noise levels of σm. At black is marked σm = 1.5. Blue, green, red and are X, Y, Z
coordinates respectively. (e) RGB image without radial distortion correction, in red lines used to
calibrate the camera. (f) The RGB images with radial distortion correction. (g) 3D reconstruction
of the scene, white the robot camera, blue the estimated camera pose and orientation. Ellipsoid
representing the position uncertainty when in presence of σm = 1.5 can be seen in the zoomed
part. (h) Blue print of the corridor, the red with a plus sign is the robot position and in blue is the
camera position. The blue ellipse are the floor uncertainty given an image point. The inner ellipse
represents 1 σ , while the outer ellipse represents 3 σ , meaning that with 99.7% the image point is
projected at the given floor location.
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We tested our methodologies both in a virtual environment with ground truth
and with real cameras. In particular we demonstrated uncertainty propagation to
the camera location and to points in the ground plane.

In the future work we will focus in finding structures that allow lower vari-
ances in the camera parameters. We also will focus in finding points and lines that
increase the accuracy of the calibration.
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